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Introduction

Few emotions are as powerful as the one that the experimenter feels when mixing
different elements in order to create something new. The spectrum of all the possible
outcomes is something we look at with anxiety but, nevertheless, still able to drive our
curiosity in pursuing our goals, moving the boundaries one step further. This is what
this thesis is all about. Indeed, this work puts the foundations for the experimental
realization of a new type of superfluid, based on Bose condensed magnetic molecules
with strong dipolar interactions trapped in two dimensions. This system mixes
together two main ingredients: the long-range and anisotropic features of dipolar
interactions and the possibility to achieve stable molecular gases in two dimensions.
In this thesis I analyze these aspects from an experimental perspective, focusing on
the design of new tools to effectively move the first steps towards this fascinating goal.

The field of quantum gases started around 25 years ago with the experimental
realization of the first Bose-Einstein condensates in 1995 [2, 14]. This achievement
opened the way to explore many-body quantum physics phenomena [7] directly
linked to the emergence of a macroscopic coherence, typical of Bose condensed
systems. One of the frontiers of this field is the study of quantum gases with
long-range interactions, which add to the short-range physic a completely new set
of phenomena. Perhaps, the most exciting one is the supersolid phase, a novel
counter-intuitive state of matter that combines the coherence properties of superfluid
with the rigidity of a crystal. Supersolidity has been observed [9,12,45] with dipolar
quantum gases of magnetic atoms, where the interaction between large magnetic
dipole moments provides for long-range, anisotropic interactions [30]. The physics
underlying the supersolid phase comes from the interplay between dipole-dipole and
van der Waals interactions when they have comparable energies. From this per-
spective, the real challenge in recent years is the design of strongly dipolar systems,
where dipole-dipole interaction dominates and new phenomena are expected. Indeed,
when the length associated with dipolar interactions becomes of the same order as
the spacing between particles, it would be possible to study the effect of interactions
on systems where physics is set by the inter-particle distance. This is the case of
Fermi gases, where superfluid effects manifest only when the interaction energy is
comparable to the Fermi energy, hence the interaction length is of the same order of
1/kF . Fermionic supefluidity has been experimentally investigated together with the
observation of BEC-BCS crossover with just van der Waals interactions [52]. From
this perspective, the possibility to add strong dipolar interactions to these systems
in order to produce exotic fermionic superfluids [4], is really captivating. Moreover
new quantum phases are also expected in strongly dipolar gases in optical lattices.
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Here the competition of interactions with tunneling between lattice sites could lead
to exotic insulating phases with occupation number 1/2, known as checkerboard
insulators [10]. These are the long-range counterpart of standard Mott insulators
experimentally observed only with van der Waals interactions. In this case the
energy associated to double occupations is greater than the tunneling energy defined
by the lattice depth, therefore particles localize and the occupation number is 1. In
order to observe checkerboard insulators interaction has to be long range, so that
even single occupations of adjacent sites are prevented. These are just a couple
of examples of the wide range of fascinating phenomena that would be possible to
access with strongly dipolar quantum gases [4, 10,30].

A possible solution to explore the strongly dipolar regime is to work with electric
polar molecules that, in their ground state, exhibit much larger electric dipole
moments than their magnetic counterparts. Nevertheless, producing degenerate
gases of heteronuclear molecules it is really challenging because direct laser cooling
of molecules is hard, and producing ground state molecules starting from quantum
gases of atoms is a delicate task [8,15]. On the other hand, magnetic atoms does not
have dipole moments large enough to reach the strongly interacting regime, since
density is limited by losses. However, it is possible to produce molecules associating
two magnetic atoms, that giving about twice the magnetic moment, make possible
to enter and interesting regime for studying strongly interacting systems. Differently
form electric molecules, magnetic ones exhibits large dipole moments even in the
weakly bound regime [33]. This gives the possibility to produce strongly interacting
molecular systems exploiting the very reliable and stable methods developed for
magnetic atoms [17], that are currently driving the research in dipolar quantum gases.

In my thesis I went in this direction, building an experimental starting point towards
the realization of a quantum gas of dysprosium magnetic molecules. Dysprosium,
condensed for the first time in [32], is one of the atom with the largest magnetic
dipole moment in the whole periodic table of about 10µB , and is the same atom used
in current experiments about supersolidity [46,47]. Thanks to its dipolar nature, dys-
prosium shows also a dense spectrum of Feshbach resonances, that can be exploited
to tune its interactions and drive the formation of weakly bound Feshbach molecules.
Indeed, controlling an external magnetic field to cross a Feshbach resonance, it is pos-
sible to efficiently bring two colliding atoms in a weakly bound molecular state near
the free atomic energy threshold. Being in the highest vibrational state, Feshbach
molecules quickly decay to lower tightly bound states, gaining a large kinetic energy
that produces fast particle losses from the ultracold sample. The inelastic collision
at short range responsible for this decay processes are favored by the strong dipolar
interactions of the system, and in particular by their attractive part, which plays a
huge role in three dimensions. Therefore, in order to have a system with lifetimes
long enough to perform experiments, we need to prepare the molecular quantum gas
in an external potential that produces a strong confinement in the direction of the
magnetic dipoles. This results in a suppression of the attractive part of the dipolar
interaction, since the head-to-tail configuration of pairs of dipoles is suppressed,
hence in a suppression of the short range collisions [4, 41]. This approach has been
demonstrated in [17], where a thermal gas of weakly bound molecules of erbium
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showed a lifetime of tens of ms. Differently from the latter case, my work aims at ex-
ploring the superfluid regime with this strongly dipolar systems. While condensation
of two-dimensional gas with contact interactions has been extensively studied [22],
only marginal research has been done in the dipolar case [37]. In two dimensions
the quantum phase transition leading to superfluidity is intrinsically different from
the standard Bose-Einstein condensation happening in a three-dimensional gas. The
phenomenon is described by the Berezinskii-Kosterlitz-Thouless theory [28], which
predicts superfluidity in interacting Bose gases below a critical temperature that is
directly proportional to the two-dimensional density of the system [22]. Intuitively,
also the loss rates for inelastic collisions are proportional to the density [41], therefore
high critical temperatures mean shorter lifetimes for the system. Moreover, density
is directly linked to the confining optical potentials we use in experiments. In this
work I analyze this problem, translating it to the case of dysprosium molecules and
finding the most promising parameters to aim for in experiments. In particular, I use
theoretical models for the Berezinskii-Kosterlitz-Thouless critical temperature and
molecules loss rate to estimate the system target density and temperature and design
a trapping potential giving lifetimes of about 100 ms. This is a one dimensional
optical lattice where single lattice sites, separated by 532 nm, can be described as
well isolated disks. The trap frequency along the lattice direction is much larger
than the transverse one, therefore the system trapped in each lattice site acts in
a quasi-two dimensional system. As a pure experimental part of this work, I also
realized a suitable laser source to build this new one-dimensional lattice, which I
also designed and realized experimentally.

The thesis is organized as follows.
In Chapter 1 I summarize all the differents theoretical aspects involved. I start by
reviewing dipolar interactions, discussing their role in quantum gases experiments
and the interesting effects leading to supersolidity. Then I move to strongly dipolar
systems, focusing on the case of magnetic molecules. In particular, I intuitively
present the mechanism used to produce weakly bound Feshbach molecules and the
theoretical model to study their stability in two dimensions. In the final part of the
chapter I also present the phenomenology of superfluids in 2D, introducing the basic
bricks of Berezinskii-Kosterlitz-Thouless transition, connecting it also to the dipolar
case.
Chapter 2 is devoted to the design of the experiment for the realization of a strongly
dipolar superfluid in two dimensions. Here I first summarize the experimental set up
currently used in the group of G. Modugno in Pisa, in order to frame the upcoming
experiment and present the main features of dysprosium. I also review the basics
about optical trapping methods, focusing on optical lattices and discussing heating
rates. At this point, having presented all the theoretical ingredients, I present the
simulations of the system parameters, analyzing the interplay of the different effects
linked by the system density, and ultimately by the trapping frequencies.
In Chapter 3 I present the experimental realization of a new stable laser source with
high power and the design of the one-dimensional lattice needed to produce a 2D
dipolar superfluid.
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Chapter 1

Two-dimensional Dipolar
Quantum Gases

In this Chapter I present the main theoretical aspects involved in the physics of
dipolar quantum gases and superfluids in two dimensions, which constitutes the
object of this thesis. In Section 1.1 I start with dipole-dipole interaction, focusing
on how it modifies the physics of non-dipolar superfluids, adding a new interaction
mechanism to these systems. I also discuss the system excitations and instabilities,
showing how dipolar quantum gases can be exploited to study new phenomena, like
the recently observed supersolid phase. In Section 1.2 I move to the case of strongly
dipolar systems, which can be realized exploiting weakly bound magnetic molecules.
I discuss the formation mechanism of these molecules, starting from an atomic
Bose-Einstein condensate of magnetic atoms, and the stability of the molecular
system against losses. In the final part of this Chapter, in Section 1.3, I summarize
the theory of Bose-Einstein condensation in 2D and the main theoretical results of
Berezinskii-Kosterlitz-Thouless theory, which describes the superfluid transition in
two-dimensional systems.

1.1 Dipolar Bose-Einstein Condensates

Interactions in a dipolar quantum gas

Considering an ensemble of N unpolarized dipoles in free space, the dipole-dipole
interaction (DDI) between two of them, with polarization vectors e1 and e2 and
relative position r, is

Udd (r) = D2

4π
(e1 · e2) |r|2 − 3 (e1 · r) (e2 · r)

|r|5
. (1.1)

The strength of the interaction depends quadratically on the dipole moment D,
with D2 equal to µ2 µ0 (d2/ε0) for magnetic (electric) dipoles, where µ (d) is
the magnetic (electric) dipole moment of the particles and µ0 = 4π × 10−7 H/m
(ε0 = 8.85× 10−12 F/m) the vacuum permeability (permittivity).



2 1. Two-dimensional Dipolar Quantum Gases

r
→θm

Figure 1.1. Dipole-dipole interactions in a polarized sample. When two dipoles are sitting
side-by-side (left) they experience a repulsive potential D2/(4πr3). In the other extreme
case, where they are in head-to-tail configuration they instead attract each other, with a
potential −2D2/(4πr3). At the the angle θm (center) we have non interacting dipoles.

