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Introduction

Quantum mechanics challenges our intuition since the very first days of its laborious
birth. The theory deals with a world of which we do not have everyday experience,
on scales of length that go from atoms and molecules further down. This is perhaps
the reason why macroscopic quantum phenomena are so intriguing and interesting:
they bring quantum mechanics on much larger scales. The first evidence of such
quantum macroscopic effects came from liquid *He, which becomes superfluid under
the temperature of 2.17 K, and from the closely related field of superconductors [1].
In the 90s, it has been shown that also the gaseous phase of alkali atoms undergo a
transition to a Bose-Einstein condensate (BEC), which possesses superfluid proper-
ties [2,3]. The key ingredient in all these systems is the macroscopic occupation of a
single quantum state, allowed by the Bose statistic obeyed by their constituents [4].
Given that the classical liquid and gaseous phases have their analog in the quantum
realm, we can wonder if this is valid for the solid state too. One could be induced
by its intuition to promptly answer no: one of the most distinctive properties of
a superfluid is that it can flow without friction, while one of the most distinctive
properties of a solid is that it can resist to shear stress, so that the two phases seem
incompatible. As it turns out, the answer is, instead, yes: the supersolid exists, and
it is the object of this thesis. One possible way to think about the supersolid is as
a quantum phase of matter which possesses two kinds of order [5]. In a crystalline
solid, the order comes from the fact that atoms (or molecules) are arranged in a pe-
riodic lattice, occupying therefore specific points in space. If we call dp(r) the local
deviation of the density from its averaged value, ordering in the solid is expressed
as

dp(r) = dp(r +T), (1)

where T belongs to the discrete set of lattice vectors. Such an ordering is linked
to the breaking of space translational symmetry and is absent in a fluid or in a gas.
On the other hand, order in a superfluid is a more abstract concept. We define
the one-particle density matrix as n(r,r') = (T (r)¥(r')), where Uf(r) (¥(r)) is the
field operator which creates (annhilates) a particle at the point r and the operation
() indicates both a quantum mechanical and a statistical average. It is possible to
show [3] that the macroscopic occupation of a single quantum state implies that

n(s) =5 ng, (2)

with s = |r — r’| and ng the fraction of atoms in the condensed state. Eq. (2)
expresses the presence of order in the superfluid state, linked to the breaking of
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the U(1) symmetry due to the phase acquired by the macroscopic wavefunction.
It can be understood as a consequence of the delocalization of the single particle
over the whole system: a state in which a particle is removed at the point r has a
finite quantum mechanical amplitude over a state in which an identical particle is
removed in another arbitrary point r’. A supersolid is a state of matter in which the
two previous kinds of order exist simultaneously for the same species of particles,
featuring both superfluid properties and density modulation.

The first theoretical discussion of a supersolid was made by Gross in 1957 [6].
The first suggestion of a physical mechanism that could be responsible for the occur-
rence of supersolid order in a quantum crystal came from the papers of Andreev and
Lifschitz in 1969 [7] and of Chester in 1970 [8]. The mechanism involves the pres-
ence of vacancies in the ground state of a quantum many-body system, that is, the
number of atoms is not equal to the number of lattice sites. The vacancies behave as
mobile particles since they can move in the lattice through quantum tunnelling. If
this happens in a bosonic system, the vacancies obey Bose statistic and can undergo
Bose-Einstein condensation. The result is a superfluid flow in a crystalline back-
ground, i.e. a supersolid phase. In another seminal paper that appeared in 1970 [9],
Leggett suggested that the supersolid should possess a lower moment of inertia than
a classical system, in analogy to what happens for ordinary superfluids. Leggett’s ar-
gument furnished a conceptually simple method to measure the superfluid response
of a supersolid, observing its anomalous properties under rotation, often referred
to as non-classical rotational inertia (NCRI). In the first phase of the search for
supersolidity, the most likely candidate was a crystal of solid *He. Thanks to the
combination of the light mass of its constituents and weakness of the interatomic
potential, solid *He offers a promising scenario where to observe strong effects of
quantum delocalization of its particles. A breakthrough in the study of supersolid
“He happened in 2004, when Kim and Chan published two papers [10,11] about the
observation of a reduced moment of inertia in solid “He. The experiment was the
realization of Leggett’s original proposal through a torsional oscillator. Since then,
many experimental and theoretical works have been performed to understand and
interpret the experimental data, an issue that turned out to be problematic [12].
Today it is believed that the experimental results collected so far don’t need the
existence of supersolid helium to be explained [13].

In the last two decades, the astonishing progress in the degree of control and
manipulation of ultracold atoms made experiments on quantum gases an attrac-
tive platform where to study quantum many-body physics and simulate condensed
matter systems in a highly ideal environment. For what concerns the search for
supersolidity, in a quantum gas experiment the starting point is a BEC, a system
which obeys the hydrodynamic equations of superfluids [2,3]. The challenge, there-
fore, contrary to solid helium, is to engineer an interaction that induces the system
to break translational invariance. Some theoretical proposals considered a soft-core
two-body interaction, which doesn’t diverge in the limit of small inter-particles dis-
tances. Simulations show that such an interaction produces a supersolid phase in
an appropriate range of parameters [14]. Quantum gases of Rydberg atoms might
in principle be employed to produce soft-core interactions, but technical challenges
have prevented from an effective realization of the theoretical models so far. Striped



phases with supersolid properties have been realized in BECs of spin-orbit cou-
pled atoms (SOC) [15] and atoms in optical cavities [16]. In these two systems, a
mechanism of spontaneous symmetry breaking produces a density modulation with
a period that is not present ab initio in the hamiltonian. However, the resulting
supersolid is infinitely stiff: the lattice period is imposed externally by the Raman
beams which induce the spin-orbit coupling, in the first case, and by the wavelength
of the light in the optical cavities, in the second case. Another possibility is offered
by dipolar quantum gases, realized with strongly magnetic atoms that interact with
the anisotropic and long-ranged dipolar interaction. Among the many interesting
effects which the dipolar interaction produces, there is the rotonization of the excita-
tion spectrum, which possesses a minimum at finite momentum, as in liquid *He [17].
The minimum, contrary to SOC and optical cavities BECs, arises genuinely from
the interactions between the particles. Tuning the roton gap allows inducing an in-
stability which creates an array of quantum droplets, self-bound systems stabilized
by quantum fluctuations [18].

Finally, a supersolid phase has been observed in 2019 in a dipolar gas of dyspro-
sium atoms by the Pisa group directed by Prof. G. Modugno [19]. In a small range
of parameters, the dipolar droplets overlap establishing phase coherence thorough
the whole system but keeping the density modulation. The result has been promptly
confirmed by two other groups in Innsbruck [20] and in Stuttgart [21]. The dipolar
supersolid has a different nature compared to the one expected for solid helium: it
has thousands of atoms in each lattice site and few sites, of order unity. It is thus
also called cluster supersolid. Each cluster is usually called droplet, in analogy with
the self-bound dipolar droplets previously observed. In the first experiments the
phase coherence between droplets has been observed through the study of the in-
terference pattern which forms after the free expansion of the cloud. A second kind
of experiments focused on the excitation modes. Two kind of excitations have been
observed, one associated with the crystal lattice and the other with the superfluid
background, which correspond to the two Goldstone modes arising from the two
broken symmetries of the supersolid [22-24]. Such an observation has demonstrated
the supersolid nature of the dipolar system produced in the laboratories, including
the compressibility of its crystal structure, a feature lacking in the SOC and optical
cavities experiments.

This thesis reports the experimental activity carried out in the Pisa group that
I joined in the summer of 2019. The subjects treated here fit in the first experi-
ments which try to understand the intriguing properties of the recently discovered
supersolid state of matter. The project aims to study the superfluid response of the
dipolar supersolid and understand how it is modified by the crystal structure com-
pared to a homogeneous superfluid. Superfluidity of the dipolar supersolid has been
indirectly demonstrated by the experimental observation of the Goldstone modes,
whose frequencies are in agreement with those calculated with the hydrodynamics
equations of superfluids. However, a direct demonstration of the superfluid proper-
ties of the dipolar supersolid is still lacking. In this thesis I describe an experiment
which provide such a demonstration, probing the supersolid with a rotational ex-
citation. Together with persistent currents, the reduced response to a rotation is
the most spectacular consequence of superfluidity. The anomalous behavior of the
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supersolid under rotation has been even proposed, in the seminal paper by Leggett,
as the definition itself of supersolidity. The work described in this thesis, indeed,
highly inspires to the original Leggett’s proposal, despite the many differences that
will be highlited in details, and, therefore, ideally prosecute the first experiments
attempted with solid helium. Throghout the thesis, I explain how I have been able
to induce a rotational excitation and to observe its effects on the supersolid. I em-
ploy a particular excitation mode existing in anisotropic traps, the scissors mode,
used also in the past to test superfluidity in ordinary BECs [25], which enables to
reduce the measurement of the moment of inertia to a frequency measurement, as
in the helium case. From the experimental data I estimate the superfluid fraction, a
key quantity for the characterization of the supersolid, which quantifies the fraction
of the system that decouples from the rotation. A superfluid fraction equal to one
indicates a standard superfluid, like the BEC, while a superfluid fraction equal to
zero indicates a classical system. We will see that the supersolid is expected to place
itself between these two extremities.

The thesis is organized as follows. In chapter 1, I discuss the link between super-
fluidity and rotations, highlighting the fact that in many different fields of physics
the demonstration of superfluidity of a system has dealt with rotations. Then, I ex-
plain what happens to a supersolid under rotation, following the original Leggett’s
argument. This discussion is useful to understand how a density modulation mod-
ifies the superfluid behavior. I also describe the scissors mode, the experimental
tool employed to detect rotations in our trapped system. In chapter 2, I review the
basic physics of dipolar quantum gases, which is needed for an understanding of
our experimental system. In chapter 3, I focus on dipolar supersolids. I propose an
analogy between a trapped dipolar system and the soft-core ones previously cited,
offering an alternative qualitative understanding of the supersolid formation in the
dipolar case. Then I discuss the seminal experiments on the dipolar supersolids. In
chapter 4, I describe the experimental apparatus and the experimental procedure
employed to create a supersolid. In chapter 5, I report the principal result of this
thesis: the measurement of the moment of inertia of the dipolar supersolid. I also
estimate a superfluid fraction from the experimental data and make a qualitative
comparison with the original Leggett’s prediction. Finally, in chapter 6, I describe
the construction of an optical lattice for future experiments on the supersolid, related
to the Josephson effect between supersolid droplets and to a possible manipulation
of the superfluid-supersolid transition. Much of the work reported in this thesis is
the object of a scientific article [26], under consideration for the publication by the
journal Science.
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Mi preme ringraziare il gruppo sperimentale di Pisa, che mi ha accolto negli ultimi
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grazie particolare a Luca, per tutti i consigli che mi ha dato e per quello che mi
ha insegnato in laboratorio, e soprattutto a Giovanni, che, oltre ad avermi seguito
attentamente, mi ha fatto vedere, per la prima volta, cosa significa fare fisica, e non
solo studiare fisica.



Chapter 1

Superfluids and supersolids under
rotation

In this chapter, we discuss the properties of superfluids and supersolids under rota-
tion. First, we briefly review some of the basic features of superfluids, especially the
ones linked with rotations, highlighting their generality through a list of experiments
in different fields and from different years. We then present in detail Leggett’s idea
of a supersolid, which comes directly from the peculiar properties it should exhibit
under rotation, halfway between a rigid solid and a superfluid. We briefly review the
attempts made to observe such effects in solid helium, without success, and finally,
we discuss a method for the measurement of the moment of inertia of a quantum
gas, the scissors mode, used in this thesis.

1.1 Superfluidity tested by rotations

The complex of phenomena that are collected under the term superfluidity concerns
a number of different physical systems, signaling the extreme generality of the field.
We can think of a superfluid as something which transports some kind of ”charge”
without friction. Historically, superfluidity was discovered in liquid helium, when
Kapitza [27] and Allen and Misener [28] found that under the critical temperature
of 2.17 K helium could flow in narrow channels with no detectable viscosity. In this
case, the frictionless flow is a mass flow of the *He atoms. Some years before, Onnes
discovered that the electrical resistance of mercury drops to zero under the tempera-
ture of 4.2 K: it was the first evidence of superconductivity. Today, superconductors
are counted in the class of superfluids system, being seen as charged superfluids. In
this case, the quantity to be transported without friction is, of course, the electrical
charge. Superfluidity in a fermionic system, such as the electronic gas in metals,
is explained by the BCS theory [1]. In this case, the formation of Cooper pairs,
which obey the Bose statistic, is needed for the macroscopic quantum mechanical
occupation of a single state. Superfluidity of neutral fermions is shown by *He, the
fermionic isotope of helium [1]. Other superfluids are proton and neutron clouds in
nuclei, whose superfluidity is thought to play a significant role in extreme astrophys-
ical situations such as the core of neutron stars [29]. More recent laboratory-systems
showing superfluidity are the Bose-Einstein condensates and degenerate Fermi gases

7



8 CHAPTER 1. SUPERFLUIDS AND SUPERSOLIDS UNDER ROTATION

realized in ultracold and dilute atomic samples [2,3]. To this list also other exotic
phases can be added, such as exciton-polariton condensates in semiconductor mi-
crocavities [30]. Superfluidity has been even suggested recently as a mechanism to
explain the problem of dark matter [31].

Superfluids

Following [4], we define superfluidity as a generalization of Bose-Einstein condensa-
tion: for a system to be superfluid, at any time ¢ it must exists a single-particle wave
function Wy(r,t) which is occupied by a finite fraction of all the particles, while all
the other single-particle states are occupied by a number of particles which is of the
order of 1 or less. The wave function Wy(r,t) is called the wave function of the con-
densate, and the N particles occupying it are the condensate. The number Ny is in
general different from the total number of particles N, even at zero temperature. In
dilute atomic BECs the difference N — Ny, called quantum depletion, is of the order
of 1%, while in liquid “*He the number of particles in the condensate is of the order
of only 10 % of the total number of particles. Other than with the wave function
Wy (r,t), the condensate can be described with its density n(r,¢) and phase S(r, ),
defined as

Wo(r,t) = /n(r, )5, (1.1)

The condensate density is therefore the modulus squared of the wave function
[Wo(r,t)|* = n(r,t). A very useful description for a superfluid is given in terms
of two-fluid hydrodynamics. In this picture, the total momentum density of the
fluid is written as the sum of two components

j = PsVs + PnVn, (12)

where the first is called the superfluid component and the second the normal compo-
nent. The superfluid component is of course associated with the condensate, while
the normal component is associated with the excitations and it is the one respon-
sable for the presence of dissipation. The superfluid velocity v, is linked to the
condensate wave function through the relation

vs(r,t) = %VS(r,t). (1.3)

The superfluid density p, is not, in general, equal to the condensate density. In fact,
for standard superfluids, p, and p,, depend on temperature, with

lim ps(T) = p lim p,(T) =0, (1.4)
where p = ps;+ p,, is the total density, while we have seen that the condensate density
isn’t the total one even at zero temperature. Over the critical temperature we have
pn = p and p; = 0. Despite the form of the current density (1.2), the two com-
ponents don’t correspond to two physically distinguishable species. For example,
it can be shown that in a weakly interacting Bose gas the normal component p,, is
identified with the density of the thermal atoms, i.e. the non-condensed ones, only
near to the critical temperature [2]. Otherwise it has different forms which depend
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on the collective excitations of the system.