The expression of Udd in Eq. 1.1 become simpler for a polarized sample, which is
always the case in quantum gases experiments, where an external field defines the
polarization axis of the system. Indeed, the DDI is in this case

Udd (r, θ) = D2

4π

(
1− 3 cos2 θ

)
r3 (1.2)

where θ is the angle between r and the polarization axis. As one can clearly see from
Eq. 1.2, Udd has a r−3 tail responsible for its long-range character and is strongly
anisotropic. Indeed, changing θ (i.e. the external polarizing field) not only changes
the strength of Udd, but also the interaction nature itself. While dipoles side-by-side
(θ = π/2) repels each other, when they are in head-to-tail (θ = 0) configuration the
interaction is attractive, with twice the strength. As sketched in Fig. 1.1, for the
magic angle θm = cos−1

(
1/
√

3
)
repulsive and attractive dipole forces cancel each

other. This dependence on the dipoles orientation, can be in principle exploited to
tune the DDI [19] in ultra-cold atoms experiments.

Another important feature of dipolar interaction is its long-range nature. Indeed,
a central potential U (r) ∼ 1/rγ is short-range in D dimensions, when meets the
condition ∫ +∞

a0

1
rγ

rD−1 dr <∞ (1.3)

where a0 is an arbitrary cut-off preventing divergence in r = 0. When D− γ < 0 the
integral in Eq. 1.3 (proportional to the interaction energy) converges, meaning that
particles infinitely distant do not interact. In the dipolar case (γ = 3) this condition
holds only for D = 1, 2, where Udd has finite range, while in three dimensions it is
not satisfied, leading to a long-range behavior.

In a dipolar BEC we have to take into account DDI together with van der Waals
interactions, which typically dominate in a dilute system of neutral atoms. Differently
from Udd, this is a short-range, isotropic interaction that can be described by the
Lennard-Jones potential

ULJ (r) = 4ε
[
C12
r12 −

C6
r6

]
. (1.4)

However, at low energies the van der Waals interaction is described by a single pa-
rameter, as, that is the s-wave scattering length of the two-body problem. Therefore,
the Lennard-Jones potential can be replaced by a contact pseudopotential UvdW with
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constant Fourier transform g = 4πh̄2as/m which gives the same scattering length of
ULJ [25]:

UvdW (r) = g δ (r) (1.5)

where δ (r) is the Dirac δ function. In ultracold non dipolar atoms experiments,
where temperatures are tipically under 1 µK, this description is in practice always
valid. A similar result cannot be applied instead, to the dipolar case, where all
partial waves contribute even at very low energies, due to the long-range tail of
the interaction [30]. Nevertheless, it is useful to rescale the Udd coupling constant
D2/ (4π), defining the dipolar length

add = D2 m

12πh̄2 . (1.6)

At this point, to quantify the interplay between dipolar and contact interaction, we
can define the dimensionless parameter

εdd = add
as

= D2

3g (1.7)

that can be tuned in experiments exploiting a Feshbach resonance [11] to modify
the scattering length as.

The atomic species we consider in this work is dysprosium. The details about the
experimental set up used for the cooling and trapping of this atom will be discussed
in Chapter 2, while here we present briefly its main features as a dipolar atom. With
µ ∼ 9.93µB, dysprosium is the atom with the largest magnetic dipole moment, after
holmium (which however has not been condensed yet [35]), in the whole periodic
table. This is quite impressive if compared to the dipole moment of alkali atoms,
that are of the order of one Bohr magneton [48]. For this reason, dysprosium has by
nature a long dipolar length add of about 130 a0 which is comparable to its s-wave
scattering length as. As we will see in the next section, as can be tuned around its
background value abg ∼ 140 a0, allowing εdd to span from less than 1 to almost 1.5,
making possible to observe novel phenomena emerging in dipolar superfluids.

Feshbach resonances

Starting from a phenomenological point of view, we can say that Feshbach resonances
are in practice singularities in the scattering length of contact interactions, occurring
for particular values of the external magnetic field. Around these resonances, the
s-wave scattering length is described by

as (B) = abg

[
1− ∆

B −B0

]
(1.8)

where B0 and ∆ are the resonance location and width, while abg is the value of as far
from B0 [11]. In particular, we see from Fig. 1.2 that as diverges at B0 changing sign
across the resonance. The basic explanation of the physics behind this phenomenon
can be understood thinking about a simple problem in quantum mechanics: the
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Figure 1.2. Scattering length as across a Feshbach resonance. The vertical dashed line
indicates the resonance location B0 = 0 G; the zero-crossing is highlighted by the vertical
gray line at ∆ = 10 G which is also the resonance width; the horizontal red line marks
the background scattering length.
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Figure 1.3. Scattering length as for particles in a square-well scattering potential [39].
Here k2

0 = 2mV0/h̄
2 and b is the range of the well. Each divergence marks a new bound

state in the system while increasing the depth of the potential.
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scattering in a square-well potential. Taking a potential V (r) = −V0 for r < b and
zero elsewhere, we can solve the two-body s-wave scattering problem obtaining

as = b

[
1− tan (k0b)

k0b

]
(1.9)

with k2
0 = 2mV0/h̄

2 being the characteristic k associated to the V (r). As we can
see in Fig. 1.3, in this case as diverges each time k0b = (2n+ 1)π/2, meaning that
for particular shapes of V (r) (depth and range) something happens that strongly
affects the scattering length. Indeed, looking for the energy of weakly bounds states
(with |Eb| � V0) we find Eb ∼ 1/a2

s, suggesting that a new bound state enters the
well every time as diverges. This conceptual result holds also for two-body poten-
tials more complex than the square-well, as in the case of interacting ultracold atoms.

Resonances broad enough to have a good control over as, can be exploited to tune
contact interactions, passing for example from weakly to strongly interacting regime,
or realizing non-interacting systems resembling ideal gases of bosons or fermions [11].
This can be done by tuning the interactions around the zero-crossing magnetic field,
defined from Eq. 1.8 as

BZC = B0 + ∆ . (1.10)
Feshbach resonances can also be used to change sign to as, exploring the collapsing
dynamics of trapped gases [39], where attractive interactions cause significant losses.
This provides also a natural method to locate resonances, by measuring the number
of atoms at different values of magnetic field: the Feshbach spectrum can be mapped
with atom-loss spectroscopy. As we will see later in this chapter, Feshbach resonances
can be exploited also to produce ultracold weakly bound molecules starting from
atomic samples. For these reasons, Feshbach resonances are perhaps one of the most
important experimental tools in the field of quantum gases.

To better understand the analogy with the square-well and also grasp the subtle
differences of the Feshbach resonance case, we consider two molecular potentials like
the ones in Fig. 1.4 (left). Considering two atoms far from each other with energy EO
slightly above zero, the low lying curve represents an open channel for their scattering,
while the other one is energetically not accessible, hence corresponds to a closed
channel. The idea is that when a bound state with energy EC in the closed channel
approaches EO, a Feshbach resonance occurs and as become infinitely large [11], as
in the case of the square-well potential. Note that in that case the potential must be
modified (increasing its depth or range) in order to host a new bound state, while
here two different potentials are involved and it is possible to change their energy
difference, i.e (EC − EO), acting on an external parameter. Indeed, the bound
state in the closed channel and the scattering state in the open one have in general
two different magnetic moments hence, in presence of an external magnetic field,
they have a non zero relative Zeeman energy shift. Therefore, by changing B we
change (EC − EO) eventually crossing the resonance, where as changes accordingly
to Eq. 1.8, as we mentioned.

It must be pointed out that the two-channel model of the Feshbach resonances [13]
we sketched above constitutes a zero-order explanations of what happens with alkali



6 1. Two-dimensional Dipolar Quantum Gases

Figure 1.4. Open and closed channels in Feshbach resonances. Differently from the simple
two-channel resonance (left) in the dipolar case (right) a great number of channels are
involved. In the left plot, adapted from [11], EC is the energy of the bound state closest
to EO. The plot on the right shows 91 channels for 164Dy + 164Dy scattering, calculated
in [40].

atoms, where molecular potentials are isotropic and only s-wave scattering processes
can be considered. Indeed, when the scattering potential depends only on the
magnitude of the inter-atomic distance it is possible to label a certain Feshbach
resonance with its own partial wave, since different partial waves are not coupled.
On the other hand, with dipolar atoms, anisotropic effects in interactions become
important and molecular potentials associated to many different partial waves are
mixed together [29, 40]. As an example, consider Fig. 1.4 (right), where a great
number of molecular potentials contributes to the global scattering problem. As a
consequence, the Feshbach spectrum of dipolar atoms is very dense [34], as one can
see from Fig. 1.5 where an impressive number of resonances populate a broad region
of magnetic field.

In experiments with dipolar BECs the role of Feshbach resonances is even more
important, since tuning as directly change the dipolarity of the system modifying
εdd [30]. As we will see in the next sections, exploring the εdd > 1 regime is extremely
interesting because of the many effects that stem from DDIs, such as the emergence
of a roton minimum [38] in the spectrum that lead dipolar BECs to share some
similarities with another bosonic quantum fluid: liquid helium.

Figure 1.5. Feshbach spectrum of 164Dy (J = 8,mJ = −8) mapped through the atom-losses
measured in [34] for a broad region of the external magnetic field at T = 2.4 µK.
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Excitation spectrum and instabilities

At the mean field level we can study a dipolar condensate generalizing the Gross-
Pitaevskii Equation (GPE) that describes the dynamic of standard BECs, including
the DDI term. This leads to the following non-linear equation for the condensate
wave function φ (r, t) [39]:

ih̄∂φ (r, t)
∂t

=
[
− h̄

2∇2

2m + Utrap (r) + g|φ (r, t)|2 + Φdd (r, t)
]
φ (r, t) . (1.11)

Note that, while contact interaction energy depends on the density |φ (r, t)|2 at a
given position, the dipolar term

Φdd (r, t) =
∫
Udd

(
r− r′

) ∣∣φ (r′, t)∣∣2 dr′ (1.12)

is non-local due to its long-range nature. For a homogeneous gas |φ (r′, t)|2 = n0 is
constant and Φdd is simply the product of density n0 times the Fourier transform of
Udd, which can be calculated [42] starting from Eq.1.2:

Ũdd (k) = D2
(

cos2 θk −
1
3

)
. (1.13)

Not surprisingly, the characteristic anisotropy of DDI manifests also in the reciprocal
space through the dependence on θk, that is the angle between k and the polarization
axis. The homogeneous case (namely n0 = const, Utrap = 0) is interesting mainly
because we can directly calculate the excitation spectrum of the condensate from
Eq.1.11. For density perturbations with wave vector k, the small oscillations
frequency is given by

ω (k) = k

√
n0
m

(
g + Ũdd

)
+ h̄2k2

4m2 (1.14)

that shows a phonon-like dispersion for small k, with sound velocity modified by the
DDI. When εdd > 1, the anisotropic term Ũdd could lead to a phonon instability char-
acterized by imaginary excitation frequencies for k → 0. Caused by the attractive
part of Udd, this phonon instability is favored for perturbations with k orthogonal
to the polarization axis (θk = π/2), that produce high density zones where dipole
are in head-to-tail configuration.

A different kind of instability appears when we consider trapped systems. Indeed,
confining potentials add a specific length scale to the system that modifies Eq. 1.13
giving an explicit k dependence to the interaction. In elongated harmonic traps
this length scale is the harmonic oscillator length ` along the strong trap axis. This
changes the homogeneous case spectrum in Eq. 1.14 leading the appearance of
a maximum and a minimum around krot ∼ 1/` that resembles the maxon-roton
spectrum in superfluid helium. While in helium the roton gap can be changed only
through a change of the density (the pressure), a remarkable feature of dipolar
quantum gases is the possibility to tune the gap in various ways, including through
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Figure 1.6. Excitation spectrum as a function of k⊥ (θk = π/2) for different interaction
strengths g3D = mD2n`/

(
4πh̄2) calculated in [30]

the very interaction strengths. In Fig. 1.6 we see how the the excitation spectrum
changes for different values of interactions strengths. Indeed, both krot and the roton
energy can tuned in experiments by changing the trapping potentials, the system
density or the interactions [30]. Keeping the first two fixed, when εdd reaches a
critical value the roton energy touches the zero point and we encounter an instability
where density perturbations with krot lead the system to the collapse. In this case
the repulsive contact interactions are perfectly balanced by the mainly attractive
part of DDI and a density perturbation with krot is energetically favored. This
modulation can grow indefinitely in amplitude until three body losses, enhanced by
the high densities in the peaks, become dominant and destroy the system.

The role of quantum fluctuations

This collapse can be avoided providing a stabilization mechanism that allows finite
lifetimes for the density modulated superfluid. At the mean field level, we saw that
the roton instability comes from the perfect balancing between contact and dipolar
interactions which gives a vanishing energy cost for the density perturbations at krot.
Including the DDI, the mean field interaction energy EMF is given by [30]

EMF = gn2V

2 (1− εddf (κ)) (1.15)

where f is a function of the aspect ratio κ of the condensate, accounting for the
magnetostriction effect [44]. At the instability, EMF + Ekin ≈ 0 and we need to go
to the second order, considering the quantum fluctuations. In non dipolar BECs,
quantum fluctuantions are responsible for the depletion of the condensate (which is
neglected at the mean field approach) that gives a correction to the energy of the
ground state called Lee-Huang-Yang (LHY) term. This correction is given by

ELHY = gn2V

[ 64
15π

(
na3

) 1
2
]

(1.16)
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which is proportional to n5/2. The beyond mean field correction in the dipolar case,
which has been calculated in [31], reads

EQF = gn2V

[ 64
15π

(
na3

) 1
2
]
Q5 (εdd) (1.17)

where Q5 accounts for the dipolar interaction, and is defined as

Q5 (εdd) = 1
2

∫
dθk sin θk

(
1 + εdd

(
3 cos2 θk − 1

)) 5
2 ∼ 1 + 3ε2dd

2 . (1.18)

The surprising result is that EQF is isotropic, since Q5 depends only on the value of
εdd, and always ≥ 0. This gives rise to a repulsive interaction, that can dominate near
the roton minimum, where the mean field energy is extremely small. Furthermore,
we can see that EQF has the same dependence on density, ∝ n5/2, of the the LHY
correction, while EMF only depends quadratically on n. In terms of energy per
particle this means that EMF ∝ n ∝ r−3, while EQF ∝ n3/2 ∝ r−9/2. This different
dependence on the coordinates, can eventually lead to a local minimum in the total
energy, hence to a metastable system [31].

The idea of stabilizing roton modes using quantum fluctuations have recently pushed
many experiments to discover novel states of matter emerging from the interplay of
long-range DDI and repulsive contact interactions. In particular, when the roton
energy gap is positive we have a standard dipolar BEC, that is a superfluid phase.
A cartoon view of such system is sketched in Fig. 1.7 (left), where we see a long
wavelength modulation corresponding to phonon excitations. On the other hand,
tuning εdd we can reach the extreme case of negative roton gaps (i.e. imaginary
excitation energies): here the dipoles in the system forms an array of self bound
droplets stabilized by the quantum fluctuations, called droplet crystal. As sketched in
Fig. 1.7 (right), the density between the droplets is zero therefore there is no global
coherence in the system. However, in the intermediate case (central panel) the density
of the superfluid is periodically modulated, but does not vanish between adjacent
sites: this allows atoms to be delocalized in the system, maintaining its global
coherence. This counter-intuitive phase that mix together properties of superfluids
(phase coherence) with those of solids (periodic density) realizes a so-called supersolid,
and has been recently observed experimentally [45] with dipolar quantum gases.
In Fig. 1.8 we see how, changing εdd we can pass from a standard BEC (upper
panel) to an incoherent droplet crystal (bottom panel), crossing the supersolid phase
transitions (central panel). In Fig. 1.9 we see that, at this transition, the Goldstone

Figure 1.7. Cartoon view of an excited dipolar BEC (left), a cluster supersolid (center)
and a droplet crystal (right). Red lines corresponds to the envelope of the density
modulation. The color gradient corresponds to the system density.
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Figure 1.8. Momentum distributions of a dipolar quantum gas of 162Dy as a function
of the expansion time t for different values of magnetic field [45]. Different panels,
corresponding to different scattering lengths as, show a typical BEC (upper panel), a
supersolid phase (central panel) and an incoherent droplet crystal (lower panel).

mode associated to the broken gauge symmetry in the BEC side (εdd < 1.35) splits
into two. The lower energy mode is again associated to the superfluid and disappears
in the droplet crystal phase. The high energy mode is instead associated to the
spontaneous symmetry breaking of the translational symmetry, which marks the
onset of supersolidity.

1.2 Strongly Dipolar Gases

In the previous sections we saw how new phenomena arising in dipolar quantum
gases require, as a main ingredient, that DDI dominates in the system. Being the
interaction energy proportional to D2, the straightforward approach is therefore
to look for dipolar systems with dipole moments as large as possible, in order to
naturally have εdd > 1. The strongly interacting regime is reached when the dipolar
scattering length is comparable with the inter-particle distance

add ≥ n−
1
D (1.19)

where D is the dimensionality of our system.

Thanks to efficient and stable cooling and trapping methods, ultracold magnetic
atoms like Cr [5], Er [1] and Dy [32] have been proven a reliable platform to study the
physics of dipolar gases, but still with limited dipole moments, hence dipolar lengths,
given the typical maximum densities that correspond to a length scale of about
100 nm. Much stronger dipole moments could be reached in principle in electric
system, because electric dipoles are naturally larger than magnetic ones. Indeed,
systems like Rydberg atoms or polar molecules exhibits electric dipole moments
that correspond to dipolar lengths typically a few orders-of-magnitude larger than
their magnetic counterparts. In Rydberg atoms, where a single electron is excited to
s orbitals with high n (typically n > 100), one can easily obtain εdd ∼ 103 but at
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Figure 1.9. Breathing mode frequency as a function of εdd [47]. Solid lines are numerical
simulations of GPE with (blue and red) and without the LHY term. The mode splitting
after a critical value of εdd shows how two symmetries are broken in the supersolid phase.

the cost of very short lifetimes. Preventing the thermalization of the system, such
strong dipolar interactions make the study of many-body physics at the equilibrium
impossible. From this perspective, electric polar molecules are more promising,
since they have large electric dipole moments and longer lifetimes. Nevertheless, the
laser cooling and trapping of molecules have proven a real experimental struggle
and a molecular degenerate gas starting from preformed molecules has not yet
been achieved. This regime has been instead explored by associating molecules
starting from a mixture of two atomic quantum gases. This method circumvents
the cooling and trapping issues always present when working with molecules, and
has been exploited recently to create a degenerate gas of fermionic polar molecules
of 40K87Rb with εdd ∼ 20 [51]. These heteronuclear molecules are created in highly
excited vibrational states, where atoms are weakly bound and the electric dipole
moment is quenched. Therefore, in order to exhibit their strong dipolar nature,
electric molecules has to be transferred to their ground state using techniques
like stimulated raman adiabatic passage [18]. These procedures are extremely del-
icate and represent the main challenge in current experiments on ultracold molecules.

A new approach to the problem of achieving strongly dipolar systems consists in
associating magnetic atoms in order to obtain homonuclear weakly bound molecules
with large magnetic dipole moments. Differently from their electric counterpart, the
dipole moment of magnetic molecules is not quenched in high vibrational states,
since it depends only on how the atomic spins are coupled in the molecular state. In
the optimal case, molecules have twice the magnetic moment of single atoms. Having
also twice their mass, we can see from Eq. 1.6 that the molecular dipolar length
is about 8 times the atomic one. This means that dipolar interaction energies are
comparable with ones in the electric polar molecules case. The production of weakly
bound magnetic molecules with large dipolar interaction has been demonstrated with
erbium atoms in [17] starting from a cold sample of 168Er in a quasi-two-dimensional
harmonic trap. In the next sections I will focus on this production mechanism,
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B

E-Eo

Figure 1.10. A cartoon view of the energy states involved in a Feshbach resonance, as a
function of the external magnetic field. The open channel lies on the horizontal axis,
while the bound state in closed channel is represented with dashed red line. The blue
arrow, connect this two asymptotic states, representing the mechanism of molecules
association by sweeping adiabatically the magnetic field across the resonance.

discussing the stability of these molecular gases in experiments.

Association of magnetic molecules

In section 1.1 we saw how Feshbach resonances can be exploited to tune contact
interactions in ultracold quantum gases using a singularity in the scattering length
caused by the crossing of two (or more) two-body states of the system. The very
same phenomenon can be used to convert two colliding atoms in a weakly bound
molecule. In the simple picture of a two-channel resonance, sketched in Fig. 1.4
(left), we considered a scattering state of the system (open channel) and a bound
state in a higher energy molecular potential (closed channel). We already said that,
these states have in general a different magnetic dipole moment µ, and therefore
experience a non zero relative Zeeman shift ∆E = (µ1 − µ2)B in the presence of
an external magnetic field. To understand the Feshbach association process we can
look at Fig. 1.10, where the red dotted line corresponds to the energy of the bound
state in the closed channel, relative to the scattering state energy EO (B) (lying on
the x-axis). When we consider the coupling between open and closed channel, the
new eigenstates of the system are the two gray branches depicted in Fig. 1.10. Far
from the resonance these dressed states asymptotically tend to the old ones, while
at B0 they present an anti-crossing. The association mechanism consists in finely
control the magnetic field, sweeping it across the resonance, in order to walk the
system down the lower branch [11].