With the two variables v, and ps we can describe the dynamics of the superfluid
at T = 0 (when p = p,) with the hydrodynamic equations of a fluid with zero
viscosity

— + V- (vsp) =0
a% (Vo) (1.5)
m VS+V(Tv2+u(p)+V t> =0.

ot 2 ¢ «“

The first equation is the continuity equation which expresses the conservation of
mass. The second equation is the Euler equation for the flow of a non-viscous
liquid, in an external potential V.. The relation u(p), which gives the chemical
potential  in terms of the density p, is the equation of state of the system!. The
effect of the presence of the condensate is in the form of the velocity field, eq. (1.3),
which means that it must satisfy

VAv,=0. (1.6)

The equations describing a superfluid at zero temperature are therefore in the form
of classical irrotational hydrodynamics. The irrotationality condition (1.6) has pro-
fondous consequences in the behavior of superfluids under rotations, as we will see
in the next paragraph.

The Hess-Fairbank effect

The relationship between superfluid velocity v, and phase S of the condensate in
eq. (1.3) means that the superfluid can’t support any motion with vorticity different
from zero. First, let us consider a region of space simply connected and completely
occupied by the superfluid. Chosen a closed line in the region, we can calculate the
circulation of the velocity field around the line using Stokes theorem:

F:j{VS-dl:/VAvs~dS:0, (1.7)

from eq. (1.6). The second integral is performed on a surface that lies on the line.
The circulation of the velocity field around a closed line is always zero: clearly, this
condition rules out all the classical rotational motions characterized by a velocity
field of the type v = wAr, with w angular velocity, since in this case the circulation on
a circle with radius R is I' = 27wR?. The condition of zero circulation is at the heart
of the Hess-Fairbank effect, a phenomenon which happens if we put a superfluid in
a cylindrical container and we rotate the container with angular velocity w. We are
interested in the state of thermodynamic equilibrium. For simplicity, we consider
an annulus of radius R, although all the following considerations apply equally
in a full disk. In the laboratory frame, the potential between the atoms and the
container depends on time, so that it is convenient to move in the frame rotating

Tn chapter 2 the hydrodynamic equations are explicity derived in the case of a dilute system
of ultracold bosonic atoms, in the context of the Gross-Pitaevski equation.
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with the container. In this frame, the state of thermodynamic equilibrium is found
minimizing the effective free energy

Feff :F}ab—w'L, (18)

where L is the angular momentum in the laboratory frame. For temperatures larger
than the critical temperature, when the system is completely normal (i.e. ps = 0),
the state of thermodynamic equilibrium is the one for which v, = wR, with an
angular momentum L = NmwR? along the z axes. We can calculate the moment

of inertia through the definition

L
== 1.
0=, (1.9)

which results in the classical value, i.e. ©, = NmR2 When we cool down under
the critical temperature, a fraction ps of the superfluid is described by the velocity
field v, bounded by the circulation condition (1.7). The superfluid can’t perform
a rigid rotation as the normal component, so that a fraction ps/p of the liquid
decouples from the rotation, transferring its angular momentum to the container.
The resulting angular momentum of the liquid is L = (1 — p,/p) NmR?w, and thus
the moment of inertia below the critical temperature is

O =(1-/)0. (1.10)

where f; is called superfluid fraction and in the two-fluid model it corresponds to
ps/p. This phenomenon was first observed by Hess and Fairbank, who measured the
increase in angular momentum of the container while lowering the temperature of a
sample of liquid helium [32]. They deduced that under a critical angular velocity the
angular momentum of the liquid was indeed zero, while the walls of the container
were rotating. We discuss which is the expression for this critical velocity and what
happens above it in the next paragraph.

Vortices

We have seen in eq. (1.7) that the circulation of the superfluid velocity must be zero,
but this is not true in general. To obtain that result, we have applied Stokes theorem,
but we can do it only in a simply connected space. If the velocity isn’t defined in
some regions of the space, we can’t make that passage and we can’t conclude that
the circulation is zero. A general result can, however, be obtained using the fact
that the wave function must be single-valued so that the phase can change only by
integer multiples of 27 along a closed path. Using the relation velocity-phase in eq.
(1.3), we obtain the result

r_jfvs-dl_nﬁ, (1.11)

m

where n is an integer. Eq. (1.11) is also known as Onsager-Feynman quantization
formula, since it states that the velocity circulation is quantized in multiples of
h/m. In an annulus of radius R as the one considered in the previous paragraph,
the velocity field is of the form

Vs = nw.R (1.12)
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where w, = h/mR?. If the circulation I' acquires a finite value corresponding to
n = 1 the system is said to possess a vortex line. When does the equilibrium con-
figuration of the superfluid contain a vortex line? Intuitively, this happens when
the initial angular velocity of the container is large enough. Calculating the free
energy with the velocity v, = wR for the normal part and vy = nw.R for the su-
perfluid part one obtains that it is minimized if n is the closest integer to w/we.
When w/w, < 1/2, the closest integer is zero, so no vortex forms and we recover
the Hess-Fairbank effect. For larger angular velocity, the angular momentum of the
equilibrium configuration increases in steps proportional to A, through the forma-
tion of states in which, at T" = 0, each atom has an angular momentum of nh, for
a total angular momentum of n/NAh. In the more experimentally relevant case of
simply connected space, such as a full disk, the vortex line is a region of space in
which the superfluid density vanishes, so that the phase of the wave function, and
then the superfluid velocity, aren’t defined. Extending the solution (1.12) for the
annulus to the whole disk, we obtain a velocity field which is inversely proportional
to r, the distance from the center. Such a field is indeed irrotational and would
diverge on the axis of the container, but in that point the vortex line forms and
the wave function vanishes. For higher angular velocities, it is found that vortices
with multiple quanta of circulation are unstable with respect to decay into vortices
with a single quantum. The state with the lowest energy, therefore, contains many
vortices, which repel each other with a mechanism exactly analog to the Magnus
force of classical hydrodynamics [33]. The result is the formation of a triangular
array of vortices (see Fig. 1.1 E and Fig. 1.2), also called Abrikosov lattice?. For
an experimental study of the vortex lattice in a BEC, see [34].

Finally, we note that the rotational effects described so far are conceptually
different from the best known phenomenon called metastability of supercurrents.
In that case, the previous thought experiments are modified: above the critical
temperature the container is rotated with w > w. and the system is waited to be in
equilibrium with it; then the temperature is lowered below the critical temperature
and the container is stopped. Although a normal liquid rapidly stops rotating,
occupying the new equilibrium state, which is, of course, the one in which it is at
rest, a superfluid will persist in the metastable rotating configuration for astonishing
long times (to give a number, for superconductors a lower limit of 10 years exists
for the relaxation time of the supercurrent [1]).

Evidences of superfluidity from rotation in different systems

As explained in the previous paragraphs, superfluids show clearly a different behav-
ior compared to a classical system when put under rotation. Historically, proofs of
superfluidity for a number of different systems have been obtained through the study
of rotations. In Fig. 1.1 some images from papers in different fields and different

2Some scientists in the field, as S. Stringari, suggest that the vortex lattice could be thought
as a supersolid: it is a superfluid system which breaks the translational invariance through the
formation of “holes” in the density, instead of peaks. It would be a supersolid in a state of
high angular momentum. However, the issue is not clear, and, at the moment, there are neither
experimental nor theoretical studies on the subject.



12 CHAPTER 1. SUPERFLUIDS AND SUPERSOLIDS UNDER ROTATION

years are shown. The first system to be studied was, of course, liquid *He: the first
experiment has been the one from Hess and Fairbank [32], discussed in the previous
paragraph (see Fig. 1.1 A). The fermionic isotope of helium, *He, has been demon-
strated to show superfluidity under 2.5 mK, through the formation of Cooper pairs
similarly to superconductors [1](Fig. 1.1 B). Differently from the standard BCS
theory, however, 3He Cooper pairs possess non-trivial internal quantum numbers,
since they form in states with non-zero orbital angular momentum and spin. As a
consequence, the phenomenology in 3He is particularly rich: two superfluid states
exist, He-A and 3He-B, and vortices can appear in several different forms [35]. In
the ultracold regime of quantum gases, superfluidity has been demonstrated, in the
context or rotations, through the appearance of quantized vortices. In [36], the
angular momentum of the condensate was extracted through the measurement of
the frequencies of two collective quadrupole mode (Fig. 1.1 D). Another successful
probe for the test of superfluidity in quantum gases has been the scissors mode [25],
to which we dedicate the last section of this chapter. Vortices have been studied
also in degenerate Fermi gases, across the crossover which brings from standard
Bose-Einstein condensate to a superfluid of Cooper pairs in the BCS side, chang-
ing the interaction parameter [37] (Fig. 1.1 E). Vortices have been observed also
in an exciton-polariton condensate in a semiconductor microcavity [30] (Fig. 1.1 C).

Finally, we comment on the relationship between the physics of rotations in
superfluids discussed so far and superconductors, following [1]. The analogy with a
superconductor is obtained by substituting the rotational field with a magnetic field.
Formally, it can be shown that the Hamiltonian H' of a rotating neutral system,
in the rotating frame, is equivalent to the Hamiltonian H of a charged system in a
static magnetic field, in the laboratory frame, with the substitution mwAr <> eA(r):

(p— eA(r))?
2m

2 (p — mw Ar)?

+ %:pt(r)

(1.13)
apart from the centrifugal term in the neutral case. The applied magnetic field
is B = VA A. The analog of the Hess-Fairbank effect in a charged system is
the Meissner effect: a superconductor expels from its bulk a static magnetic field,
provided it is lower than a critical value B, behaving like a perfect diamagnet. More
precisely, the magnetic field B(r) and the vector potential A(r) decay exponentially
inside the superconductor with a typical length scale called the London penetration

depth
A (T) = Um (1.14)

where pg(T) is the superfluid density, with the same meaning of the neutral case.
The critical value B.; for the magnetic field is the analog of the critical angular
velocity w, in the neutral case. The counterpart to the vortex state of the neutral
system also exists. In the latter, a vortex forms when the velocity exceeds the critical
value w,, and the angular momentum of the superfluid is quantized in units of 4. In
the superconductor, when the magnetic field overcomes the critical value B, a finite
magnetic flux ® = ¢ A -dl is allowed to enter in the system, through the appearance

1 9 B
DL, Vo) — gmlw AT 6 H =
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Figure 1.1: Evidence of superfluidity from rotation in several different systems.
(A) The Hess-Fairbank effect in liquid *He [32]. (B) Vortices in 3He [35]. (C)
Phase diagram with a vortex in an exciton-polariton condensate [30]. (D) Non-
classical angular momentum in an atomic Bose-Einstein condensate [36]. (E)
Vortices across the BEC-BCS crossover in a degenerate Fermi gas [37].
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Figure 1.2: Vortex array in a type-II superconductor (NbSez), imaged with a
scanning tunneling microscope. The vortex cores are the bright regions, while
the superconducting regions are the dark ones. Image taken from [38].

of a region in which the wave function vanishes, i.e the metal becomes normal. Such
a region is the vortex line in the superconductor phase, around which the magnetic
flux is quantized in units of the flux quantum ®, = h/2m, ie. ® = nd,. The
core of the vortex is of the order of the Cooper pair radius £. Increasing further
the magnetic field produces an array of vortices, as in the neutral case (see Fig.
1.2). Over an upper critical field B,y the vortices overlap one with the other and the
metal becomes completely normal. Actually, the previous behavior describes only
a fraction of the known superconductors, the so-called type-II superconductors, for
which the condition Ay /£ > 1 holds. In the other limit, the system is called type-
I superconductor and doesn’t possess the vortex state, although it still shows the
Meissner effect.

1.2 Leggett’s argument: can a solid be super-
fluid?

The most intuitive idea of a superfluid as something that can sustain a perfect fric-
tionless flow seems incompatible with a crystalline order since the latter is typical
of rigid bodies. However, quantum mechanics can mix the two opposite natures of
a superfluid and a solid, as A.J. Leggett suggested in 1970 [9]. We focus on the
paper by Leggett and not on the other seminal papers by Chester [8] and Andreev
and Lifschitz [7], cited in the introduction, because Leggett proposed the supersolid
exactly in the context of rotations, and his work is, therefore, the conceptually near-
est to the experiment that we present in this thesis. In this section, we analyze in
detail Leggett’s argument, trying to understand what happens to an ideal supersolid
under rotation. We aim to explain as simply as possible, step by step, the reasoning,
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which may appear hard to grasp from the original papers, and sometimes even to
elaborate some issues which could be interesting to study in future works.

Leggett generally defined the property of Non-Classical Rotational Inertia (NCRI)
through the following thought experiment: N bosonic atoms with mass m are con-
fined in a cylindrical annulus of radius R and thickness d (with d < R) that is
rotated around the axis passing from the center of the annulus with velocity w. The
free energy of the system in the rest frame is assumed to be

F(w) = Fy +O0.w°/2 + 0F(w), (1.15)

where the first two terms are the classical result for a rigid body rotating with the
container, and the last term is the departure of the actual free energy from the
classical one. Fj is the free energy in the absence of rotation and ©,. the classical
moment of inertia, i.e ©. = NmR? if we neglect terms of order d/R. The superfluid
fraction fg of the system is defined through the relation

§F(w) = — fsOw>. (1.16)

By mixing the two formulae (1.15) and (1.16) we see that the definition of the
superfluid fraction can be recast in terms of the moment of inertia

©=(1-/5)0., (1.17)

meaning that the superfluid part of the system doesn’t contribute to the moment of
inertia. In the context of standard superfluids, the formula (1.17) is nothing but the
Hess-Fairbank effect. For a completely superfluid system, such as liquid helium II
or atomic BEC, f¢ =1 at T'= 0. These systems can be described with a superfluid
fraction less than 1 when 7" > 0 and a thermal component appears, increasing the
moment of inertia. More generally, every two-fluid model allows a description in
terms of a superfluid fraction varying between zero and one, in the sense that a part
of the system is superfluid, being described by a unique wavefunction, and another
part not. An example of a two-fluid model that doesn’t involve a thermal compo-
nent is a Fermi gas: in this case, lowering the temperature, a portion of the system
undergoes a superfluid transition via the formation of Cooper pairs, while the left
portion is a degenerate Fermi gas. It is thus common, in the field of superfluidity,
to talk about a superfluid fraction that varies with the temperature and such that
fs(T'=0) = 1. What Leggett pointed out in his 1970 article [9] (and later in [39])
is that it is possible to have 0 < fs¢ < 1 at T' = 0, the necessary condition for
this strange behavior being the breaking of translational invariance of the ground
state. In other words, Leggett predicted that a matter wave with phase coherence
but modulated density distribution, i.e. the supersolid phase of matter, should show
non-classical rotational inertia (NCRI) effects with a superfluid fraction less than
one even at zero temperature, and not necessarily associated to a two-fluid picture.