Obviously, this mechanism can be used for molecular association only when suitable
Feshbach resonances are available at magnetic fields reasonably low. This is not
a problem with dipolar atoms, since they have a very dense and broad spectrum
of resonances [34, 40]. Nevertheless, to choose the right one we have to consider
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Figure 1.11. Binding energy of two bound states in 162Dy measured in [33]. These states
correspond to two Feshbach resonances respectively at B01 = 21.9 G and B02 = 26.9 G.
The width of the two resonances are ∆01 = 1.97 G and ∆02 = 0.14 G.

two main aspects. In general broad resonances corresponds to weakly bound states
with higher magnetic dipole moments. This can be intuitively understood looking
once again at Fig. 1.10. The maximum µ is achieve when the bound state has the
same magnetic moment of the two atoms in the open channel, hence when the red
dashed line lies on the horizontal axis. When µ decreases, the red line is steeper and
the resonance narrower. Broad resonance are therefore desirable for the realization
of strongly dipolar gases, as we want for our system the largest magnetic dipole
moment. However, considering the dense Feshbach spectrum of dipolar atoms, it
is common for one or more very sharp resonances to be found across broader ones.
This could lead to non-adiabatic effects causing losses. Indeed, to efficiently convert
atoms into molecules, we must cross the resonance adiabatically, i.e. the system
must stay in the same quantum state (the lower branch) during the magnetic field
sweep.

A couple of broad Feshbach resonances of 162Dy have been studied in [33], together
with the binding energies of the molecular states reported in Fig. 1.11. Here, the
resonance at lower field has a width of about ∆ ∼ 2 G and about twice the magnetic
moment of single dysprosium atoms.
Another important aspect that has to be taken into account, concerns the association
efficiencies. These are typically quite low (less than 10%) in the case of thermal
gases, as the one reported in [17], since thermal excitations of the system can lead
to non-adiabatic processes that cause atoms to return in their scattering state, or
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Figure 1.12. Molecule conversion efficiency in alkali atoms as a function of phase space
density [23]. Solid lines are numerical simulation, while dashed lines corresponds to the
uncertainties in the numerical model.

worse, being lost due to inelastic collisions. Differently, the molecular production
efficiency is expected to be much higher in the degenerate regime. Indeed, as one
can see in Fig. 1.12, the efficiency tends to 1 when phase-space density approaches 1.
This has been demonstrated with alkali atoms in [23] where authors compare the
experimental results obtained for rubidium, with the theoretical model presented
in [20]. However, thinking bout unitary efficiencies is unphysical and pure molecular
gases cannot be obtained by Feshbach association. The experimental strategy that
can be used to produce such systems, is therefore to go for the highest possible
efficiency and then remove the remaining unbound atoms in the sample. This can
be done by simply shining a pulse of light that is resonant with an atomic optical
transition, but not with any molecular transition.

Molecules stability

Molecules produced with this method have energies of the same order of EO, there-
fore they are in the highest vibrational state. As a natural consequence, their lifetime
is strongly limited by decay processes towards the ground states, lying hundreds of
THz in energy below the atomic threshold. These processes are mainly caused by
three-body inelastic collisions at short range, enhanced by the attractive part of the
dipolar interaction. In three-dimensional dipolar systems the rate of inelastic colli-
sions Γinelastic scales as the square of the dipole moment, as it does the interaction
strength. This fact represents a real bottle-neck for the experimental exploration of
strongly dipolar systems, where lifetimes are drastically reduced by such collisions.
The only way to prevent this dramatic effects is to realized two-dimensional systems,
where, as we will see in this section, collision rates are strongly reduced.

Remarkably, as we can see in Fig. 1.13 (left), the rates of inelastic collisions in
dipolar systems show a universal behavior that has been investigated in [26,41,49]
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Figure 1.13. Loss rates for bosonic electric molecules calculated in [41] in three-dimensions
(left) and in a two-dimensional system (right). The left plot shows how, in the van der
Waals regime, β depends only on the square of the dipole moment d, with a characteristic
coefficient 3.74 (see Eq. 1.21). The right plot, shows the suppression of β when add

becomes larger than the harmonic oscillator length. Here, dashed and dotted curves
correspond respectively to the quasi-2D model in Eq. 1.22 and to the 2D model in
Eq. 1.23.

in the case of electric polar molecules. Losses due to inelastic collisions are described
by the following differential equation

∂n

∂t
= −βn2 (1.20)

where Γinelastic = βn is the collision rate of the system. In three dimensions β

can be studied using a Quantum Threshold model that takes into account van der
Waals and dipolar interactions, assuming a full loss when molecules come near each
other [41]. This latter circumstance happen with a probability that depends on the
interaction potentials among molecules, therefore β depends both on the van der
Waals and dipolar interactions, accordingly to

β3D = 2π

1.92
(

2h̄2C6
m3

)1
4

+ 3.74
(√

16/30
h̄

)(
D2

4π

) . (1.21)

The first term in the latter equation takes into account the 1/R6 dependence of the
van der Waals interaction in Eq.1.4, which we expect to be small with respect to the
second term, corresponding to the dipolar part. The numerical coefficients weighing
the two terms, result from the numerical simulation carried out in [41].

When we observe the dynamics of dipolar molecules in two-dimensions we find a very
different scenario. Indeed, looking at Fig. 1.13 (right), we clearly see that inelastic
collisions are strongly suppressed in the dipolar regime, where β drops by orders-of-
magnitude. This can be intuitively understood, thinking at the mechanics of dipolar
interactions in two-dimensions. In particular, when dipoles are tightly confined along
their polarization axis they cannot interact in head-to-tail configuration, and the
attractive part of DDI is strongly inhibited [4]. The interactions among the dipoles
are mainly repulsive, and the probability for three molecules to come closer to each
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other drops. From this point of view the strength of the confinement, that can be
quantified by the harmonic oscillator length `z along the polarization axis, plays an
important role. When `z � add, we are in the so-called quasi-2D regime, in which
collisions have still a 3D nature and the collisional rates given by the Quantum
Threshold model are just rescaled by a geometric factor

βQ2D =
√
mωz
4πh̄ β3D . (1.22)

As we can see from Fig. 1.13 (right), in this regime βQ2D is of the same order of
β3D, since the attractive part of DDI is only slightly reduced. On the other hand,
when `z � add, interactions are effectively in 2D, where our intuitive explanations
of the inelastic collisions suppression holds. In this case β is give by

β2D = 213h̄
m

(2Ec
h̄ωz

)2
exp

[
−2
(
add
`z

) 2
5
]

(1.23)

where the exponent 2/5 inside the exponential has been determined by the numerical
simulations carried out in [41]. Here the threshold energy Ec does not depend on
the interactions, but it is fixed by the temperature of the two-dimensional gas. Note
that, even if the 2D model should hold only for dipolar lengths much longer than `z,
in real systems Eq. 1.23 gives correct predictions starting from dipolar lengths of
the same order of `z [41].

1.3 Superfluidity in two dimensions
In this section, I will present the basics of Bose-Einstein condensation for a trapped
gas in lower dimensions and discuss new effects arising especially in 2D, when we
take interactions into account.

Superfluidity in three spatial dimensions is directly linked to the condensation of
bosons that, populating macroscopically their ground state, break the gauge sym-
metry of the system giving rise to a single wave function with global phase. In
this picture, superfluidity reflects the long range order linked to this spontaneous
symmetry breaking. This is not the case for a two-dimensional infinite system,
where the BEC transition cannot happen at non-zero temperatures, thus preventing
the emergence of a true long range order within the system [22]. Nevertheless, an
interacting Bose gas in 2D could still become a superfluid at T 6= 0 [6], thanks to the
existence of a quasi long-range order due to the suppression of thermal fluctuations.
The transition to the normal state has a different nature from the BEC transition,
and has been studied theoretically by Berezinskii-Kosterlitz-Thouless (BKT) [28].
The overall picture for the superfluid state in 2D is that of a quasi-ordered state
in which phase fluctuations are strongly suppressed and correlations decay slowly
with the distance [22]. At this low temperature state, vortices and anti-vortices,
which are responsible for phase fluctuations, are bound together in pairs providing
a topological order that suffices for superfluidity. Instead, above a certain critical
temperature the pairs uncouple, destroying the coherence in the system.



1.3 Superfluidity in two dimensions 17

In trapped gases this scenario is even richer. Indeed, the density of states of the
free case is modified by the finite size of the system, enabling the possibility to have
both BEC and BKT transitions, occurring at different temperatures, depending on
on the density and the strength of the interactions. When we consider repulsive
contact interactions, the critical temperature for BEC tipically drops as the density
at the trap center decreases due to repulsion between the particles. On the contrary,
the BKT critical temperature increase for increasing interaction strengths. So,
when the temperature decreases at fixed interactions, the system crosses the BKT
transition first and then the BEC transition. In this process, known as BKT-driven
condensation [22], the emergence of a condensed fraction right after the transition
is once again caused by the finite size of the system. Indeed, in the quasi-ordered
state correlations decay slow enough to have coherence lengths comparable with the
system size: in this sense the gauge symmetry is locally broken and BEC occurs.

Condensation in 2D

For an ideal three-dimensional Bose gas, the normal-to-superfluid transition occurs
when the particle thermal wavelength λ (T ) approaches the interparticle distance,
or equivalently when the phase-space density nλ3 (T ) ∼ 1. Keeping T fixed, the
population of the excited states Nexc saturates, at this point, to a critical value Nc

leading to a macroscopic occupation of the ground state for an increasing particle
number N . This is the well known phenomenon of Bose-Einstein Condensation.
From an experimental point of view, it is common to fix N and define a critical
temperature TBEC below that an ultracold bosonic gas undergo this phase transition
and becomes superfluid.

Considering a non-interacting system at the continuum limit, i.e. δε� kBT with δε
being the spacing of energy levels of the system, Nexc is given by

Nexc =
∫ +∞

0
ρ (ε) z

eβε − z dε (1.24)

where ρ (ε) is the density of states, z = eβµ is the fugacity of the system and
β = 1/kBT . In order to get TBEC 6= 0, the limit of Eq. 1.24 for z → 1 needs to be a
finite value Nc :

Nexc −−−→
z→1

Nc <∞ . (1.25)

In a two-dimensional infinite system, the density of states does not scale with the
energy as in 3D, but is a constant, ρ ∼ const. This difference has a dramatic
impact on Eq. 1.24, which has always a solution with Nexc = N for T > 0, so
BEC can exist only at T = 0. BEC can be restored in trapped gases, since the
confining potentail restores an energy-dependent density of states. For an harmonic
confinement Vho (r) = m

2 ω
2r2 the density of states changes with dimensionality as

ρ
(D)
ho (ε) = εD−1

(h̄ω)D (D − 1)!
. (1.26)
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If we now take D = 2, we see that ρho ∼ ε and the condition in Eq. 1.25 is satisfied,
therefore we obtain a critical temperature for the transition

TBEC = h̄ωr
kB

√
6N
π

(1.27)

that is non zero in the thermodynamic limit (N → ∞, ωr → 0, Nω2
r = const)

[22]. This case corresponds to a confinement potential Vho with trap frequencies
ωx = ωy = ωr and ωz � ω, that well describes optical trapping potentials generally
used in experiments. Note that the ideal 2D system would require an infinitely large
ωz, but as long as h̄ωz � kBT we have a thermodynamical 2D system and Eq. 1.27
holds.