To obtain an expression for the superfluid fraction, linking it to the density dis-
tribution, we need to solve the quantum mechanical problem of the rotating system.
Given the hamiltonian of the system H, to find the solution of the Shroedinger
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equation HVy = Ey¥, one has to specify the boundary conditions to be fullfilled by
the wave function ¥y. First, for a system of identical bosons, ¥y must be symmetric
with respect to the interchange of two particles. Second, and crucial for the present
problem, ¥, must be single-valued with respect to the coordinate r; of any particle.
In the annular geometry this condition is meaningful for the angular coordinates 6;
(we don’t report the dependence on z; and r;), and it reads

\110(01,...,&—}—27?,...,91\;):\110(91,...,@,...,91\7) Vi = 1,...,N. (118)

In other words, if we take a particle and move it in a circle to the initial position,
the wave function can’t change. When the confining walls rotate the potential
is time dependent. It is therefore convenient to work in the frame rotating with
the container, where the potential is time independent, given that the interaction
between particles is only a function of positions and not of velocities. Using the
canonical prescription to change coordinates in hamiltonian mechanics, with the
substitution 0, = 6; — wt, we find the hamiltonian in the rotating frame

H(r',p') =H(',p) —w- L, (1.19)

with L' = r' x p’ the angular momentum. This is not enough, since the wave function
Uy doesn’t satisfy the Schroedinger equation with the new hamiltonian. We thus
need to multiply ¥, for a phase factor, so that H'Uj = E{¥;. The relationship
between the wave functions in the two reference frames is found to be

U0, .0, O ) = eI O (0 4wt 04wt Oy +wt). (1.20)

We finally conclude that in the rotating frame the boundary condition (1.18) is
modified into

(O, ... 0+ 2, . 0) = e 2T gl (g0 ) Vi=1,..,N.
(1.21)
Because we neglect terms of order d/ R, we can imagine to unroll the annulus and
to work in a one-dimensional space, with the substitution ¢, — x; for the coordinate
of the " particle. The variable z; varies between 0 and 2rR. The next step is to
search for a solution of the stationary Schroedinger equation in the rotating frame
via a variational approach. We make the ansatz

\Pg(l‘l, ceey Ly anny $N) = Gizj ¢(xj)¢0($1, ey Ly aeny ZEN) (122)

where 1)y can be taken real, and, to satisfy the boundary condition (1.21), we
ask

¢(z + 27R) = ¢(v) — 2rmwR?/A. (1.23)

The expectation value of the hamiltonian of the system on the ansatz (1.22)
results

(Hhr =By + 23 [ (F0te) plespi (124)
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where we have introduced the density distribution of the particles j defined as
p(z;) = [(Yo(21,...,xN))*d21..dxj_1dzji1..dxy. The energy of the system at rest is
Ey. We note that the only term appearing due to the rotation is a sum of identical
kinetic energy terms. The goal of the variational approach is to minimize such a
term, given the density distribution p(x). The variational parameter is the phase
function ¢(z), that can be determined using the standard variational calculus. In-
deed, the terms in eq. (1.24) are in the form of the well known classical action

S = [ L(q(t),q(t))dt , for which the procedure of minimization on all the possible

0 0

d
paths ¢(t) leads to the Euler-Lagrange equation — (a—£> — a—ﬁ = 0. To make the
q q

dt
d

correspondence evident, we substitute ¢(t) — ¢(z) and ¢(t) — d—gb(a:), so that the
x

d d 2
integrand in eq. (1.24) is a lagrangian E(gb(:z:), %aﬁ(m)) = <%¢(:U)> p(x), from
which we derive the Euler-Lagrange equation

d/d
— (= o(@)(a)) =0, (1.25)
satisfied by the function ¢(z) that minimizes the energy (1.24). Solving eq. (1.25)
we obtain the solution

o(x) :/o p(a:/)dx/ (1.26)

where ¢ is a constant to be determined imposing the boundary condition (1.21). The
result is

—mRw 1
o(x) = k / dx’, 1.27
D=y @) 120
1 A dx’ -1 . . . . .
where k = (X M> and A is the dimension of the unit cell of the supersolid.

The main feature of eq. (1.27) is that the phase of the rotating system depends
on the form of the density distribution: for a uniform density one obtains a linear
function of z, i.e. Gunir = —mTIf“’x, while for a supersolid the phase increases more
rapidly near a density maximum, as depicted in Fig. 1.3.

Substituting the phase ¢(x) of eq. (1.27) in the variational energy (1.24) we

obtain

B 1 S B N

where we have defined the mean density p = N/27R.
Given the phase, it is straightforward to calculate the velocity field, since v(z) =

%% (x), so that the velocity is proportional to the inverse of the density
(x) R i (1.29)
v(r) = —wR—— .
p(z)

For a uniform superfluid the velocity is constant and equal to —wR. This result is
valid in the rotating frame; in general, for our one-dimensional system, the velocity
in the lab frame is obtained by a Galileian transformation of eq. (1.29) v = WR+w,
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Figure 1.3: The phase of a system with uniform density, in yellow, and with
modulated density, in blue, from eq. (1.27). The modulated density p(z) is
plotted in gray for comparison, not in scale. The boundary condition (1.23)
fixes the values of ¢ at the boundaries. For a supersolid, it is energetically more
favorable to increase the phase more rapidly where p is smaller and more slowly
where p is larger.

T

so that in the laboratory frame the superfluid doesn’t move, and we find the known
result that the superfluid’s moment of inertia is equal to zero. On the other hand,
for a supersolid the velocity field results

k
Vtab () wR(l p(x)> (1.30)
This function is plotted in Fig. 1.4. We see that the atoms in a supersolid don’t stay
still, but move with different velocities : the density maxima follow the rotation of
the container, tending to behave classically, while the density minima oppose to the
rotation moving in the opposite direction, so that the single-valuedness boundary
condition (1.18) is satisfied. In fact

/0 (@) = " (o(2mR) — 6(0)) = 0, (1.31)

as can be verified using eq. (1.29).

We expect that the quasi-classical rotation of the density maxima is responsible
for the increase of the moment of inertia, and the relative decrease of the superfluid
fraction. To calculate the moment of inertia we use the definition

o b (1.32)

with L = mRwv is the angular momentum along the axis of rotation and the operation
() means an average on the density distribution p(z). From eq. (1.29) and using
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1.0 p(x)

10

Figure 1.4: Velocity field in the laboratory frame for a system with modulated
density, from eq.(1.30). The modulated density p(z) is plotted in gray for com-
parison, not in scale. The density maxima start rotating quasi-classically, while
the density minima move in the opposite direction so that the single-valuedness
boundary condition (1.18) is satisfied.

Figure 1.5: Intuitive explanation of the rotating properties in three different
cases. (A) Normal crystal. Each density maximum is distinguishable from all
the others so that it can be followed in a rotation. The moment of inertia is
the classical one. (B) Supersolid. The density maxima are always visible, but
they are linked by a superfluid background. Each atom is completely delocalized
over the whole annulus, but the density modulation of the ground state allows
detecting rotations. The moment of inertia is less than the classical one but
different from zero. (C) Completely superfluid. The ground state has a constant
density. Each atom is completely delocalized, with no preferable position. No
rotation can be induced in this configuration, and the moment of inertia is zero.
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the normalization condition fO%R p(x)dx = N we obtain

mR(vigp(x))
w
1 A dx’
where QQy = (— -
o= b @
we could conclude that f, = @)y. Actually, since we have employed a variational

approach, we have obtained only an upper limit for the superfluid fraction [9]. The
final result is

0= =mR*(N — k27 R) = mR*N(1 — Qy), (1.33)

-1
) . From the definition (1.17) of the superfluid fraction,

fs < Qo= (% /0/\ p(i—fc)//p>l (1.34)

To conclude, we propose an intuitive picture of the rotating properties in the
three cases: crystal, supersolid, and superfluid, explained in Fig. (1.5).

1.3 The helium case

It is quite obvious that helium has been the first system to be seriously investigated
looking for a supersolid phase. For many years superfluidity has been synonymous
with helium, since no other superfluid systems were known. As a matter of fact,
the first theoretical papers were about helium: the Andreev-Lifschitz mechanism,
based on the delocalization of vacancies in an incommensurate crystal, is of course
enhanced by the light mass of helium, which corresponds to a large zero-point mo-
tion.

The first claim of NCRI in solid helium was made in 2004, in two papers by
Kim and Chan [10,11]. Their experimental approach to supersolidity was very
close to Leggett’s idea: the supersolid was searched trying to detect an anomalous
rotation while lowering the temperature. The experimental set-up was a torsional
oscillator, in which a cylindrical cell containing solid helium in an annular channel
was suspended on a torsion rod (see Fig. 1.6). At resonance, the period 7 of the

oscillator is given by
/O
=2m\/ = 1.35
T s o ( )

where © is the moment of inertia of the whole system and K is the torsional spring
constant. The unexpected result they found was a drop in the oscillation period
below about 0.1 K, consistent with the formation of a supersolid, whose superfluid
component should have stopped participating the rotation, lowering therefore the
total moment of inertia © in eq. (1.35). The authors found that the fraction of
the mass that decoupled from the oscillation, which they called Non-Classical Ro-
tational Inertia Fraction (NCRIF), was of the order of 0.01, as depicted in Fig. (1.6
(B)). Several control experiments were performed, to exclude non-supersolid expla-
nations of the period drop. For example, the same experiment was repeated with a
sample of *He, and also with *He with different concentrations of *He, showing that
the period drop was observable only if the concentration of *He was under a certain
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Figure 1.6: The torsional oscillator experiments by Kim and Chan [10, 11],
taken from [12]. (A) The experimental apparatus is composed of a torsion rod
and an oscillating cell. Helium is introduced in the cell through a filling line
and then occupies an annular channel. Electrodes are used to drive and detect
the oscillation of the cell. (B) Period drop at about 0.1 K, compared with the
measurement effectuated with the empty cell when no drop is detected. 7*
is a reference period. On the right, Non-Classical Rotational Inertia Fraction
(NCRIF), i.e. the fraction of the mass which decouples from the oscillation in
the hypothesis of supersolidity. NCRIF is of the order of 0.01 and depends on
the maximum velocity of the cell during the oscillation.
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Figure 1.7: Comparison between shear modulus ¢ and NCRIF as a function of
temperature from [12]. Open dots are shear modulus measurements normalized
to its value at low temperatures pg. Red dots are NCRIF measured with the
torsional oscillator method. After adjustment of the vertical scales, the two sets
of data coincide. The elastic anomaly and the rotation anomaly must have a
common origin.

value, confirming that the phenomenon originated from the bosonic nature of the
atoms.

A great effort, both theoretical and experimental, was made to understand the
data and perform new experiments. For a review see [40]. In 2007 it was discovered
that solid helium has unexpected elastic properties at low temperatures [41]. Its
shear modulus, which measures the resistance to transverse forces, increases exactly
in the range of temperatures in which the rotational signal was observed, suggesting
that most of the experiments could be explained in terms of changes of the constant
K, when the filling line containing helium passed also through the torsional rod,
or in terms of a frequency-dependent moment of inertia, whose effects are different
depending on the geometry of the cell. The change in shear modulus not only
explained the temperature dependence of the observed signals (see Fig. 1.7), but
also the dependence on 3He impurity, with a model based on the displacement of
dislocations. The original experiment by Kim and Chan was repeated with a new
apparatus designed to minimize the effects of the shear modulus anomaly, and indeed
no period drop was found [13].

1.4 Scissors mode and moment of inertia

We here focus on experiments performed on atomic Bose-Einstein condensates. As
mentioned before, the rotational properties of a BEC have been investigated in
[36], through the measurement of the angular momentum of the system with a
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Figure 1.8: Sketch of a scissors oscillation. For small excitation angles 0, the
scissors oscillation appears as a rigid rotation of the cloud around its equilibrium
configuration.

method consisting of the observation of quadrupole modes frequencies. Here we
discuss another method, which has been used to study the effects of superfluidity on
rotations of BECs and is employed in this thesis to investigate the properties of the
supersolid. In a theoretical paper [42], it was suggested that the moment of inertia
of a trapped system can be extracted from the study of a peculiar mode, called
the scissors mode, excited when the trap is rotated relative to a symmetry axis. A
sketch of the mode dynamics is depicted in Fig. 1.8: the cloud oscillates around its
equilibrium position, subject to the torque exerted by the trap, in evident analogy
with the helium torsional oscillators. As in the helium case, the measurement of
the oscillation frequency determines the moment of inertia. The scissors mode was
known from nuclear physics, where it corresponds to an out-of-phase oscillation
of the neutron and proton clouds which resembles the movement of the blades of
a pair of scissors [43]. Experimental observations of the scissors mode provided
a demonstration of superfluidity in ordinary BECs [25,44]. Here we describe the
oscillatory behavior of the scissors mode and its link to the moment of inertia.

Scissors oscillation

In the hydrodynamic formulation of the BEC’s dynamics (see chapter 2), the ex-
citation modes are obtained considering small density variations dn from the equi-
librium value ny and linearizing the hydrodynamic equations around ng [2]. While
the time variation is assumed to be of the form dn oc e, the spatial variation can
have different forms depending on the trap geometry and the type of mode. Ex-
periments with quantum gases are often performed with magnetic or optical traps,
which can be described as a harmonic potential acting on the atoms, characterized
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by the frequencies in the three directions w,,w,,w,. The scissors mode appears in
an anisotropic trap, whose anisotropy in the zy plane is defined as

2 2
C|wy —wy

. (1.36)

2 2
Wy + Wz

The scissors mode has a two-dimensional nature, and corresponds to a density vari-
ation of the form dn o zy. Inserting this ansatz in the linearized hydrodynamic
equations one finds that they are satisfied with a frequency

Wse = /W2 + w?. (1.37)

The scissors mode is excited rotating the trap around the z axis of a small angle 6.
Indeed, starting from the equilibrium distribution in a trap and making the small-
angle approximation x — =z — 6y, y — y + 0x, the density variation induced by
the excitation is

on o w?.abzy, (1.38)

and is therefore in the form of a scissors oscillation. Once that the trap is restored
in the initial position, the cloud starts rotating around the trap axis. The time
evolution of the angle # is a simple sinusoidal oscillation at the scissors frequency

0(t) = O cos(wsct). (1.39)

The validity condition of the previous equation is that y < «. A large anisotropy
«, therefore, favors the scissors oscillations. If the angle is too large, the deformation
gets a quadrupole character and the simple scissors geometry is lost.

As described previously, one of the peculiarities of superfluids is that, under a
certain critical velocity, they can’t acquire any angular momentum from a rotating
cylindrical trap. This property derives from the condition of irrotationality which
their velocity fields are forced to fulfill, and is often stated saying that a superfluid
has zero moment of inertia at T = 0. The question is, therefore, how a scissors
oscillation can be allowed despite the irrotationality condition. The atoms don’t
perform a rigid rotation around the z axis, with a velocity field of the type v
(—y,x,0), but, solving the hydrodynamic equations for the scissors mode excited
rotating the trap with angular velocity w one finds

V:OJﬁ(y,fE,O), (140)

with the parameter 5 which quantifies the deformation of the cloud:

(y* — a?)
== 1.41

@) (1.41)
The operation () is an average on the density distribution. The velocity (1.40) sat-
isfies the condition V A v = 0, although in the limit of small excitations the global
motion corresponds to an oscillation in the zy plane (see Fig. 1.8). The difference

between a rotational field and the scissors field is depicted in Fig. 1.9. In the case
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of non-dipolar BECs, the deformation of the cloud and that of the trap are equal,
i.e. a = (. On the other side, in dipolar gases the two parameters are different (see
chapter 5).

Given the velocity field in the cloud (1.40) it is easy to calculate the angular
momentum around the z axis and then the moment of inertia via the definition
© = (L)/w. The result is that the parameter 5 enters two times, one from the
modulus of the velocity, and one from its peculiar shape in the zy plane, so that the
moment of inertia is proportional to 52 :

0 = %0, (1.42)

with ©. = mN(z? + y?) being the classical moment of inertia of a rigid body
consisting of N particles with mass m rotating around the z axis. We see, therefore,
that in an anisotropic trap, the moment of inertia of a completely superfluid system,
such as the BEC, is different from zero but lower than the classical value. In a trap
with cylindrical symmetry, we recover the correct result of zero moment of inertia.
In this case, the scissors oscillation is forbidden, and the velocity field (1.40) is
identically zero. The need for anisotropy can be understood in terms of angular
momentum conservation: during the scissors oscillation, the angular momentum
isn’t conserved, because the trap must exert a torque on the cloud to maintain the
oscillation. Formally, this fact is embodied in the commutation relation between the
hamiltonian and the angular momentum operator

(M, J.] = —im(w, — w?)zy, (1.43)

where m is the mass of the atoms. This commutation relation highlights the con-
nection between the rotation of the cloud and the quadrupole operator zy, which is
evident also in the form of the density perturbation, eq. (1.38).

In the classical regime of high temperatures, the same type of excitation is treated
in the framework of the Boltzmann kinetic equations [42]. The behavior of the ther-
mal cloud is determined by the collision rate between the atoms. If we call 7 the
typical time between two collisions, two different regimes exist depending on the
value of aw,.7. In the collisionless regime, corresponding to aw,. 7 < 1, the oscil-
lation of the thermal cloud is characterized by two frequencies, given by |w, £ wy|.
In the hydrodynamic regime, with aws.7 > 1, the low-lying solution becomes over-
damped and the oscillation happens at a single frequency, given by ws.. For the
dilute samples in the quantum gases laboratories, very often the regime of opera-
tion is the collisionless one so that the behavior of the condensate and the thermal
gas is very different. The scissors mode, therefore, offers the possibility of a direct
experimental demonstration of the superfluidity of a system.

As previously explained, the scissors dynamics is intrinsically linked to the
quadrupole moment. This link leads to a useful and general relation between the sys-
tem response to a scissors excitation and its moment of inertia, holding for classical
as well as quantum systems [42]:
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Figure 1.9: Comparison between the scissors and a rotational velocity field.
The latter has the form v « (—y, x,0) and has a non-zero vorticity. The first has
the form v o (y, z,0) and it is irrotational. In a superfluid, only the scissors field
is allowed. For small enough excitation angles, the scissors oscillation resembles
exactly a rigid oscillation of the whole cloud around the z axis.

F(w)/w
0 =0.|w—w’ ,f—. 1.44
‘wy wthfo f F(w)w ( )
The function F'(w) is the Fourier transform of the quadrupole operator xy(t), and is
therefore a measurable quantity. When the oscillation happens at a single frequency
wse (as in the BEC), so that F/(w) o« §(w — ws.), from (1.44) we obtain the equation

O = 0.8, O(wwﬂ. (1.45)

Using the hydrodynamic value of the scissors frequency given in eq. (1.37) and
the fact that a = 3, we recover the result © = 320, for the non-dipolar BEC. For
a thermal cloud, the two-frequencies oscillation gives @ = ©,: it is the presence
of the low-lying frequency in the thermal gas which causes the moment of inertia
to assume the classical value. Equation (1.45) can be used to experimentally de-
termine the moment of inertia, through a measurement of the scissors frequency ws..

The scissors mode has been experimentally studied in a series of papers from the
group of C. Foot [25,44], with a Bose-Einstein condensate of Rubidium atoms hold
in a magnetic trap. The mode is excited with a sudden tilt of the magnetic field
producing the trap, which causes the BEC to be in an out-of-equilibrium configu-
ration. The oscillations of the angle of the cloud as a function of time are shown
in Fig. (1.10), both for a thermal cloud and the condensate. The single-frequency
oscillation of the condensate, in agreement with the hydrodynamic result (1.37),
demonstrates its irrotational velocity and hence its superfluid nature. A measure-
ment of the scissors frequencies as a function of the temperature is instead reported
in Fig. (1.11). Although the BEC oscillates at a single frequency for every temper-
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Figure 1.10: Scissors oscillation for a trapped BEC and a thermal cloud from
[25]. A BEC of Rubidium atoms is trapped in a magnetic trap. The scissors
mode is excited by tilting a symmetry axis of the trap, and the angle of the cloud
is obtained through absorption imaging after time of flight. (A) Oscillation of
the thermal gas, which shows two frequencies. (B) Single-frequency oscillation
of the BEC, in agreement with the result of eq. (1.37), which is a proof of the
superfluid nature of the condensate.

ature, the frequency gradually lowers with increasing temperature, a phenomenon
which can be understood in terms of the interaction between the condensate and
the thermal component. At higher temperatures, the thermal cloud oscillates with
the two espected frequencies. From the formula (1.45) it is possible to derive the
moment of inertia of both the condensate and the thermal cloud as a function of
temperature (see Fig. 1.11 (B)). At low temperatures, the moment of inertia of the
condensate is in good agreement with the value 320, while at higher temperatures
it increases, reflecting the decrease of the scissors frequency. On the other hand, the
thermal cloud’s moment of inertia is consistent with the classical value ©,. for all
the temperatures. For intermediate temperatures, when both the condensate and
the thermal cloud are present, a semi-classical model allows extracting the moment
of inertia of the whole system from the measurement of the different oscillations
of the BEC and the thermal gas [45]. The result is shown as a continuous line in
Fig. 1.11 (B), and it is a proof of the temperature-dependence of the moment of
inertia of a quantum gas, which arises from a two-fluid picture: one classical fluid
which contributes classically to the rotation, and one superfluid which lowers the
total inertia of the system.
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Figure 1.11: Scissors frequencies and moment of inertia as a function of tem-
perature from [44,45]. (A) Scissors frequencies of the BEC (black dots) are
in agreement with the hydrodynamic prediction for low temperatures when the
thermal component is absent. For higher temperatures, the frequency decreases,
as a consequence of the interaction with the thermal component. Open dots are
the results of the thermal gas. (B) Moment of inertia obtained from the scis-
sors measurements. At low temperatures, the BEC (black circles) is in good
agreement with the expected value 320, (dashed line). A better agreement
is reached inserting a correction accounting for the finite atom number (lower
dotted line). At higher temperatures the moment of inertia increases, reflecting
the decrease of the scissors frequency. For the thermal cloud (open circles) the
moment of inertia is always consistent with the classical one. Black squares are
the moments of inertia for the whole system, obtained combining the thermal
and condensed data with a semiclassical model. The temperature-dependence
of the moment of inertia is a consequence of superfluidity.



Chapter 2

Dipolar Quantum (Gases

In this chapter, we recall the theoretical background on dipolar quantum gases. We
start with a discussion on the dipole-dipole interaction (DDI), which has radically
different properties from the contact interaction and produces new and interesting
effects in quantum gases. Next, we describe the mean-field approximation and the
Gross-Pitaevski equation in the dipolar case. Finally, we discuss the corrections
which arise from the phenomenon of quantum fluctuations and the stabilization
mechanism which they turn out to provide.

2.1 Dipolar interaction

Two dipoles interact via the potential

Udd(r) _ % (él . ég)’f’ — 3(@1 . I')(ég . I')’ (21)

s 7o

where é; and é, are the directions of the two dipoles and r their relative position.
The constant Cyy is popu? for particles with permanent magnetic dipole moment and
d?/eq for particles having a permanent electric moment. If the dipoles are aligned
in the same direction, for example the z direction, the interaction potential reduces
to

Cya (1 — 3cos?0)
Uaa(r) = e 3 )
with 6 the angle between the z axis and the vector r. Equation (2.2) will be the one
employed in the following.

The strength of the dipolar interaction dramatically depends on the nature of
the dipoles. The magnetic moments of atoms are of the order of the Bohr magneton
pup = eh/2me, while the electric moment for a molecular system is of the order of
eag, e being the electron charge and ag the Bohr radius. Using the definition for the
coupling constant Cyy given above, we can derive an order-of-magnitude ratio

(2.2)

pol® Mokt

~a?~1074 2.3
d2/€0 6261%/60 @ ’ ( )

2

— is the fine structure constant. The DDI is then much stronger
e NC
between electric dipoles than between magnetic ones.

where a =

29
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An alternative measure of the DDI strength is the dipolar length, defined as

Cddm

= Tonr2’ (2.4)

Add
In most experiments on dipolar gases, one has to take into account both the dipolar
interaction and the contact interaction, described by the s-wave scattering length a.
It is, therefore, useful to define the ratio

(2.5)

which quantifies the importance of dipolar effects in a quantum gas. The quantity
g = 4wh*a/m quantifies the intensity of the contact interaction (see section 2.2).

In the following, we report a brief summary of the existing systems in which dipolar
interactions are important. The purpose here is just to give the feeling of the ex-
isting dipolar systems; the interested reader is referred to [17] and references therein.

Polar Molecules Molecules can have a very high electric moment, which is often
measured in Debye, with 1D ~ 3.335x 1073° Cm. For example, the dipole mo-
ment of “K®"Rb is 0.57 D, that corresponds to a dipolar length azq ~ 0.21pum.
With a scattering length of the order of 100ay, typical of atoms in BECs
experiments, we have e;g = 20. Thus, a gas of dipolar molecules would be
dominated by the dipolar interaction. To possess a permanent dipole mo-
ment, a molecule needs to be heteronuclear; otherwise, the expectation value
of the dipole operator vanishes because of symmetry. Actually, in the absence
of an external electric field, also the ground state of a heteronuclear molecule
possesses no dipole moment since it is the state of zero angular momentum
(|lJ =0,J,=0)). With the application of an electric field, the hamiltonian
becomes H = H,,s —d - E, where H,.; is the rotational part. The electric field
mixes states with different angular momenta, leading to an averaged dipole
moment (d) different from zero and dependent on the value of E, approaching
the permanent value d for large values of the electric field [3]. The main chal-
lenge in the field of polar molecules is the lack of efficient techniques for the
cooling mechanism: the quantum degenerate regime in a state with relevant
electric dipole has not been reached yet.

Rydberg Atoms A highly excited atom, with an electron with a large principal
quantum number n, is called a Rydberg atom. The size of such an atom can
be enormous since the Bohr radius scales as n2ay: for n = 100 the atom’s
dimensions are of the order of 0.1 um, typical of small bacteria. The dipole
moment has the same scaling as the radius so that Rydberg atoms can reach a
value of the dipolar length as big as several ym. However, the excited electron
is very weakly bound: its binding energy is a factor n? smaller than the binding
energy of the ground state. As a consequence, the excited states have short
lifetime due to radiative processes. These systems have been employed so
far only as a "frozen system”, where the dipolar length greatly exceeds the
interparticle separation in a dense gas.



2.1. DIPOLAR INTERACTION 31

Magnetic Dipoles Alkali atoms have y = 1.0 pp, and therefore dipolar effects
are very small in alkali gases. Other atoms of the periodic table offer better
opportunities, having a large magnetic dipolar moment in their ground state:
for example, chromium has pu ~ 6ug and a ~ 100ag, so that ezg ~ 0.16,
and the dipolar interaction can be observed as a perturbative effect in this
gas [46]. Erbium has p ~ 7up and dysprosium, the element used in this thesis
experiments, has u ~ 9.93ug. The advantage of magnetic dipoles compared
to the other systems presented so far is that one can apply all the existing and
successful techniques for cooling and trapping atoms to reach the quantum
degenerate regime. °?Cr has been the first strongly magnetic atom to be
Bose-condensed [47]. Erbium BEC was obtained in [48] and dysprosium BEC
in [49].

As mentioned above, dipole-dipole interactions possess some striking new fea-
tures compared to contact interactions, that make dipolar quantum gases a very
attractive research field. In particular, as we can see directly from Eq. (2.2), the
two main novelties are the long-range character and the anisotropy of the interaction.
Both are discussed in detail below.