Another more intuitive way to think to the BEC transition in lower dimensions
involves thermal excitations of the system. In particular, large wavelength phonons
in 2D have a diverging infrared contribution, due to the fact that the density of
states does not go to zero for vanishing energy, so they are able to destroy the long
range order underlying superfluidity: the only chance to have a condensate exists at
T = 0, where no phonons are present. These diverging modes are excluded in a trap
by the finite size of the system that sets a cutoff on phonons maximum wavelength.

Interactions in 2D

When interactions in the gas are taken into account, Eq. 1.27 is not valid, and a mean
field analysis is required. Nevertheless, for weak interactions corrections are expected
to be small enough for TBEC to good estimate the actual critical temperature for
BEC transition [39].

On the other hand, interaction are crucial for the emergence of the quasi-ordered state
in the BKT transition. At this level I will only take contact interactions into account,
adapting the parameters introduced in section 1.1 to the case of thermodynamical
2D system in a harmonic trap (as the one described in the previous section). When
the harmonic oscillator length `z is shorter than the interaction range, which is the
scattering length as, interactions effectively happen in two-dimensions and the system
is in the collisional 2D regime. In the opposite limit, i.e. `z � as, interactions are
still in 3D and the coupling constant g can be simply rescaled to give an interaction
energy

Eint = g

2

∫
n2

2D (r) d2r (1.28)

where g = h̄2

m g̃ proportional to the dimensionless parameter quantifying the interac-
tion strength

g̃ =
√

8π
(
as
`z

)
. (1.29)

From the last equation we see that, for fixed as, the weakly interacting regime
corresponds to the thermodynamical 2D case, where g̃ � 1. Furthermore, it is
interesting, from the experimental point of view, that changing the confinement
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along z directly affects the interaction strength within the system. The strongly
interacting regime, i.e. when Eint = Ekin, is reached for g̃ ≈ 2π [22].

Berezinskii-Kosterlitz-Thouless transition

Let us now focus on the BKT transition for weakly interacting gases in 2D. As
we saw in previous sections, a non interacting gas in an infinite 2D system can be
superfluid only at zero temperature due to the presence of thermal fluctuations that
destroy the long range order at T > 0. This picture drastically changes in interacting
gases.

The main effect of interactions with respect to the ideal Bose gas, involves the
density fluctuations in the system. When the temperature is low enough, so that
nλ (T ) � 1, density fluctuations on large scales (compared to the healing length
of the system) are strongly suppressed: the remaining perturbations with small
wavelength do not diverge in 2D and cannot destroy superfluidity [22]. Differently,
phase fluctuations at large scales (phonons) are not suppressed because they have a
vanishing energy cost for k → 0.

In the BKT theory, phonons are not the only relevant excitations and one has to
consider also vortices. These are zero density points around which the superfluid
has a quantized circulation κ that gives an irrotational velocity field

vs (r) = κ

2πr (1.30)

with r being the distance from the vortex center. These excitations can be thought
as quasi-particles with quantized angular momentum being an integer multiple of h̄.
Like any other particle has a corresponding anti-particle, vortices have anti-vortices
which have negative angular momentum since they have a circulation with opposite
sign. Below the critical BKT temperature vortices and anti-vortices are excited in
bound pairs, keeping the total angular momentum of the system constant. The
pairs contributes only to phase fluctuations with short wavelengths and provide a
topological order emerging in the system. On the other hand, this is destroyed above
the critical temperature by the pair unbinding and proliferation of free vortices and
anti-vortices.

The topological order given by this mechanism cannot be altered by the by phonons,
which contribute only with smooth variations of the phase, and is sufficient for
superfluidity. We therefore identify the critical temperature for the BKT transition
as the point at which this topological order is destroyed. A general result of the
BKT theory is that this corresponds to a critical phase space density [22]

n λ (TBKT ) = ln
(
C

g̃

)
(1.31)

where C = 380 ± 3 is a constant that can extracted from numerical Monte-Carlo
simulations. This defines a critical temperature

TBKT =
(

h2

2πmkB

)
n

ln (C/g̃) . (1.32)
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Figure 1.14. Condensed fraction as a function of the temperature in dipolar gases (left)
and density profile of dipolar condensates (right). In the left plot, solid black line is the
ideal case of N = 2000 non interacting particles; the dipolar (chromium) and contact
gases with N = 2000 corresponds respectively to the black line with dots and the green
line. Red squares and crosses corresponds respectively to N = 300 ideal particles and
N = 300 dipolar (dysprosium) atoms. In the right plot, blue curves corresponds to
chromium, while black ones represents dysprosium. [50]

that holds for infinite systems with constant density.

What happens with DDI?

So far we have discussed the phenomenon of superfluidity in two-dimensional systems,
considering two extreme cases. On one side we have non interacting trapped gases,
in which BEC transition happens at TBEC given by Eq.1.27. On the other we saw
weakly interacting gases in infinite systems, where the BKT transition temperature
follows Eq.1.32. In the case of dipolar quantum gases, we expect that this latter
case will be modified from both the finite size of the system and the presence of
DDI. As we saw in Section 1.1 these are long range, anisotropic interactions which
are attractive when two dipoles are in head-to-tail configuration, and repulsive when
they are sitting side-by-side.

The effects of dipolar interaction on the BKT critical temperature have been in-
vestigated theoretically in [16,50]. In Fig. 1.14 (left) we can see the results of the
numerical simulation carried out in [50] for the condensed fraction as a function of
the temperature. Here we see that, with respect to non dipolar gases, the critical
temperature changes only slightly and the condensed fraction at a given temperature
changes at most by about 15%. This variations can be explained by observing
the density profile of the trapped gas below the critical temperature, reported in
Fig. 1.14 (right). Indeed, the repulsive part of DDI produces a strong depletion of
the condensate, therefore a lower density at the trap center.

Intuitively, the effect of the interactions is less important for larger systems. In
particular, this has been pointed out in [16], where the behavior of TBKT in dipolar
gases has been investigated changing the system size. The result of the numerical
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simulations shows that

TBKT (L) = TBKT (∞) + b

ln2 (L)
(1.33)

where b is a constant and L =
√
N , with N being the total number of particles. This

results shows how the critical temperature decreases for increasing L.
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Chapter 2

Design of a two dimensional
system

In this Chapter I will discuss how the idea of realizing a strongly dipolar superfluid in
two dimensions can be implemented starting from the experimental set-up operating
at the Dysprosium Laboratory of CNR-INO and LENS, in Pisa. The various
theoretical concepts I presented separately in Chapter 1, here are combined together
and translated into the experimental language. This will also require the introduction
of some additional technical concepts, related to the cooling and trapping methods
used in our experiment, that are the object of the first two sections of this Chapter.

2.1 Experimenting with dysprosium

As I briefly mentioned at the end of Section 1.1, our experiment is based on a
dipolar Bose-Einstein condensate of dysprosium. In its ground state the electronic
configuration is [Xe]10 6s2, leading to a state 5I8 with a total angular momentum
J = 8. Bosonic isotopes of dysprosium, as 162Dy used in our experiment, have zero
nuclear spin, hence do not have hyperfine structure. The level structure is sketched
in Fig. 2.1, where the two cooling transitions used in the experiment are highlighted.

The dysprosium machine used in our experiments is reported in Fig. 2.2. Dysprosium
melts at T = 1412 °C, therefore, to obtain a thermal gas we heat a dispenser filled
with solid dysprosium at T ∼ 1200 °C inside an oven, where the vapor tension is
high enough to produce a hot atomic beam. Atoms in this beam needs to be slowed
down in order to be captured by the magneto-optical trap (MOT) where the first
cooling step is performed. This is done with a Zeeman slower working with blue
light at 421 nm. This device exploits the radiation pressure force exerted by resonant
photons on the incoming atoms to slow them down from an initial speed of about
500 m/s to something around 10 m/s, using a custom magnetic field gradient to
compensate the atomic Doppler shift during the motion. The blue transition has
a broad natural linewidth of 32.3 MHz and is used also for the imaging system
and the transverse cooling. The latter helps to reduce the divergence of the hot
atomic beam at the oven exit. The slowed atoms are then loaded in the MOT,
situated in the main cell under ultra high vacuum (P < 10−10 mbar). Here the light
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Figure 2.1. Level structure of dysprosium together with the cooling transitions used in
the experiment.

at 626 nm is used in combination with a quadrupole magnetic field, to provide at
the same time cooling and confinement for the atoms. The lower bound in MOT
temperature is set by the minimum Doppler temperature which is proportional to
the natural width of the transition used, which is 136 kHz for the 626 nm transition.
This is the reason why we use red light, that having a much narrow width than
blue one, allow much lower temperatures of about 3.3 µK, despite of lower capture
velocities. The typical densities and temperatures of the system in the MOT are
about 1011 cm−3 with T ∼ 20 µK. At this point, dysprosium atoms are still hot
with respect to the temperature scales of Bose-Einstein condensation, and need to
transferred in purely optical traps for the evaporative cooling that brings the system
to quantum degeneracy. At the end of this cycle we end up with a BEC of about
40000 dysprosium atoms with a temperature around 10 nK. The critical temperature
for the condensation is 60 nK.

On the right panel of Fig. 2.2 we can see the scheme of the optical traps used in
the evaporation process. The final trap that holds the BEC during measurements
has the shape of an ellipsoid, with trap frequencies of νx = 20 Hz, νy = 50 Hz and
νz = 80 Hz along the three spatial dimensions. This elongated shape prevents the
collapse of the system due to magnetostriction [44], limiting the attractive part of
dipolar interaction.

In the next section I will focus on the basic theory of optical dipole traps, summariz-
ing the key aspects that we need to keep in mind for the design of the new experiment.