Long-range character

Formally, a two-body potential u(r) is defined as a short-range potential if it behaves
for large values of r as |u(r)| ~ C/rP*¢, where C is some constant, D is the dimension
of the space, and ¢ > 0. For example, the Van der Waals interaction, usually
dominant in a gas of neutral particles, scales as 1/r% for large r, and so it is a short-
range interaction in three dimensions. The definition given above can be simply
understood thinking about a particle surrounded by a homogeneous distribution of
particles with spherical symmetry, with density n and radius of the sphere a. The
interaction energy of the particle at the center of the distribution is

a
U= Zu(rl) ~ n/ u(r)rP=1dQdr (2.6)

i o
where 7y is some short-range cut-off and df2 indicates the integration over the an-
gular variables. For the interaction to be short-ranged, particles far away from the
center should give a vanishing small contribution to the potential energy of the
central particle. In other words, the particle "feels” only its local neighbors. Math-
ematically, this request means that the integral in eq. (2.6) should converge for
a — oo, that translates in the condition stated above, i.e. |u(r)| ~ C/rP+ for some
value of e. If this condition isn’t satisfied, the interaction is called long-ranged.
Famous examples of long-ranged interaction are, of course, the gravitational and
electrostatic interactions, that have a 1/r behavior. From eq. (2.2) we see that also
the DDI is a long-range interaction in three dimensions, but short-range in one and
two dimensions. From a statistical mechanics point of view, the long-range char-
acter of a potential determines the so-called ”infrared catastrophe” in a physical
system: in the thermodynamic limit, the equilibrium configuration isn’t the homo-
geneous one, but the ”close-packing” one, in which the particles condense in regions
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with high density separated by empty regions, for attractive interactions (C' < 0),
or the configuration with all the particles mashed at the edges of the space, for
repulsive interactions (C' > 0). The gravitational potential belongs to the former
case, while the Coulomb potential for charges of the same sign to the latter. In
the Coulomb case, the infrared catastrophe is nothing but the well-known result of
classical electrostatics for which the free charges get spread over the surface of a
conductor. However, in many physical situations, the long-range character of the
Coulomb interaction doesn’t need to be accounted for because on large scales mat-
ter is neutral, and a mechanism of charge-screening comes out. On the other hand,
the gravitational interaction is always attractive, and the close-packing configura-
tion constitutes the result of the fragmentation of a homogeneous mass distribution
subject to its own gravitational field, which yields, for example, to star formation.
The gravitational case is however very delicate and is the subject of intense research
in the field of long-range interactions [50]. Returning to the case of the DDI, the
close-packing configuration clearly remembers the formation of the droplets which
constitute the dipolar supersolid. Theoretical simulations have indeed shown that
in two dimensions, where the DDI is short-ranged, no supersolid state exists [51].

The long-range character of the DDI interaction has interesting consequences on
the scattering properties of the dipolar gas. As a general result [2], for a central
potential falling off at large distances as 1/r", the scattering phase shifts in the
ultra-cold regime ( k — 0) behave as

E2+1 forl < (n—3)/2
(k) - { - =9 (2.7
otherwise.

We see that for a short-range potential, such as the Van der Waals interaction
(n = 6), the dominant phase shift at low energies is the one with [ = 0, which
behaves as ~ k. This property allows to describe all the scattering process in term
of a single parameter, the scattering length a, and to substitute the real interaction
potential with a delta-like and isotropic pseudopotential having the same value of
the scattering length of the real one. On the other hand, for the DDI n = 3 so
that all the phase shifts have the same dependence ~ k and all the partial waves
contribute to the scattering amplitude. As a consequence, no pseudopotential con
be introduced for the dipolar interaction. An interesting conclusion can be made
in the case of Fermi gases: differently from what happens in the contact case, the
cross-section for identical fermions colliding via dipolar interaction doesn’t vanish at
low temperature and can thus be used to perform evaporative cooling, similarly to
the boson case. This has been effectively done with fermionic isotopes of erbium [52]
and dysprosium [53].

Anisotropy

From Equation (2.2) we see that the DDI is anisotropic, a fact of paramount impor-
tance in dipolar systems. The symmetry of the interaction is a d-wave symmetry,
described by the second-order Legendre polynomial P(cosf) = (3cos?#—1)/2. The
numerator in equation (2.2) can be either positive or negative. In particular, the
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Figure 2.1: Anisotropy of the dipolar interaction. On the left, two dipoles side
by side repel each other (§ = 7/2). On the right, two dipoles in head-to-tail
configuration attract each other (0 = 0).

two limiting cases are the "head-to-tail” configuration (6 = 0), for which the DDI
is attractive, and the configuration with two dipoles sitting side by side (§ = 7/2),
for which the DDI is repulsive with half the strength of the attractive case (see Fig.
2.1). The DDI can also be zero, for the special value 6,, = arccos (1/v/3) ~ 54.7°,
called the magic angle.

It is useful to calculate the Fourier transform of the dipole-dipole interaction Uy,
and discuss how the anisotropy affects this quantity. The result is

2

Uga(k) = /d?’r%we_ik'r = Cyq(cos® a — 1/3), (2.8)
4 r3

where « is the angle between the wavevector k and the polarization axis. We see

that the dipolar Fourier transform Ugy(k) shares with the contact one V (k) = g the

property of not depending on the wavevector modulus k. However, the anisotropy

appears in the dependence on the wavevector direction through the angle a, so that

Uaa(k) can be either negative or positive.

2.2 Mean-field approach

In this section, we discuss the basic theoretical background for the description of an
interacting Bose-Einstein condensate, based on the mean-field approximation: the
interactions are treated as a mean field exerted on a given atom by the N — 1 other
atoms. We first consider the case of contact interactions and then we discuss how
to include dipolar interactions.

Contact interactions

Generally, a quantum many body system is treated theoretically with a second
quantization approach. For a bosonic system the state is specified by the boson
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field operators U(r) (¥(r)), which annihilate (create) a particle in the position r,
and obey the commutation relation [¥(r), ¥(r')] = §(r —r’). The hamiltonian of N
particles interacting via a two-body potential V' (r — r’) is written in terms of the

boson field operators

2
H = / dgr\iﬁ(r)(—:—mVQJrV;m(r))\il(r)—k% / &3r / & ()T () V (-t )T () T (r).
(2.9)
The first term contains the kinetic and potential energy, while the second term is
the interaction energy. In the regime of operation of the current experiments on
quantum gases, a lot of simplifying approximations can be made. First, the system
is ultracold: the temperatures reached in the condensed phase are of the order of
tens of nK. In these conditions, when the atoms interact only with the short-range
Van der Waals interaction, all the properties of the interaction are described by a
single parameter with the dimensions of a length, the scattering length a, being
positive (negative) for repulsive (attractive) interactions. Second, the gas is dilute,
with typical density of the order of n ~ 10'* ecm™3. Such low densities are necessary
to avoid the collapse of the system via three-body losses, that derive from three-
body interactions in which two atoms form a molecule and a third atom gets the
exceeding energy as kinetic energy. Indeed, the mean separation between atoms is
d ~ n~'/3 ~ 200 nm, typically larger than the interaction range, that is of the order
of the scattering length. With a ~ 100 ay one gets that the gas parameter na® is
~ 107° . Under these conditions, it is possible to substitute to the real potential
V(r — r’) a pseudopotential that ignores completely the short-range details of the
interaction, since the physical properties of the gas are determined only by the
asymptotic expression for the wave function of the relative motion during a collision.
The most used pseudopotential is then V (r) = gd(r), where the constant g is chosen

4rh?
to reproduce the experimental scattering length a. It is found to be g = e
Whith such a choice the interaction term in the hamiltonian (2.9) becomes
Mo =2 / B0 (1) (r) b (1) (). (2.10)

The time evolution of the boson field operator is obtained in the Heisenberg picture

%@(r, 1) = [W(r, 1), H] = ( e ) + g (e ), t))xif(r, £). (2.11)

2m

g

An extremely useful approximation is the mean-field approximation. Generally, the
field operators can be expanded on a basis of single-particle wavefunctions ¢;(r)

U(r) = o(r)ao + Y ¢ilr)as, (2.12)
i#0

where we have written the annihilation operator fot the state ¢ as a;. In the presence
of Bose condensation a single state (say the ¢ = 0 state) is macroscopically popu-
lated by Ny = <d$d0) atoms. In the previous expansion, the field operator has a
macroscopic component that dominates the other terms. Following the Bogoliubov
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prescription, we can replace both the operator ag and &g with the c-number /Ny,
neglecting the commutator between the two operators (equal to one) with respect to
their expectation value (of order v/Ny). As a result, the expansion (2.12) becomes

A

U(r) = U(r) + 6W(r), (2.13)

with the classical field U(r) = v/Nydo(r), and the term 8 (r) that describes quantum
fluctuations. The mean-field approximation consists in neglecting this second term
and replacing the bose field W (r) with the classical field ¥(r), called the wavefunction
of the condensate. The time evolution of this wavefunction is found from eq. (2.11):

2
ih%\lf(r, t) = ( — ;—mW + Veur(r) + g|¥(r, t)|2)\If(r, t). (2.14)
This is the famous Gross-Pitaevskii equation (GPE), that resembles a standard
Schroedinger equation but with the mean field term ¢|¥(r,¢)|* that takes into ac-
count the interactions between atoms and it is responsible for non-linear effects. The
mean-field approach of the GPE is analog to the transition from quantum electro-
dynamics to the Maxwell equations. Indeed, also in this latter case, a large number
of photons that occupy the same quantum state allows for a description in terms of
classical fields. The GPE depicts the same limit for matter waves, when the corpus-
cular nature of matter is no longer important.
The stationary solutions of the GPE evolve in time with the chemical potential u:
U(r,t) = Yo(r)exp(—ipt/h). The GPE assumes in this case its stationary form
R, 9
(- 5V o Viae(x) + gl W (1)) ) Wo(x) = 0. (2.15)

The contact mean-field energy for a homogeneous system in a volume V' is

2
Econtact = g/d37"|\1j0‘4 = gn2v7 (216)

where the density is the squared modulus of the wavefunction, n = |Wo|*.

Dipolar interactions

To describe quantitatively a dipolar quantum gas we need to introduce the dipolar
interaction energy in the GPE (2.15). In this case we can’t resort to a contact-like
potential since the interaction is long-range, so that the dipolar potential in the
mean-field approximation reads [17]

CDdd(r) = /dST/Udd(I' — I'/)|\If0<r/)|2, (217)
where Uy, is the dipolar potential (2.2). The GPE thus contains two contributions

to the mean-field energy

( — %VQ + Vear(r) + QI‘IJO(F)P + Dya(r) — /L) Uy(r) =0, (2.18)
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and it becomes a non-local equation, due to the integral appearing in ® 4.

It is useful to reformulate the GPE exploiting the phase and modulus of the
condensate wavefunction: Uy = y/nexp(iS). Replacing this expression in the time-
dependent version of eq. (2.18) and separating imaginary and real part, we get two
equations

02 72 VQ\/H> (2.19)

These are hydrodynamic equations describing a fluid whith density n and velocity

v = —VS. They are the equations presented in Section 1.1 in the general context

of suglerﬂuidity, applied to the dilute quantum gases case. The first one is the
continuity equation, expressing conservation of the mass, while the second one is an
Euler equation for a fluid with zero viscosity, where the last term is called quantum
pressure and takes into account inhomegeneities in the density.

Thomas-Fermi approximation

In typical experiments on quantum gases, the trapping potential is harmonic

Vear (1) = 5 (@2 + iy + w22, (2.20)
The mean frequency is defined as & = yw,w,w,, and the mean harmonic oscillator
length is ap, = \/h/(mw). The Thomas-Fermi approximation consists in neglecting
the kinetic energy with respect to the other energies in the GPE [2]. This is legit-
imate when Na/ap, > 1, a condition typically fullfilled in a quantum gas. In our
experiment, with trap frequencies 27 x (23,46,90) Hz, N ~ 4 x 10*, and a ~ 100 aq
we get a value of ~ 176. The GPE for non-dipolar BEC (2.15) in the Thomas-Fermi
approximation has the simple solution

n(r) = |W(r))? = L= Tttt (2.21)

The radii of the condensate are found imposing V...(R) = pu, resulting in R; =
\ /%, 1 = x,y, 2. Therefore the density can be written as

n(r) = n0(1 BN - —), (2.22)

where ng = u/g is the density at the centre of the trap. The BEC has the same
aspect ratio of the trap, because R;/R; = w;/w;, ¥V i,j. When the density is
projected into one dimension, it has the form of an inverted parabola.

The Thomas-Fermi approximation in the dipolar case doesn’t lead to a simple so-
lution as in the case of pure contact interactions, because of the presence of the



2.2. MEAN-FIELD APPROACH 37

mean-field dipolar potential ®4; in the GPE (2.18). One could expect that the solu-
tion in this case should be completely different, but, surprisingly, the two cases are
quite smilar. The calculation is performed in [54]. The trick consists in rewriting
(I)dd as

Baa(r) = —Caatit; (Vivjqﬁ(r) + 5%(”) (2.23)
where ) )
s, n(r
or) = /d“r FEgl (2.24)

The problem is reduced to calculate the field ¢(r), which is an ”electrostatic poten-
tial” generated by a ”charge density” n(r). The calculation is therefore tackled using
well-known mathematical techniques from electrostatics. The remarkable result is
that ®4; has a parabolic shape, as the trapping potential, so that also the density
n of the dipolar gas has the form of an inverted parabola, see eq. (2.22). Of course,
the radii R; have different values, and they can’t be expressed analitically. A general
feature is that the dipolar cloud becomes elongated in the direction of the magnetic
field that alignes the dipoles, a phenomenon called magnetostriction (see Fig. 2.2).
The intuitive reason is that the dipoles prefer an head-to-tail configuration, because
they feel the attractive nature of the dipolar interaction.

In the Thomas-Fermi limit, a useful expression for the mean-field dipolar energy
can be obtained using a Gaussian variational ansatz [17], resulting in
gn®V
2

Edipolar = - 6ddf("£)7 (225>
where K = R, /R, is the aspect ratio of the condensate. The function f(x) mono-
tonically decreases, from f(0) =1 to f(co) = —2. The magnetostriction effect can
then be thougth also as an effort to maximize f(x) so that the interaction energy
in eq. (2.25) is minimized.

Stability of the dipolar gas

Since the dipolar interaction can be both attractive and repulsive, the conditions
for the stability of a dipolar gas aren’t obvious. First, we consider a homogeneous
gas. In the presence of pure dipolar interaction, we expect that the dipoles should
align one over the other and form a long wire, leading to collapse. The presence
of a repulsive contact interaction is, therefore, necessary to reach stability. Given
an equilibrium density ng, we consider small density and velocity excitations with
frequency w and wavevector k around equilibrium. The excitation spectrum that
links w and k is obtained linearizing the hydrodynamic equations (2.19), and reads

w:k\/% [g+0dd(00520z—%>} + (%)2 (2.26)

This expression is similar to the Bogoliubov spectrum for a homogenous BEC with
only contact interactions [2], whose Fourier transform g is complemented by that of
the dipolar interaction (2.8), which introduces a dependence on the angle a between
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Figure 2.2: Magnetostriction effect. The light blue ellipsoid is an isopotential
surface of the trapping potential, while the dark blue ellipsoid is the atomic
cloud, elongated in the direction of the magnetic field.

k and the dipole direction z. The spectrum, therefore, is composed of different
curves, one for each value of a (see Fig. 2.3). For a fixed «, the spectrum shows a
phononic behaviour at low £ and a parabolic one in the single-particle regime, for
high values of k, when kinetic energy dominates. In the phononic regime hw = hsk,
where the sound velocity s is anisotropic

s:\/%[g—i-Cdd(cosQa—%)}, (2.27)

and reduces to the non dipolar case sy = /ngg/m in the absence of dipolar inter-
action. The system becomes unstable when phonons acquire imaginary frequencies,
i.e. w becomes imaginary for k& — 0 in eq. (2.26). This phonon instability is driven
by the dipolar interaction and happens when €45 > 1. The choice of the constants
in the definition (2.4) for the dipolar length was indeed motivated by this stability
condition. We can also see that a purely dipolar condensate (¢ = 0) is unstable
as expected. Between all the excitation curves, the most unstable is the one with
a = 7/2, i.e. the one with the direction of the density modulation perpendicular to
the dipoles. Such a modulation, indeed, aligns the dipoles one over the other, while
in the opposite case (o« = 0) the dipoles tend to repel each other side-by-side.