2.2 Optical Dipole Traps and Lattices

Optical dipole traps are conservative traps that use the Stark shift of atomic levels,
induced by a laser electric field, as an effective potential able to confine the atomic
motion. In the simple picture of an atom with only two levels separated by an energy
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Figure 2.2. The dysprosium machine (left) and a detail showing the optical dipole traps
used in our experiment (right).

h̄ω0, the Stark shift for a non-resonant laser field is given by

∆ ≈
Ω2
eg

4δ (2.1)

where Ωeg = deg ·E/h̄ is the Rabi frequency for the g ↔ e transition and δ = ω−ω0
is the laser detuning [13]. Since Ωeg ∝ E, the Stark shift is proportional to the laser
intensity profile, that is well described by Eq. A.13 in the case of a focused laser
beam. In particular for red-detuned light (δ < 0) the Stark shift is negative and has a
minimum at the intensity peak. Atoms moving away from this minimum experience
an increasing effective potential, that can be well described as an harmonic well
potential [21]

Udip (r, z) = −U0 + 1
2m

(
ω2
rr

2 + ω2
zz

2
)

(2.2)

where U0 is the trap depth and ωr,z are the trap frequencies given by

ω2
r = 4U0

mw2
0

; ω2
z = 2U0

mz2
R

. (2.3)

This trapping mechanism, pioneered by the Nobel laureate A. Ashkin [3], quickly
leaked out of the field of atomic physics finding many fundamental application in
biology, where the so-called optical tweezers (single focused beams) are used to trap
particles up to 10 µm in size. In this case, as well as in the case of multi-level atoms
like Dy, it is more convenient to think at the energy shift ∆ as the polarization
energy of the particle in the non-resonant field with amplitude E

U = −1
4α (ω) E2 . (2.4)

Here α is the dynamical polarizability of the particle that, assuming a linear response,
expresses the proportionality between the mean induced dipole moment and the
oscillating field: 〈d (t)〉t = α (ω) E cosωt. Very far from resonances, the polarizability
α takes a constant value and the energy in Eq. 2.4 takes the form of the effective
potential in Eq. 2.2, with trap depth

U0 = αI0
2ε0c

(2.5)
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where I0 = 2P/πw2
0 is the peak intensity of the laser beam.

The use of a single beam provides a trapped gas elongated on the beam propagation
axis as shown in Fig.2.3 (left). To provide a three-dimensional optical confinement a
second laser beam with different polarization (preventing interference effects) could
be used to realize a so-called crossed-beam configuration Fig.2.3 (right). Here the
trap frequencies along x,y and z directions defines the aspect ratio of the trap: in
isotropic spherical traps we have ωx = ωy = ωz, but it is also possible to work in
anisotropic traps by changing the beam relative inclinations and intensities. For
example we have cigar-shaped geometries when ωx = ωy = ωr and ωr � ωz, on the
other hand when ωz � ωr the trap resembles a disk or, as it is more commonly
described, a pancake. Intuitively pushing the ratio ωr/ωz to extreme values we can
reach quasi-1D or quasi-2D geometries respectively in the cigar and pancake cases.

When two coherent beams are superimposed the optical potential follows the inter-
ference pattern of light intensity, giving rise to a periodic effective potential called
optical lattice [21]. Considering two counterpropagating beams with electric fields
E1, E2 with equal amplitude E and wavelength λ, the total electric field is given by

E = 4êE cos (kz − ωt) (2.6)

Using Eq. 2.4 we obtain a lattice potential 4 times deeper than the single beam
one, with periodicity λ/2 along the propagation direction of the beams z given by
the interference term proportional to cos2 (kz). Each lattice site is described by a
potential with the same form of Eq. 2.2 with U0 → U` = 4U0, and trap frequencies
given by [36]

ω2
r = 4U`

mw2
0

; ω2
z = 2U`

m (d`/π)2 (2.7)

where d` is the lattice spacing. This can be tuned by changing the relative inclination
of the beams θ and can be derived geometrically as

d` = λ

2 sin (θ/2) (2.8)

that reduces to λ/2 in the counterpropagating configuration (θ = π). This is typically
done using a mirror back reflecting the incoming beam which is then refocused on the
atomic sample. Adding back-reflected beams along other spatial dimension allows
build also 2D or 3D lattices. The 1D case is showed in Fig. 2.3 (center).

The lattice depth U` must be compared to the recoil energy Erec associated to
absorption of a photon with momentum h̄k = h̄π/d` from the lattice

Erec = h̄2π2

2md2
`

. (2.9)

In practice we use the dimensionless parameter s = U`/Erec to conveniently measure
the lattice depth and, eventually, the tunneling between adjacent sites. Indeed, the
tunneling energy in units of Erec given in [36] is

J

Erec
= 4√

π
s

3
4 exp

(
−2
√
s
)

(2.10)
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Figure 2.3. Light intensity profiles for different dipole traps calculated in [21]. From left to
right: a single beam dipole trap, a one-dimensional optical lattice and crossed beam trap

and exponentially decay for growing s.

Heating rates in optical traps

Atoms trapped in optical lattices or dipole traps are dramatically sensible to the noise
in both light intensity and beam position, which respectively produce fluctuations of
the trap frequencies and trap dislocations. These noise sources provide an heating of
the system leading to atom losses, hence to finite trapping times. The heating rates
in far-detuned optical lattices can be studied using the time-dependent perturbation
theory on the perturbed harmonic oscillator hamiltonian

Hγ = p2

2M + 1
2Mω2

trap [1 + γ (t)]x2 (2.11)

where γ (t) = (I (t)− I0) /I0 are the intensity fluctuations. In the same way, the
trap shaking can be taken into account considering fluctuations χ (t) of the atom
position, hence the hamiltonian

Hχ = p2

2M + 1
2Mω2

trap [x− χ (t)]2 . (2.12)

To obtain the heating rates we must first calculate the average transition rate between
two harmonic oscillator energy states, |n〉 and |m〉, with the perturbation H′ in a
time interval T , given by

Rn→m = 1
T

∣∣∣∣∣− i
h̄

∫ T

0
dt′H′n,m

(
t′
)

eiωmnt′

∣∣∣∣∣
2

. (2.13)

The mean absorbed energy in the process is the heating rate, defined as

〈Ė〉 =
∑
n,m

P (n) h̄ωmnRn→m (2.14)

where we have to sum over all the |m〉 and |n〉 states, with P (n) being the probability
to populate the initial state. These calculations are carried out in [43] for both Hγ
and Hχ. In the first case the heating rate is directly proportional to the average
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system energy, 〈Ė〉 = (τγ)−1 〈E〉, leading to an exponentially increasing heating rate
with time constant

〈Ė〉
〈E〉

= (τγ)−1 = π2ν2
trapSγ (2νtrap) (2.15)

where Sγ is the one-sided power spectrum of the light intensity noise. Considering
the trap shaking, the heating rate does not depend on energy (i.e. it is constant in
time), nevertheless it is possible to define a time scale dividing 〈Ė〉 for the energy of
the zero point motion of the trapped atoms, obtaining

〈Ė〉
〈E0〉

= (τχ)−1 = π2ν2
trap

Sχ (νtrap)
〈x2〉

(2.16)

where 〈x2〉 is the mean squared position of a trapped atom and Sχ is the power
spectrum associated to the fluctuations χ (t).

2.3 Designing the system
The idea behind this work resides in the possibility to use a one-dimensional optical
lattice to obtain a 2D degenerate gas of Dy2 weakly bound magnetic molecules,
starting from the 3D Dy BEC described in section 2.1. The problem addressed
in this section, constituting one of the results of this thesis, is to simulate this
strongly dipolar superfluid, taking into account all the different physical phenomena
explained in Chapter 1. From the theoretical aspects presented in Section 1.2, we
understood that a superfluid made of strongly dipolar molecules can be stable only
in two dimensions where inelastic collisions at short range are suppressed, and their
rates scale as

β2D = 213h̄
m

(2Ec
h̄ωz

)2
exp

[
−2
(
add
`z

) 2
5
]
. (2.17)

Furthermore, in Section 1.3 we also saw how, in two dimension, the physics underlying
superfluidity is described by the BKT theory. Indeed, to reach the superfluid regime,
we need temperatures lower than the BKT critical temperature

TBKT =
(

h2

2πmkB

)
n

ln (C/g̃) . (2.18)

Low temperatures are also required to further suppress molecules losses, since T
enters also in the Eq. 2.17 through Ec ∼ kBT , and to maximize their production
efficiency, increasing the phase space density.

This picture gets more complicated when we consider the role of the density. Indeed,
TBKT is directly proportional to the gas density n, as are the loss rates, given by
βn. Therefore, the lifetime of the molecules is inversely proportional to the density.
For these reasons, one has to carefully choose a density high enough to have Tc
compatible with temperatures already demonstrated in one-dimensional lattices [7],
but low enough to have lifetimes long enough (typically 100 ms) to allow performing
experiments on the system. Intuitively, density strongly depends on the trapping
frequencies of the optical lattice we will use to realize the two-dimensional system,
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therefore the choice ultimately concerns the lattice parameters we introduced in
Section 2.1.

In order to build our model we will consider first the BKT critical temperature.
Given an interaction strength g̃ and the two-dimensional density n of the gas, Tc
changes according to Eq. 2.18. As we saw in Chapter 1, this expression is valid for
infinite systems with only contact interactions, nevertheless minor corrections due
to DDIs are expected [50]. Furthermore, since the finite size of the system typically
increases the critical temperature [16], estimations using Eq. 2.18 can be thought as
a lower bound for the real system.

A rough estimation of the two-dimensional density can be given neglecting the kinetic
energy with respect to the interactions in the time independent Gross-Pitaevskii
equation, using the so-called Thomas-Fermi approximation

n (r) = |φ (r)|2 = µ− Uho (r)
g

, (2.19)

where µ is the chemical potential, g = h̄2

m g̃ is the interaction coupling constant and
Uho is the radial trapping potential

Uho (r) = 1
2mωrr

2 . (2.20)

Note that m could be either the mass of Dy atoms or Dy2 molecules. From Eq. 2.19
we see that at the trap center (Uho = 0) the density is n0 = µ/g, where the chemical
potential can be calculated requiring a fixed particle number N

N = 2π
∫ RT F

0
n (r) r dr = πR2

TF

2b µ (2.21)

Here the upper bound of the integration interval is the Thomas-Fermi radius, defined
as the distance at which the system density vanishes, R2

TF = 2µ
mω2

r
.

Since we expect the most part of condensed atoms sitting within the trap center, we
can reasonably take for our calculations a constant density n ≈ n0

n ≈
√
mω2

rN

πg
(2.22)

which obviously depends on the radial trap frequency and the total atom number of
particles in each lattice site.

To start putting some numbers in our model, let us assume w0 ∼ 200 µm for the
waist of the lattice beam with a power P = 2 W. These are reasonable values which
will be then discussed at the end of this chapter. With λ = 1064 nm, Eq. 2.7 gives
ωr = 2π × 26 Hz and ωz = 2π × 22 kHz for both atoms and molecules. Indeed,
molecules have twice the polarizability of single atoms and they feel a lattice twice
as deep, nevertheless, having twice the mass, the harmonic oscillator frequencies
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Figure 2.4. Tunneling rate as a function of the lattice depth s. The blue and orange
dots respectively corresponds to Dy atoms and Dy2 molecules trapped in a lattice with
ωr = 2π × 26 Hz and ωz = 2π × 22 kHz.

are the same of the atomic case. For similar reasons, molecules have half the recoil
energy of Eq. 2.9 of atoms, therefore, as reported in Fig. 2.4, their tunneling energy
is reduced by a factor 4. Note that, in order to go as closer as possible to a true 2D
system, we want J → 0. Indeed, in the presence of this relatively strong confinement
along the lattice direction z, the tunneling of both atoms and molecules between
adjacent lattice sites (or layers) can be neglected. In this configuration each layer
has to be considered as an isolated two-dimensional system with N particles. This
number, that enters directly in Eq. 2.19 can be roughly estimated geometrically.
Indeed, with a typical number of atoms NTOT = 3×104 in the 3D trap actually used
in our experiments and assuming the size of the cloud along the lattice direction
being ∼ 5 µm, loading a lattice with d` = 0.532 µm means filling about 10 layers with
N = 3000 atoms per layer. With unity atoms-to-molecules conversion efficiency, we
will have N/2 molecules per layer, corresponding to a density of about 2× 109 cm−2.

In Figs. 2.5 and 2.6 we can see the calculated values of Tc using Eqs. 1.32 and the
parameters discussed above. This analysis gives a critical temperature of about
50 nK for atoms and 30 nK for molecules. As pointed out at the beginning of this
section, these temperatures are then slightly lowered by dipolar interactions so, in
order to obtain a large enough condensed fraction, we can set a target temperature
around Tc/2 in the molecular case. This brings us to a target temperature of about
TT = 10 nK corresponding to a density of nT = 6.5× 108 cm−2. At this level it is
important to note that, by changing ωz, i.e. the incident power of the lattice beam,
we can modify the interaction strength g̃, but this changes TBKT only slightly. On
the other hand, the dependence of TBKT on density or N , which actually depend on
ωr, is much steeper.

Having set the target density nT for the molecular system, we now consider its
stability against the three body recombination processes described in Section 1.2.
The first thing we want to check is the consistency of the Quantum Threshold model
used in [41], calculating β for Dy2 in the three-dimensional case. Using Eq. 1.21,
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Figure 2.5. BKT critical temperature, calculated using Eq. 1.32, plotted as function of
the interaction strength g̃ (left) and the two-dimensional density n (right). Blue and
orange curves respectively correspond to 3000 162Dy atoms and 1500 162Dy2 molecules.
In the left plot, densities (calculated with Eq. 2.22) are 1.7× 109 cm−2 for atoms and
2.0 × 109 cm−2 for molecules. In the right plot, g̃ given by Eq. 1.29 is 0.60 for atoms
and 0.84 for molecules. The black dot in the second plot indicates the density at which
TBKT reaches 10 nK in the molecular case.
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Figure 2.6. BKT critical temperature, calculated using Eq. 1.32, plotted as function of
the particle number N (left) and the trap frequency ωz (right). Blue and orange curves
respectively correspond to 162Dy atoms g̃ = 0.60 and 162Dy2 molecules g̃ = 0.84. In the
left plot, the vertical trap frequency is 22 kHz. In the right plot, the temperatures are
calculated for 3000 atoms and 1500 molecules.



32 2. Design of a two dimensional system

0 20 40 60 80 100

10-9

10-8

10-7

10-6

10-5

10-4

ωz/2π [kHz]

β
[c
m
2
H
z]

0 20 40 60 80 100

1

10

100

1000

104

105

ωz/2π [kHz]

D
ec
ay
R
at
es

-
β
n
0
[H
z]

Figure 2.7. Loss rates as a function of the vertical trap frequency, calculated using the
quasi-2D model in Eq. 1.22 (gray) and the 2D model in Eq. 2.17 (red). The gray vertical
line correspond to the value of ωz which gives `z ∼ add, which separates the validity
interval (solid lines) of the two models. With our trap frequency, marked with dots
on both curves, we obtain β2d = 1.25× 10−8 cm2Hz. With n0 = nT ∼ 6.5× 108 cm−2

this gives a loss rate of ∼ 8 Hz. In these calculations C6 = 1890 a.u. [29], the molecular
magnetic moment is µ (Dy2) = 2µ (Dy)− 0.13µB [33] and Ec/kB = 10 nK.

we can estimate a β3D = 6.22× 10−10 cm3 Hz where, as expected the dipolar term
weighs about ten times the van der Waals one, confirming that we are deeply in
the dipolar collision regime. The loss rate in this case is about β3D nT ∼ 10 kHz,
therefore the molecular system in three-dimensions has a lifetime of about 0.1 ms
which is definitely too short to perform any type of experiment.

To estimate the loss rate in two-dimension we can use both the re-scaled 3D model
(quasi-2D) in Eq. 1.22 or the 2D model in Eq. 2.17 described in [49], depending on
the oscillator length `z we choose for the two-dimensional trap. While the quasi-2D
model is valid for add � `z, the 2D model starts giving a good approximation of
the actual rate for add ∼ `z [41], which corresponds to our case, since add/`z ∼ 1.5
for Dy2 molecules. The results of our calculations are reported in Fig.2.7, where
the vertical line marks the trapping frequency ω̃z where the 2D model start to
be effectively valid. Differently from the quasi-2D model, in which β grows with
the square root of ωz, in the 2D we can see a trong suppression in loss rates, for
increasing trap frequencies. With our values of ωz we obtain a β2D nT ∼ 8 Hz, or
equivalently a lifetime of about 125 ms. This timescale is now acceptable, because it
is comparable with the duration of typical experiments in quantum gases, like the
one investigating the supersolid properties of dysprosium performed in our lab [47],
where the supersolid state survives for about 100 ms.

At this point, it is both interesting and useful to compare the results of our simulations
with the experimental values obtained in [17], where the loss rates of weakly bound
Er2 molecules have been investigated. Erbium has about the same atomic mass of
dysprosium, but a half its dipolar length, due to a weaker magnetic dipole moment
µ (Er) ≈ 7/10 µ (Dy). Using Eq. 2.17 we find

β2D (Er2)
β2D (Dy2) ∼

e−2

e−2(2)2/5 ≈ 2 (2.23)
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Figure 2.8. Loss rates as a function of the temperature. The red line corresponds to
the previous calculations carried out for Dy2 in a trap with νz = 22 kHz. The red
dot is equivalent to the one in Fig. 2.7. The black line corresponds to Dy2 confined
in a trap with νz = 69 kHz, which has been calculated using Eq. 2.7 with the same
w0 = 200 µm and P = 10W . The green line corresponds to Er2 confined with the same
vertical trap frequency of [17] νz = 31 kHz. Red and black dots are at Ec/kB = 10 nK,
giving respectively a lifetime of ∼ 125 ms and ∼ 0.7 s. The green dot is instead at
Ec/kB = 300 nK, where the lifetime are of the order of 10 ms. In the dysprosium
case (red and black) density is n = 6.5 × 108 cm−2, while in erbium (green) we used
n = 3.8× 107 cm−2.

therefore, β2D for Er2 is about twice the one calculated in our case, meaning that the
lifetime is halved. On the other hand, in the experiment with erbium, the molecular
system has a density of 3.8× 107 cm−2, which is about 20 times smaller than the
one used in our calculations. Since the loss rate is linear in density this gives an
effective improvement of the system lifetime of the same factor. Nevertheless, the
system temperature plays a much important role. As we said, in dipolar regime
van der Waals interaction slightly affect the loss rates, which depends only from
the attractive part of DDI. When the latter is suppressed, as in 2D, the system is
mainly repulsive but thermal effects can still bring molecules close to each other,
producing losses. This effect enters Eq. 2.17 through E2

c ∼ (kBT )2. The temperature
of the molecular sample of erbium is around 300 nK, about 30 times our target
temperature. This means a loss rate about 1000 times greater in the Er2 case. The
overall effect of add, density and temperature gives a lifetime of about 20 ms for
the experiment reported in [17]. Based on this comparison, we clearly see how
weakly bound molecules of dysprosium at very low temperatures represent a better
candidate to explore the strongly dipolar regime.

To sum up the results of our calculations, we have identified a promising set of
parameters for the realization of a strongly dipolar superfluid in the quasi-2D layers
of an optical lattice. The specific parameters we have found are the following:

• temperature T = 10 nK;

• density n = 6.5× 108 cm−2;

• vertical frequency ωz = 2π × 22 kHz;
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• radial frequency ωr = 2π × 26 Hz;

• lifetime (βn)−1 = 125 ms.

These parameters can be realistically obtained in the current experimental setup.
Nevertheless, it is useful to consider how possible slight variations of the parameters
would change the results. Let us consider once again the system density, which is
maybe the most problematic estimate given, since it depends from the number of
atoms per layer. Indeed, this number has been obtained from geometrical arguments
instead of a numerical simulation of the real ground state density of the gas loaded
in the lattice (which is outside the scope of this work). Moreover, nT depends on
the molecules association efficiency, which we assumed to be unity. If the density of
the system is smaller than nT we will have a lower critical temperature. This effect
can be compensated focalizing the beam on a smaller waist, effectively increasing
ωr and, therefore, the two-dimensional density. On the other hand, if the latter
is larger than nT , we have to deal with more losses. In this case, we can increase
ωz, hence the confinement along the lattice, using more laser power. Note that
in our estimates, we have chosen P = 2 W, but this can be realistically increased
to at least P = 10 W, using a dedicated laser source. Since TBKT has a smooth
dependence on ωz, increasing the confinement modifies only slightly the critical
temperature, affecting only the loss rates. Therefore it is also possible to increase
both the density (reducing the lattice beam waist) and ωz (increasing P ) to get
larger critical temperatures with a minimal cost in losses. This approach can be
used if the critical temperature of the real system is below the target temperature.