When the gas is trapped, the excitation spectrum is modified. The stability con-
dition doesn’t depend anymore only on the interaction parameter €44, but also on
the form of the trap. Intuitively, strong confinement in the direction of the dipoles
is needed to avoid head-to-tail configurations and suppress the attraction between
dipoles. For simplicity, we consider an axially symmetric trap, with w, = w,. We
define the trap parameter A = w,/w,. For a given value of A, a critical value of
the contact scattering length a..;; will exist under which the condensate is unstable.
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Figure 2.3: Excitation spectrum for a homogeneous dipolar gas. The spectrum
has different branches, one for each value of o. For low k the curve is linear,
corresponding to the phononic excitations. The most stable (unstable) excita-
tion is the one with & = 0 (v = 7/2). For a = 6,,,, the magic angle defined in
section 2.1, the dipolar Fourier transform is zero, and the spectrum is equal to
the non-dipolar one.

The function a..;+(A) can be found solving numerically the GPE; an approximate
solution can be recovered with a Gaussian variational ansatz, see [17] for details.
The intuitive picture is confirmed: in a cigar-shaped trap with the dipoles oriented
along the weak trap axis, the dipolar condensate is unstable also with weak repul-
sive contact interactions, while in a pancake-shaped trap it is stable also with weak
attractive contact interactions.

Roton minimum

The excitation spectrum of a trapped dipolar gas shows an interesting feature: a
minimum at non-zero momentum, called, in analogy to superfluid helium, a roton
minimum (Fig. 2.4). In helium, the minimum arises from the strong inter-particle
interactions, which aren’t completely understood from a microscopic point of view
so far. The position of the minimum scales as the inverse of the interatomic distance.
On the other hand, the minimum in dipolar gases appears although the system is
dilute, with the range of the inter-particle interactions much smaller than the mean
distance between particles. In analogy with helium, however, the roton minimum
is purely induced by the inter-particle interactions. An intuitive explanation of the
roton minimum is the following, based on the anisotropy of the dipolar interaction.
As we have seen, to obtain a stable dipolar BEC we need to strongly confine the
system in the dipole direction, that we call z. We consider excitations propagating
with wavevector k in the zy plane. When the wavelength of the excitation is much
larger than the harmonic oscillator length in the z direction, [, = \/A/(mw,), the
dipoles feel only the repulsive character of the dipolar interaction, and the excita-
tion spectrum is phononic, as in the pure contact case (see Fig. 2.4). Increasing k,
the wavelength becomes comparable with [,. At this point, the dipoles form local
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Figure 2.4: Excitation spectrum of a trapped dipolar BEC, from [55]. For
low wavevectors k the excitations are phonons because the interaction is mainly
repulsive. When kl, ~ 1 a roton minimum occurs because the dipoles feel the
attractive part of the dipolar interaction. In the upper curve g = 0.53 and
w/(hw) = 46. In the lower curve 5 = 0.47 and p/(fw) = 54. Solid curves are
numerical results, while dotted curves are analytical results.

structures in which the 3D nature of the dipolar interaction becomes relevant. Some
particles attract each other so that the energy decreases. The attraction is coun-
terbalanced by the repulsive contact interaction and the kinetic energy, which, for
higher values of k, starts dominating while the spectrum enters in the single-particle
regime.

The existence of a roton minimum in the excitation spectrum of a dipolar con-
densate was first pointed out in [55]. In this paper, the authors considered an infinite
pancake trap, with trap confinement of frequency w only in the z direction. The
system is described by the GPE (2.18) with V.,; = mw?2?/2. The ground state
wavefunction is assumed to be independent on the in-plane coordinate p, so it can
be written as v¢g(z)e"**. The dipolar term in the GPE can be integrated in the
coordinate r', giving gq|to|’, with g4 = Cye87/3. The dipolar GPE then becomes
a GPE with an effective contact interaction described by the parameter g + gq4,
with g always considered positive. The solution in the limit g > hAw is given by
the Thomas-Fermi wavefunction vy(z) = no(1 — 2%/L?), with the central density
no = p/(g + ga) and the Thomas-Fermi radius L = /2u/mw?. The excitation
spectrum is then obtained solving the Bogoliubov-de Gennes equations, with the
equilibrium density given by W0|2- Because of the translational invariance in the
xy plane, the wavevector k of the excitations is a good quantum number, and it
is used to label the excitations. As previously explained, two different regimes are
distinguished depending on the value of kl,. If kl, < 1, the excitations are the ones
of a gas with repulsive contact interactions with the parameter g + g4, so they are
phonons. On the other hand, if kI, 2 1, we recover the excitations of a gas with
contact interactions with parameter 2g — g4, which can be both positive or negative.
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When the parameter 5 = g/gqs > 1/2, the effective interaction is repulsive, and the
energy of the excitations always grows with k. When § < 1/2, i.e. for stronger
dipolar interactions, the effective interaction is attractive and the spectrum shows
the roton minimum. The roton momentum and the energy gap are given by

Krot = W% (2.28)
A = Blkrer) =/ ()? — [8u(1/2 — ) /15" (2.20)

Contrary to helium, the energy gap is tunable by changing the density, the interac-
tion parameter €44 or the trapping frequency. When the Thomas-Fermi approxima-
tion can’t be applied, the spectrum shows a similar behavior, the principle difference
being that, because the kinetic energy in the confined direction is larger, the values
of B at which the minimum occurs are less than 1/2.

The presence of a roton minimum in dipolar quantum gases has been observed
experimentally in [56]. The authors induce a roton instability tuning €;y and thus
the parameter A. The condensate is elongated in the y direction so that the roton
minimum develops only for the two modes with k, = +£k,,. The experimental
signature of the roton instability is the transfer of population from k, = 0 to k, =
+k,ot, observed after a free expansion of the gas.

2.3 Quantum Fluctuations

The mean-field theory presented in the previous section has demonstrated to be able
to account for several phenomena observed in the first experiments on dipolar quan-
tum gases, for example the modified dynamics in time of flight of Chromium, the
d-wave Bosa explosion or the form of the excitation spectrum [17]. The mean-field
approach, embodied in the GPE, however, completely ignores the quantum fluctu-
ations in the expansion of the field operator (2.13), which means that it doesn’t
consider the profound quantum nature of the matter waves that form the conden-
sate. The study of the quantum fluctuations for a non-dipolar gas, in the framework
of the Bogoliubov theory, leads to two major results: the condensate depletion and a
correction to the ground state energy, called the Lee-Huang-Yang correction (LHY).
In [57] the authors extended the study of the quantum fluctuations to dipolar gases.
One could expect that these effects should lead to small corrections to previously
known results, but it turned out that quantum fluctuations in some systems can pro-
vide a stabilization mechanism that is responsible for the existence of exotic phases
of matters, such as quantum droplets and supersolids.

In section 2.2 we have seen that the boson field operators can be expanded in
a basis of single particle wavefunctions, eq. (2.12). The mean-field approximation
consists in neglecting all the terms of the expansion other than the one corresponding
to the macroscopically occupied state, i.e. the condensed state. Taking into account
the next leading terms leads to the Bogoliubov theory. In the homogeneous case
(a gas in a box of volume V') the single particle wavefunctions are chosen to be
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plane wave characterized by the momentum k. Subtituting the expansion for 0
in the hamiltonian (2.9) and keeping terms to the order dy'dy ~ N we obtain the
quadratic hamiltonian

gn?V

H="

K . 1 At A ata ~ oo mgn
—I—Z% Lak+§gn§<2aLak+aLaTk+akak+ 02 >

(2.30)
The first term is the energy in the mean-field approximation, while the others are
corrections due to quantum fluctuations. The last term describes two-body inter-
actions of particles with k ## 0. It follows that the ground state isn’t formed by all
the particles in the condensed state k = 0, but a little fraction (N — Ny)/N < 1
occupies higher-momenta states, where Ny is the number of atoms in the condensed
state. The excited fraction must be very small in order to make significative the
expansion of the order parameter. This phenomenon is called quantum depletion
and is the first correction to the mean-field theory. The hamiltonian (2.30) can be
diagonalized introducing new operators ay, aL , which are a linear combination of
the old ones and describe the creation and annhilation of quasiparticles, respectively.
The result is

H=Ey+» E(k)afo. (2.31)

k£0

The condensate can be thougth, then, as a gas of non-interacting quasiparticles
which follow the dispersion relation E(k), which is equal to the one obtained lin-
earizing the GPE around the equilibrium solution (2.26). As anticipated, the ground
state energy Fj is the mean-field energy plus the LHY correction

2y 128
- 9”2 1+ 15ﬁ(na3)1/2]. (2.32)

The LHY term scales as (na®)!/2, which is small in the limit in which the gas is dilute,
the condition for the applicabiliy of the whole theory. In [57] the same calculation
was performed including the dipolar interaction. The energy correction in this case
is exactly the LHY term with an additional factor

Eqo

AEYP — gn’?

QF = (na*)"*Qs (eaa), (2.33)

64
V57
where the function Q5(x) is defined as

1

Qi(z) = 5 /d@k sin Gk(l + €4a(3 cos? f), — 1))l/2'

(2.34)

()5(€4a) increases monotonically from @Q5(eqq = 0) = 1, in which case we recover the
non-dipolar LHY correction, to Q5(€qq = 1) ~ 2.6. When €45 > 1, Q5(€qq) acquires
an imaginary part, but it is smaller than 10% of the real part in the regimes of
interest, so it is usually neglected. A good approximation for the factor (05 is given
by its Taylor expansion Q5 ~ 1 + 3€2;/2. To theoretically describe an experimental
system including also quantum fluctuations as a perturbative effect, an extendend
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Gross-Pitaevskii equation (eGPE) is usually employed, which is eq. (2.18) with the
additional LHY term

3
(14 56 [Wol* = 1) o = 0. (2.35)

h? 329V a?
(= 5 V2 o Vet + g1 + Puaa + =

Usually, it is very difficult to observe the effects of quantum fluctuations in a quan-
tum gas. One could think to enhance the importance of the LHY term increasing
the scattering length a with a Feshbach resonance, but this would increase also the
dominant mean-field term. This difficulty can be circumvented in a Bose-Bose mix-
ture, in which two different bosonic species attract each other, while they experience
repulsive interactions inside the same species [58]. The mean-field interaction energy
depends on an effective scattering length which takes into account both repulsions
and attractions, and is zero when the system is expected to collapse in the mean
field picture. In a mixture, however, the LHY term is still proportional to the intra-
species scattering lengths, and so it will become comparable with the mean field
energy near the collapse threshold, while continuing to be positive. Since quantum
fluctuations have a steeper dependence on n (Egpr ~ n®?, while Eyr ~ n?), they
represent a stabilization mechanism, which is responsible for the existence of a min-
imum in the energy also in the region of the mean field collapse. The mixture can
then exist as a liquid-like droplet that keeps its form without any external trapping:
it is called a quantum droplet and has been observed in mixtures of Potassium in
different hyperfine states [59,60].

A similar effect exists also in dipolar gases, where there is just one species of atoms
but two different kinds of interactions at the mean-field level, contact and dipolar
ones, which can cancel one another and allow quantum fluctuations to become im-
portant, as in the case of the mixture. Tuning the repulsive contact interactions
via the scattering length a, it is possible to reach the region in which the attractive
part of the dipolar interaction, eq. (2.25), makes the total mean-field energy neg-
ative, leading to the collapse. As observed in a dysprosium gas [18], however, the
collapse stops forming local self-bound droplets, stabilized by the LHY term, which
is isotropic and repulsive also in the case of dipolar gases, see eq. (2.33). Contrary
to the mixture case, in the dipolar gas the long-range nature of the interaction pro-
duce an array of self-bound droplets (see Fig. 2.5). The formation of a droplet
crystal observed in strongly dipolar gases is the analog of the Rosensweig instability
well known in classical ferrofluids, where a magnetic field breaks the homogeneous
surface of the fluid forming an ordered pattern of density peaks [61].
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Figure 2.5: Quantum dipolar droplets of dysprosium from [18]. (A) Magnetic
droplets in an optical waveguide. They are strongly confined in the y and z
directions but free in the x direction. (B) Time evolution of the distance d
between droplets and of the dimension o of the droplets, compared to the BEC
expansion. (C) In situ imaging of the motion of the droplets in the waveguide as
a function of time. Although the distance between the droplets increases since
the initial confining energy is turned into kinetic energy, each droplet keeps its
shape, demonstrating that they are self-bound.



Chapter 3

Dipolar Supersolids

This chapter is devoted to the explanation of the main features of the recently
discovered dipolar supersolids. Historically, the experimental observation of the
dipolar supersolid happened after some years of study of the dipolar incoherent
droplets. However, in a logical sequence, the supersolid borders directly with the
BEC in the phase diagram and the droplet crystal is a step further. The reason why
the observation of the supersolid has been so elusive lies in its narrow parameter
space. We then strucure this chapter asking why we should expect a supersolid
region coming from the BEC side. The discussion is divided into two parts. In
the first two sections, we propose an analogy between the theoretical models of
soft-core interactions, which predict a supersolid phase, and our trapped dipolar
system. We develop a very simple model that explains qualitatively the transition,
inspiring to this analogy. In the second part of the chapter, we review the seminal
experiments on dipolar supersolids, whose insight has been fundamental, of course,
for our experiment on rotations.

3.1 Soft-core models

Some years after Kim and Chan’s papers [10, 11], while new experiments and theo-
retical simulations were casting doubts upon the presence of a supersolid phase in
solid helium, some theoretical efforts started focusing on a different and more fun-
damental question about supersolidity: which kind of interactions between bosonic
atoms, if any, could produce a supersolid? Many papers studied two-body interac-
tions which soften at small distances, instead of diverging, and are therefore called
soft-core interactions. These are very different from the usual interactions encoun-
tered in condensed matter systems, which diverge at small distances and produce
normal solids with one particle per lattice site. However, as a matter of fact, simu-
lations of the hard-core crystal of *He or similar systems such as parahydrogen show
no sign of superfluidity [14]. Also softening the divergence, through slower functions
such as the Yukawa potential, doesn’t produce any superfluid fraction in a com-
mensurate crystal [62]. On the other hand, many papers reported the presence of
a supersolid phase in systems with soft-core interactions, mainly in two dimensions
with quantum Monte Carlo simulations [63,64], or even in three dimensions using
the GPE [65]. The fact that a soft-core interaction causes the atoms to group into

45



46 CHAPTER 3. DIPOLAR SUPERSOLIDS

clusters is well known in classical physics, for example in the field of colloids and
macromolecules [66]. Such a clustering effect can be understood intuitively with the
prototype of the soft-core interaction, the step function

V(r) = VoO(R. — 1), (3.1)

where O(z) is the Heaviside function, equal to 0 if x < 0 and to 1 if x > 0. In
our case, R, is the soft-core radius: when the distance between two particles r is
less than R., the potential gets the finite value V{, otherwise it is zero. The step
function is plotted in Fig. 3.1 together with other soft-core interactions used in
the theoretical papers. The clustering effect happens increasing the density, as it is
intuitively explained in Fig. 3.2, due to the finite energy cost for overlapping two
or more particles. Indeed, when the mean inter-particle distance is large (so the
density is low) the particles don’t interact one with the other, and the energy is
zero. Increasing the density, when the mean inter-particle distance becomes lower
than the soft-core radius R., the particles overlap one another and the interaction
energy increases. If the system assembles in a normal solid with one particle per
lattice site, the interaction energy is NVy, with N the number of particles. On the
other hand, if the particles overlap in pairs, effectively doubling the lattice constant,
the interaction energy lowers to N'V;/2: the cluster configuration is thus energeti-
cally more favorable. Increasing more the density, more particles occupy the same
lattice site and the cluster solid forms. Note, however, that every realistic interac-
tion displays a hard-core at sufficiently short distances. The soft-core models can
work when there is a separation in scales between the soft-core radius and the much
smaller hard-core one.

In a quantum system, the key ingredient to take into account is the possibility of
quantum tunnelling between different clusters, which can establish phase coherence
through the system and then induce a superfluid behavior. As pointed out in the
theoretical papers cited previously, simulations show that a regime of parameters,
typically depending on the density and interaction strength, exists in which atoms in
different clusters delocalize and form the so-called cluster supersolid, as opposed to
the supersolid expected in solid helium. When the density or the interaction strength
are too large, the tunnelling between droplets is suppressed and the system is called
an insulating droplet crystal, in which each droplet is superfluid but there isn’t
any phase coherence between different droplets. Typically, the transitions between
the different phases (normal solid, homogeneous superfluid, supersolid, insulating
droplet crystal) are described in terms of a parameter defined as

o ‘/0 Eint
~ B2/(mR2) 2By

where m is the mass of the atoms, p the density and D the dimension of the space.
Since the droplets radius is of the order of R., the parameter o can be interpreted
as the ratio between interaction and kinetic energy times the number of atoms in
a cluster N,;. When « is low, the system is a homogeneous superfluid, while, for
increasing «, first the supersolid and then the insulating droplet crystal are encoun-
tered. Typical values of the critical « for the superfluid-supersolid transition are of

« pRP ~ N, (3.2)
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Figure 3.1: Examples of soft-core interactions, with a radius set to R. = 1.

The step function of eq. (3.1) is the simplest one and is depicted in blue.
Other possibilities are continuous functions with a dipole long-range tale o r~
(in green, used in [64]) or a Van der Waals behavior oc 7~
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Figure 3.2: Explanation of the clustering effect. With a soft-core interaction
such as the step function of eq. (3.1), when the inter-particle distance is lower
than the soft-core radius R., the most energetic configuration is the one that
minimizes the overlaps between particles, which is the cluster state. Increasing
further the density p, the number of particles per cluster increases.
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Figure 3.3: Zero-temperature phase diagram of two-dimensional soft-core
bosons from [63]. Varing the dimensionless interaction energy U and the di-
mensionless density pR2 the sytem can be in the superfluid (SF), normal solid
(NS) or supersolid (SS) phase. The right vertical axis displays the quantity Ap,
with A dimension of the unit cell, which is equal to the number of atoms per
lattice site, N/Ng. When this number is larger than one, a supersolid phase
appear in the phase diagram. If N/Njy is larger than one, but no coherence is
established between the droplets, the crystal is called insulating droplet crystal.

the order of 10. How it is demonstrated by the variety of models employed in the
literature, the presence of a supersolid phase is quite insensitive to the details of the
soft-core interaction, the key ingredient being the finite energy cost for the overlap
of two or more particles.

As an example, we show in Fig. 3.3 the phase diagram of a two-dimensional
bosonic system interacting through a soft-core potential with a 1/r® tail, obtained
with quantum Monte Carlo simulations in [63]. On the horizontal axis, we find
the interaction energy U measured in units of kinetic energy (the first factor in the
parameter «), while the dimensionless density pR? is on the vertical axis. In the
graph, lines of constant « are, therefore, hyperbolae. The phase diagram shows the
regime of low density and strong interaction, in which a mean-field description isn’t
successful. To describe the various phases, let’s fix the interaction energy U and
follow the vertical red line in Fig. 3.3. At low densities, the physics is dominated by
the Van der Waals tail of the potential, because the particles are too far apart, on
average, to feel the soft-core regime. The system simply crosses a phase transition
from a superfluid to a normal solid with one atom per lattice site. When the density
increases, the particles are affected by the reduction of the repulsive inter-particle
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forces, since they approach one another within distances of the order of R.: the
solid melts again and we find a re-entrant superfluid lobe. After that, the number of
particles per lattice site is larger than one, and the clustering effect takes place. De-
pending on the value of the interactions, the system can be superfluid, supersolid or
an insulating droplet crystal. Between the two values a = 27 and a = 38, supersolid
lobes are found, in which the system has a finite superfluid fraction. Interestingly,
the supersolid disappears if the atom number per lattice site is an integer, being
substituted by a direct superfluid-crystal transition. This is interpreted as a proof
of a defect-induced supersolidity, in analogy with the original Andreev-Lifschitz sce-
nario [7]. Increasing the density, this phenomenon disappears and the supersolid is
present also with an integer occupation of the lattice sites, signaling the crossover
to a regime where the discrete nature of the particles become irrelevant and the
mean-field description is correct.

Finally, we point out that the theoretical papers described so far suggested Ryd-
berg BECs as the experimental platform where to search for a supersolid induced by
soft-core interactions. The reason is that weakly coupling the atoms to an excited
Rydberg state, a soft-core effective interaction settles in between the atoms [65].
However, the experimental implementation of such a system is very challenging,
since events of spontaneous emissions or, more dramatically, blackbody radiation
can project an atom into the Rydberg state, creating a giant dipole and blocking
all the other atoms in their ground state, through the mechanism of dipole block-
ade [67]. As a result, no experimental study of the supersolid phase with Rydberg
atoms has been attempted so far.

3.2 Trapped dipolar bosons as a soft-core model
The dipolar potential

Caq (1 — 3cos?0)
Uaalr) = 4 r3

doesn’t fall, of course, in the group of soft-core potential discussed in the previous
section. The clustering effect in dipolar systems is understood in terms of rotonic in-
stability, and the search for dipolar supersolidity has been conducted so far with this
kind of physics in mind. Here we propose an alternative approach to supersolidity
in dipolar systems, based on the analogy with the soft-core models. In particular,
we suggest that the combination of the anisotropy of the dipolar interaction and the
presence of a trap could lead to an effective soft-core interaction, which should favor
the formation of a supersolid in a proper range of parameters.

(3.3)

To obtain a soft-core model, we want to consider an effective interaction in two
dimensions, integrating over the vertical direction z along which the dipoles are
aligned. We consider a harmonic trap with length I, = \/h/(mw,) along the z
direction and a homogeneous system in the xy plane. The effective two-dimensional
interaction is obtained considering a dipole at the center of the trap and integrating
over the coordinate 6 its dipolar interaction between all the dipoles spread on a
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Figure 3.4: Sketch of the geometry used for the integration in eq. (3.4).

spherical surface of radius r, weighted with the density distribution p(z) along the
z axis. In equations

(1 —3cos?0)

Ciaa / deTP(Z')
Am [ dop(z)

where z = rcosf. See Fig. 3.4 for a sketch of the geometry. The result depends
on the form of the density p(z). Since we want to justify the transition from a
superfluid, the BEC, to a supersolid, the most natural choice for p(z) would be the
Thomas-Fermi distribution. However, it is known that the density of the dipolar
droplets which form crossing the transition can deviate from the usual Thomas-
Fermi distribution, having a more rapid decay to zero [68]. Therefore, we choose a
more general function

Veps(r) = (3.4)

o(z) = n0<1 . (z|j—|2)v> (3.5)

The integral in eq. (3.4) can be solved analytically. The solution is

P73 2y
f < R.
RI(y+1)—ry+3 o=
Vers(r) = Vo (3.6)
r? — 1L R2
75+3 for r> R,
.

where we have defined R, = [,/2. The constant is Vi = Cya/(47). The reason
for the change in behavior at r = R, is depicted in Fig. 3.4: when the poles of the
integration sphere exit from the trap, the effective interaction lacks the contribu-
tion from dipoles in a head-to-tail configuration, i.e. a negative contribution. The
resulting interaction is mainly repulsive, and for large r it recovers a simple 1/r3
shape since the attractive part is negligible. On the other hand, if the sphere is
surrounded by the trap, the dipoles contribute with both repulsive and attractive
terms, and the effective interaction flattens out. As already said, the result depends
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on the form of the density p(z), or, given our choice (3.5), on the value of v. In
Fig. 3.5 we report the effective interaction for different values of v, setting R. = 1.
With the standard Thomas-Fermi distribution, v = 2, the interaction flattens out
at » = R, but then presents a hard-core, although slower than the pure dipolar one,
since it goes as 1/r. Interestingly, we see that we recover a soft-core interaction
with v = 3, with the energy that flattens out at the value Vy/(4R?). Actually, the
interaction for r < R, is, in this case, weakly attractive. Increasing the exponent
up to v = 4, the interaction becomes strongly attractive, with the potential growing
linearly with r. In the limit case of v — oo, which corresponds to a constant density
along z, the interaction jumps to zero for r < R.. Our interpretation of the dipolar
BEC-supersolid transition is, therefore, the following: near to the transition, the
density along the vertical axis gets a shape that is responsible for the emergence of
effective soft-core interaction in the zy plane. The physics of the soft-core interac-
tion, described in the previous section, settles in and leads to the formation of a
supersolid in a narrow range of values of density and strength of the dipolar interac-
tion. Incidentally, the fact that, with a further increase in ~, the interaction becomes
strongly attractive could explain also the formation of self-bound droplets observed
experimentally, and it constitutes a difference compared to the theoretical models
described in the previous section, which don’t mention the self-boundness properties
of the droplet crystal. In that case, indeed, the soft-core interaction can’t change
in an attractive interaction. Employing the simulated density distributions of [69],
we have checked that moving towards the droplet crystal regime, the exponent -y
increases. These ideas might be worth investigating in the future to understand the
disappearance of global coherence and the transition to an incoherent droplet crystal.

For a better understanding of the most important ingredients which contribute to
the supersolid formation, we push forward our soft-core model and use it to extract
an order-of-magnitude value for the critical dipolar interaction strength at which
the transition happens. To do so, we analyze the various contributions to the total
energy of both the homogeneous superfluid and the supersolid and we search which
of the two phases is energetically more favorable. Since we want to compare our
results with the experimental findings, we consider also a trap in the y direction. We
choose to compare two configurations given by the following density distributions

2 3

pos(t) = A(1 - %) pes(r) = Bsin? (7%) (1 - %) (3.7)

where 7 = \/y? + 22. In the yz plane, we take a standard Thomas-Fermi dis-
tribution for the superfluid and its modified version with the exponent v = 3 for
the supersolid. In the z direction, the superfluid has constant density, while the
modulation of the supersolid is approximated with a sin?(7x/d), which mimics an
array of droplets separated by a distance d. The geometry of the cloud is a cylinder
with dimension 7R? in the yz plane and height L along the x direction. This is
an approximation of the experimental configuration, where soft confinement along
x produces a one-dimensional supersolid in this direction. The actual confinement
along z is tighter than along y, but the magnetostriction effect tends to make equal
the radii of the cloud in these two directions. Going on with the analogy with the
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Figure 3.5: Effective interaction in two-dimensions of eq. (3.6), for different
exponents v in the density (3.5), setting R. = [,/2 = 1. For v = 3, which
corresponds to a steeper curve than the Thomas-Fermi, we obtain a soft-core
interaction with radius R.. The dashed-dotted line indicates the step function
employed in our model, see text.

experimental system, we take L = 4d so that we have 4 droplets. We now set d = 1
and use d as unit of length. The constants A and B are determined imposing the

normalization condition [drp(r) = N, with the atom number fixed, and they are
found to be

2N 10N
TR2L 3TR2L

(3.8)

To evaluate the energy terms we use the mean-field approximation so that kinetic
and contact interactions are

h2
Buin = [ a5 Vo)) Faae = § [ dwpe?. (39

In principle, we should consider also the trapping energy in the yz plane, but we
assume that its change between the two considered configurations is small enough
so that it can be neglected. With the same assumption, we also neglect the kinetic
energy due to motion in the yz plane, considering only the main contribution which
comes from the supersolid modulation in the x direction. To quantify the dipolar
energy we employ the soft-core model. Although the calculation of the effective
dipolar interaction of eq. (3.6) has been carried out in the hypothesis of a homo-
geneous system in the yz plane, we performed numerical calculations including a
trap also along y. The results show qualitatively the same behavior as the homo-
geneous case: a soft-core interaction develops for v = 3. To make the discussion as
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simple as possible, therefore, we approximate the effective dipolar interaction as a

step function with coefficient V,/(4R3) and soft-core radius R, (see Fig. 3.5), acting

only along the z direction, which is the one along which we assumed the supersolid

to form. Of course, due to these quite irrealistic assumptions, we can’t expect a

quantitative agreement with the experiments: the goal here is to sketch a minimal

analytical model of the transition, whose principal characteristic is its simplicity.
The dipolar mean-field energy is given by

Ei = 575 / dr / arO(R, — |a — ') p(r)p(r’). (3.10)

We first consider the dipolar energy. Our free parameters are the range R, of the
soft-core interaction and its intensity V{, which can be recast in terms of ¢4 through
the relation Vi = 3geqq/(47). Experimentally, they can be tuned respectively chang-
ing the strength of the trap in the z direction and changing the scattering length
through a Feshbach resonance. Both the superfluid and the supersolid have the
same dependence on €44, while their dependence on R, is found solving analytically
the integrals of eq. 3.10. The results are in the form

Ej{p VoN?Fy4(R,) B3, = VoN?Fy(R.), (3.11)

which are plotted in Fig. 3.6. In the two points R. = 1 and R, = 0.55 the two
energies are equal. For the case R. = 1, this happens because it is the analog of the
configuration with the hard spheres sitting exactly side-by-side, just before starting
to overlap. Lowering R., the clustering effect favors the supersolid configuration,
whose energy is lower than the superfluid one. Further lowering R, has also the
effect of increasing the intensity of the soft-core interaction, so that, starting from
the point R, = 0.55, it is no more convenient to group the atoms together since they
interact too strongly.

Now we include also the other energies. We expect the optimal value of R, to
be in between 0.55 and 1, but the exact value depends on the contact energy, which
increases while lowering R,, since the system becomes more compact. Performing
the integrals, we obtain

2 gN?  3ge 15 gN? 3ge h2r 2N
sf g gdngF R B — g gdngF R
tot ™ 3 LR2 + 4 Sf( ) tot 167 LR% ‘I‘\ A ss( c)j om
W_/ N—— ~~
Econtact Edip FEcontact Edip Ekin
(3.12)

We see that the contact energy and, of course, the kinetic energy are larger in the
supersolid. This increase has to be counterbalanced by a gain in magnetic energy.
To eliminate the dependence on g and keep only the dependence on €44 we substitute
g= Anlaga , with ag4q the dipolar scattering length.

mMeqq
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Figure 3.6: Dipolar energy for both a homogeneous superfluid (in blue) and
a supersolid (in yellow), as a function of R.. In the legend the corresponding
one-dimensional density distributions in the z direction are shown.

The energies become

8h2add N2 3h2add
Ei = N2y (R,
ot 3m LRgeder\ m f Z
D e ~\~
Econtact EdiP
15h2add N2 3h2add 2 h27T2N
Loy = N?Fy(R. . (3.13
tot Adm  LR2%eqq +\ m ( )j+ 2m ( )
Eco:;act EdiP Ekin

The difference Eif, — E25, is plotted in Fig. 3.7 as a function of the parameters
€qsq and R., using the values of '®2Dy. We find, indeed, a transition at €40 = 30
and R, .. = 0.73. For larger values of €44, the supersolid has lower energy in a whole
range of values of R.. Due to the different scaling of the energies with the atom
number N, there is also a critical atom number under which the transition disap-
pears. If N is too low, indeed, the kinetic energy makes the supersolid energy larger
than the superfluid one also in the limit of infinite €44, when the contact energies
are zero. This is depicted in Fig. 3.8 for the fixed value R. = 0.73. Under the value
N ~ 4 x 10* atoms no transition appears. This effect has indeed been observed in
the first experiments on dipolar supersolids and in the related simulations [19-21]

(see the next section).

So far, we haven’t considered the LHY term arising from quantum fluctuations,
as described in section 2.3. Other than a probable change in the numerical values
of the transition, this term provides a fundamental stability mechanism. Increasing
the density, indeed, the soft-core interaction can’t prevent the formation of regions
at high densities and the consequent collapse of the cloud. Already for the exponent
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means making the transition from a superfluid ground state to a supersolid
ground state.



3.3. OBSERVATION OF A DIPOLAR SUPERSOLID 57

v = 3, as depicted in Fig. 3.5, the interaction is weakly attractive at short distances,
although we have approximated it with a perfect step. With a larger exponent, the
interaction becomes even more attractive, as discussed previously.

Despite its failure in producing quantitative predictions, this minimal model is
interesting since it gives a simple idea of the different components that are into play
in the formation of a supersolid in quantum gases experiments. In the future, we
think it would be interesting to make the model more realistic, starting from the
effective interaction in two-dimensions, eq. (3.6), and trying to predict some prop-
erties of a two-dimensional supersolid, also with the help of simulations. This would
be interesting also on the experimental side, since one of the goals of our experiment
is to switch from the current one-dimensional supersolid to a two-dimensional array
of droplets, with fewer atoms for each droplet so to have a larger droplet number.

3.3 Observation of a dipolar supersolid

In this section, we describe the first experimental observations of a dipolar su-
persolid. In quantum gases experiments, the starting point is the BEC, a super-
fluid system, with typical densities of 10'* ecm™3. To make a comparison with the
soft-core models of the previous section, we can take as two-dimensional density
p ~ 10%em=3 x I, ~ 10*° cm™2 with [, ~ 1 pm. The dimensionless density of the
soft-core model, therefore, would be pR?* ~ 100, with R, ~ [,. In the phase dia-
gram of Fig. 3.3 the experimental system would be two orders of magnitude higher,
in the region where a mean-field treatment is accurate. To induce the transition
to a supersolid state, in the experiments, the scattering length a is tuned through
Feshbach resonances, searching the regime in which dipolar interactions spatially
modulate the superfluid.

The first observation of a dipolar supersolid was made by the Pisa group in
2018 [19]. The result has been promptly confirmed by the Innsbruck group [20] and
the Stuttgart group [21]. Let us discuss the Pisa experiment. The system is a gas of
162y atoms, with typical atom number N ~ 10* and undetectable thermal compo-
nent, confined in an anisotropic trap with frequencies w,,, . = 27 x (18.5, 53, 81) Hz.
The strong confinement in the z direction, along which the dipoles are aligned, is
needed to induce the roton instability, while the weak confinement in the x direction
induces the droplets to form in a one-dimensional configuration. The observable is
the momentum distribution n(k,, k,), detected by absorption imaging after a free
expansion. As depicted in Fig. 3.9, three different regimes exist as a function of the
scattering length a, tuned with a Feshbach resonance. For a 2 100 ag, with ag the
Bohr radius, the ground state is a stable BEC. For a < 90 ag the droplet crystal
forms, but with no coherence between the droplets, as confirmed by the irregular
interference pattern observed in time of flight, with large variation from shot to
shot. On the other hand, in the intermediate regime, the momentum distribution
shows small side peaks along the weak trap axis, which persist for several tens of
milliseconds and keep the same shape in different repetitions of the experiment.
The interference patterns observed in time of flight are associated with an in-situ
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density modulation. From the images, the position of the peak k, is found to be
1.2(2) pm™!, similar to the expected roton momentum for an unconfined system
in the xy plane, k,,; = 1.53 pm~!. Also, the phase of the interference pattern is
extracted from the momentum distribution (see chapter 4 for details on the fitting
procedure and the experimental protocol), whose variance over about 40 realiza-
tions for each evolution time is shown in Fig. 3.9, for the supersolid regime. It is
clear that coherence between droplets is settled after 10 ms (the time needed for
their formation) and is maintained for about 20 ms, before reaching the expectation
value for a uniform phase distribution. To support the experimental results, dy-
namical simulations of the eGPE have been performed by a collaborating group at
the University of Hannover, including also the ramp in the scattering length. The
simulations contain three-body losses and finite temperature effects. In-trap density
distributions are reported in Fig. 3.9 and show the presence of three droplets aligned
in the x direction, at a distance of about 4 pm one from the other, on top of a BEC
background that provides a coherent link between the droplets. In the incoherent
regime, the droplets have a small overlap, and the high densities regions induce a
rapid decay for three-body losses and strong excitations with high-density variations.

Differently from helium experiments, where supersolidity was searched coming
from the classical solid side, the dipolar supersolid stands in the opposite limit, at
the transition with a liquid-like superfluid. It is not surprising, then, that it is very
different from the hypothetical helium supersolid: it is a cluster supersolid, with
very few density peaks, of order unity, and with many atoms per lattice site, of the
order of 10%.

The other two experiments are quite similar. The main differences are that the
Stuttgart group performs also in-situ imaging, with a spatial resolution of 1 pum,
which, however, isn’t enough to clearly extract the number of droplets or the over-
lap between them [21]. The Innsbruck group uses a different isotope of dysprosium,
164Dy, and a different element, '%Er [20]. The trap is more elongated, with trap
frequencies w,, . = 27 x (300, 16, 222) Hz. Erbium has the advantage that the rela-
tion scattering length-magnetic field, a(B), is well known, contrary to dysprosium.
The results, however, are similar to '*?Dy: a supersolid is observed in a narrow
range of parameters with lifetimes of the order of 30 ms. On the other hand, '*4Dy
has a background scattering length smaller than the dipolar length a4, which al-
lows entering in the supersolid regime tuning B without approaching a Feshbach
resonance, therefore limiting the three-body losses. The lifetime of supersolid 4Dy
reaches 150 ms. Moreover, this property allows reaching the supersolid regime di-
rectly with evaporative cooling, without any magnetic field ramp on the BEC side.
With this technique, the Innsbruck group reports lifetimes up to 200 ms.

3.4 Goldstone modes in dipolar supersolids

To gain further insight into the nature of the supersolid state of matter, a series of
experiments have been performed to study the spectrum of elementary excitations,
which governs the system response to perturbations. Already in the seminal paper
of Andreev and Lifshitz [7], it was pointed out that in a supersolid, which is neither
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Figure 3.9: Experimental and numerical results from [19]. (A) Momentum
distributions as a function of the evolution time for the three regimes, corre-
sponding to three different scattering lengths. In the supersolid regime, side
peaks are visible up to tens of millisecond, before a typical BEC is recovered.
In the droplet regime, the interference pattern shows no regularity. (B) Time
evolution of the phase variance A¢?. Each point is obtained from about 40
experimental images. The red dotted line is the variance for a uniform phase
distribution. Phase coherence is clearly established for about 20 ms. (C) Nu-
merical simulation of the in-trap density, for different times (13.7 ms, 30.9 ms,
55 ms, from left to right). In the upper row, the supersolid is composed of three
droplets, which evolve to an excited BEC for longer times. In the lower row,
the incoherent droplets have little overlap and rapidly decay. The lines in color
show the phase of the system, showing large phase variations in the incoherent
regime.
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a solid nor a liquid, two kinds of motions should be possible: one associated with
the solid nature and the other with the superfluid nature. In their paper, dating
back to 1969, the problem was formulated in terms of sound waves. In a more
modern language, we should speak about Goldstone modes which appear because of
the spontaneous symmetry breaking. Formally, a spontaneous symmetry breaking
occurs when the hamiltonian is invariant under a symmetry, but the ground state
is not. The most famous example is the Ising model in statistical mechanics: the
hamiltonian is invariant under the change of sign of all the spins which form the
chain, but, under a critical temperature, the system acquires a finite magnetization
M. When this happens, the previous operation isn’t a symmetry of the ground
state since it changes M into —M. In the case of the simple Ising model, no Gold-
stone mode is expected, since the broken symmetry is a discrete one. When the
broken symmetry is a continuous one, the Ginzburg-Landau effective energy near
the phase transition has the typical form of a mexican hat, in which a continuum
of new energy minima appears [70]. This is the case of generalizations of the Ising
model, such as the Heisenberg model, in which the spins are three-dimensional vec-
tors that can point in any direction. In this case, the group of equivalent minima
is composed of all the possible directions in which the spontaneous magnetization
can point. The Goldstone modes are low-energy modes that link the energy minima
one to the other. In the Heisenberg model, they are spin-waves which modify the
direction of the magnetization [71]. Another important example is the formation of
a crystal, in which case the continuous symmetry to be broken is the translational
symmetry. A reduced symmetry persists in the crystal, the one associated with
discrete translations. In this case, Goldstone modes are phonon excitations which
change the positions of the lattice sites.

The supersolid simultaneously breaks two continuous symmetries: the U(1) sym-
metry, associated with the locking of the phase of the condensate wavefunction, and,
therefore, linked to the superfluid nature of the system, and the translational sym-
metry, associated with the formation of density maxima and related to the solid
properties. As a consequence, the supersolid should exhibit two different Goldstone
excitations, each one associated with one of the two natures of the system. Theo-
retical simulations with Monte Carlo methods for soft-core interactions have indeed
predicted that, in a homogeneous system, two different excitations branches appear
in the supersolid regime [72] (see Fig. 3.10). One could wonder what is the analog
of these kind of excitations, proper of homogeneous systems, in a finite-size system
such as the experimental trapped BECs. This is an issue that has been addressed
since the first days of experiments on BECs [73,74]. Differently from the uniform
case, where each elementary excitation is determined by its frequency w and momen-
tum k, in the presence of confinement the momentum k is no more a good quantum
number. The elementary excitations are, therefore, classified with other quantum
numbers which take into account the symmetries of the problem. For example, in
a spherical trap they are the angular momentum [/ and its third component m. In
more general geometries, these modes can mix together. The analog of the phononic
branch of the homogenous systems, appearing in the weakly interacting Bose gas
explained in the previous Chapter or in liquid helium, are modes which involve the
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Figure 3.10: Simulations of the excitation spectrum of a soft-core model from
[72], in (A) the sandard superfluid, (B) the supersolid and (C) the insulating
droplet crystal phase. In the supersolid phase, the excitation spectrum is divided
into two branches, linked respectively to its superfluid (the lower one) and solid-
like (the upper one) nature. The length a is the soft-core radius.

whole condensate, called collective modes. With a back-of-the-envelope calculation,
we can convince ourselves that the finite-size of the system determines a minimum
excitation energy. In an infinite system, the phononic branch is w = sgk, with
so = +/pt/m the sound velocity. If the size (in one dimension) is L, the minimum
achievable wavevector is k,, ~ 1/L so that the minimum excitation frequency is
Wi ~ Soky = A/p/(mL?). In the Thomas-Fermi approximation, the relation be-
tween p and the size L is p = mwi L?/2, with wp, the harmonic frequency of the
trap. The minimum excitation frequency is therefore of the order w ~ wy,. The
explicit expressions for the excitation frequencies of the collective modes are known
for most of the experimental trap geometries [2,3], obtained solving the hydrody-
namic equations in the Thomas-Fermi approximation. The scissors mode explained
in section 1.4 is an example of a collective mode. Summarizing, in a trapped gas the
excitation spectrum is discretized, and the two branches of the homogeneous sys-
tem, related to two different sound waves, are mapped onto compressional modes,
which are therefore the physical signature of the broken symmetries in the current
experiments.

The Innsbruck group studied theoretically the excitation spectrum of a trapped
gas of both erbium and dysprosium, near to the transition, simulating the eGPE
[24]. They considered only excitations along the weak trap axis. The spectra are
composed of discrete modes which, in the BEC region, are arranged in a single
branch with a roton minimum (see Fig. 3.11), which resembles that of an infinte
system. In the supersolid region, two different branches appear, and the spectrum
acquires a periodic structure, similar to the Brillouin zones in a crystal, with a
primitive reciprocal lattice vector equal to k,.;. These features are more evident in
the dysprosium supersolid because it is composed of more maxima and finite-size
effects are smaller. In the incoherent droplet regime, the lower branch disappears,
signaling the disappearance of global coherence. The upper branch survives and
hardens since it is linked to the solid-like