Another effect we did not consider in our model is the heating of the system during
the adiabatic compression needed to load the lattice. Starting from the three-
dimensional optical trap with a trap frequency along z of about 100 Hz, our system
is then compressed in a single lattice site, where ωz is around 10 kHz. Adiabatic
compression of a thermal gas in general produces an increase of temperature. Indeed,
adiabaticity implies that the particles remain in their initial quantum states, while
the energy of the states changes due to the compression. Considering the population
pi of the i-th level of the harmonic oscillator along z, adiabaticity implies

pi = exp
[
ih̄ωz
kBT

]
= const . (2.24)

Therefore if we change ωz by a factor of 100, also the temperature along z needs
to change accordingly, keeping the population pi constant. For the equipartition
theorem, this heating redistributes equally in the three spatial dimensions once the
system thermalizes. This gives an actual increase of the gas temperature by a factor
30. Therefore, it is clear that one must either start from an ultracold BEC with
temperature well below 10 nK, or provide cooling during the compression. This
last solution can be implemented using a magnetic field gradient that lowers the
trapping potential along r, letting go hot atoms out of the lattice: this however has
a cost in terms of atom number. We will design the specific procedure to follow
during the preparation of the experiment. One important note is that temperatures
around 10 nK are routinely reached in tight optical lattices, even in 3D lattices [7],
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so it should be possible to reach those levels of temperatures also in our planned
experiment.

As we said in Section 2.2, another source of heating that needs to be considered is
given by the light intensity noise of the lattice beams. We expect this effect to be
small, if compared to losses due to collisions or non adiabatic loading of the lattice.
Therefore, starting from Eq. 2.15, we can require lifetimes longer than 1 s, obtaining

Sγ (2νtrap) <
1

πν2
trap

. (2.25)

Assuming a constant power spectrum Sγ (ν) ∼ Sγ (2νtrap), the fractional rms inten-
sity noise over a bandwidth νBW is given by

γ2
rms (νBW ) =

∫ νBW

0
dνSγ (ν) = νBWSγ (2νtrap) . (2.26)

The condition in Eq. 2.25, expressed in terms of the fractional RMS intensity noise,
gives γrms < 2× 10−3 with our trap frequency.
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Chapter 3

Realization of a one dimensional
optical lattice

This Chapter constitutes the experimental part of my thesis, which I carried out at
the Dysprosium Laboratory of CNR-INO and LENS. Here I present the building
process of a new laser source which I used to realize a one-dimensional optical lattice
based on the specifications I discussed in Chapter 2. In the first sections I go through
the optical part of the laser set-up, following its building steps. In Section 3.4 I
describe how the power of the new source is stabilized together with the control
loop I realized for this task. The realization of the one-dimensional optical lattice is
described in Section 3.5.

3.1 Assembling a stable laser source

In Section 2.3 we have seen the design of strongly dipolar superfluid made of dyspro-
sium molecules, where we have highlighted the importance of the 2D confinement for
the stability of the system. In particular, we have found an optimal set of parameters
which gives a lifetime comparable with the one in current experiments, providing a
strong confinement along the polarization axis of the dipoles, with a trap frequency
ωz > 20 kHz. This can be achieved using a deep one-dimensional optical lattice,
where the trap frequency along the lattice direction (see Eq. 2.7) depends essentially
on power, at fixed lattice spacing. For this reason, building a laser source with high
power is really important.

The present section summarizes the assembling process of this laser source, which
I realized personally for Dysprosium Laboratory. Before jumping to the technical
aspects and start to follow the building steps in chronological order, I would like to
present the main idea behind this design, focusing on its general features.

This laser source has a wavelength of 1064 nm, far from the dysprosium resonances,
and a peak output power of about 15 W, which is enough to build an optical lattice
with λ/2 spacing and ωz ∼ 70 kHz (corresponding to a power of 10 W focused on
200 µm). As sketched in Fig. 3.1, the set-up for this laser can be divided in three main
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Figure 3.1. Block diagram of the laser source set-up.

sections. The laser seed and a fiber amplifier constitute a so-called Master Oscillator
Power Amplifier (MOPA) whose power is then stabilized by an appropriate control
loop. The seed is a Mephisto-S ultra-narrow linewidth laser with a wavelength of
1064 nm and about 200 mW of output power. This is coupled with a NUA-1064-PD-
0015 double stage fiber amplifier that generates an output power from roughly 1.5 W
up to 15 W, controllable through the amplification factor of the second stage. Once
the output power level has been chosen, power stabilization is achieved using a PI con-
trol loop with feedback provided by a single pass Acousto-Optical Modulator (AOM).

One of the main advantages in using a fiber amplifier resides in its compactness,
that allows us to mount it directly on top of the seed, saving lots of precious space
on the optical table. The resulting optical scheme of the MOPA is sketched in 3.2.
We have built the seed level on a breadboard, on top of which we have placed the
amplifier in direct contact with its cold plate (water cooled). Seed light is injected
in the amplifier through a single mode optical fiber, properly coupled using a single
lens. At the output, the amplifier has its own fiber (roughly 1 m long) that ends
with an optical isolator clamped to the main optical table. Here sits the last section
of the set-up, as sketched in Fig. 3.3. The first diffraction order from the AOM is
sampled using a combination of two polarizing beam splitters (PBS1 and PBS2) and
focused on a photodiode. To achieve power stabilization, we used a PI controller
that compares the photodiode voltage with a reference value, producing an error
signal that feeds into the AOM driver varying its diffraction efficiency, hence the
power on the first diffraction order.

This mechanism is used both to control the power during the adiabatic loading of
the lattice from the starting three-dimensional optical trap in which the dysrposium
BEC is held, and to prevent the heating effects due to intensity noise.

3.2 Seed Laser

The system seed is a compact Nd:YAG based laser with a measured output power
Pseed of about 230 mW. The outgoing beam is astigmatic and elliptical, with w0x/w0y
of about 1.35, and quite divergent. For this reason, to avoid vignetting effects we
put the optical isolator (see bottom panel in Fig. 3.2) directly in front of the laser
head. The isolator has an extinction ratio larger than 95% and transmits about 80%
of the input power. Therefore the power P0 we need to couple into the optical fiber



3.2 Seed Laser 39

M1

L1

Fiber
Collimator

FIBER AMPLIFIER

COOLING PLATE

Breadboard

M2

Optical
Isolator

SEED
Mephisto S

Seed Level

300

45
0

35
0

25
0

10
0
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is around 190 mW. After the isolator, a couple of mirrors allow to adjust the beam
height and inclination with respect to the optical table.

A summary of the main features of the seed is given in Tab. 3.1. The details about
how these parameters are defined can be found in Appendix A, together with a
brief review about gaussian beams propagation. The description of the experimental
measures for the beam analysis is given in the next paragraph.

Analysis of the beam profile

In order to have high efficiencies in coupling seed light with the input fiber of the
amplifier, we first need to characterize the seed beam and choose the right focal
length for the lens L1 (see Fig. 3.2). To obtain the beam waist and its location we
captured the beam intensity profile with a CCD camera at different positions along
the optical axis of the system. As one can see in Fig. 3.4, each image exhibits a
two-dimensional gaussian profile, well described by Eq. A.19. However, to lighten
the complexity of the non-linear model used to fit the images, we performed two
one-dimensional regressions along the vertical and horizontal directions, using

g(x) = A exp
(
−2 (x− x0)2

w2

)
+B (3.1)

where A, x0 and B are respectively the amplitude, the position of the intensity
maximum and an additive constant, while w is the spot size of the beam measured
in pixels. To reduce the effects of noise and multiple reflections on the camera sensor,
data are previously binned in both directions. For a given direction, for example the
vertical one, only the central slice of the image is considered and integrated along
the horizontal direction to obtain a one-dimensional data set, that can be fitted with
Eq. 3.1.

This procedure is repeated for all the images corresponding to different positions
along the beam propagation axis, storing the values of w and converting them in
µm using the following relation:

w [ µm] = w [ px]× bin size [ px]× pixel size [ µm] . (3.2)

Table 3.1. Seed laser features

wavelength λ 1064 nm

output power before OI Pseed 230 ± 10 mW
after OI P0 190 ± 10 mW

waist size horizontal w0x 179 ± 20 µm
vertical w0y 133 ± 16 µm

waist location inside laser head z0 −60 ± 10 mm

divergence θ ∼ 2 mRad

quality factor M2 ∼ 1.2
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Figure 3.4. Typical images of the beam intensity profile and gaussian fit. From left to
right: original image captured on CCD camera, binned image (bin size is 15× 15) and
gaussian fits along y and x direction.
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Figure 3.5. Spot size in the horizontal direction as a function of the position along the
optical axis. Horizontal axis is referenced to the position of the first measured spot size,
which lies ∼ 60 cm far from the waist location. For this reason the best fit curve (red) is
essentially a straight line.

Note that, the CCD camera used for these measures (Thorlabs DCC1545M) has
1280× 1024 pixels with a pixel size of 5.2 µm, hence a minimum diameter of about
5.3 mm. This puts a limit on the maximum spot size that can be measured, without
vignetting effects due to beam divergence. Furthermore, we need to filter out most
of the power, avoiding to overexpose the sensor during measurements. This can be
done putting directly after the mirror M2 a λ/2 plate with a polarizing beam splitter
that transmits only 20% of P0. If needed, additional filtering can be provided using
reflective neutral density filters, mounted on the sensor.

The measured spot size as a function of the position is described by Eq. A.8. To set
a suitable fit function, we combine the latter with the definition A.6 of the Rayleigh
length, obtaining:

w (z) =
[
w2

0 + (z − z0)2 λ2

πw2
0

]1/2

(3.3)

where w0 is the beam waist.

The results for both horizontal and vertical waists are summarized in Tab. 3.1,
where z0 is the mean value of the fit results z0x and z0y, referenced to the laser
head. It is important to note that uncertainties on the waist locations obtained
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from the fitting method explained above are quite large (> 10%) due to the fact
that we are measuring at z � zR. To have a better estimation of z0, we can place a
positive lens with focal length f at a distance d ∼ f from the presumed waist loca-
tion, obtaining a nearly collimated beam: varying d and observing what happens to
the beam divergence, one can find a range for the waist location with higher accuracy.

One aspect of this measurement technique is the lower accuracy along the horizontal
direction, that is clearly visible in Fig. 3.4. This is due to the image broadening
eventually introduced when the camera is tilted with respect to the propagation
axis. For this reason, both the beam astigmatism and roundness could be slightly
overestimated.

Coupling Laser into a single mode fiber

To couple the seed light into the amplifier we use a single mode polarization main-
taining fiber (Thorlabs P3-1064PM-FC) optimized for 1064 nm. Using a suitable
collimator (OZ Optics HPUCO-23-1064-P-6.2AS) with an aspheric lens with 6.2 mm
focal length, the seed light can be coupled into the fiber core, with a diameter of
about 5.5 µm. The fiber has a mode field diameter slightly larger than its core, of
about 6.6 µm, and a numerical aperture of 0.12.

Together with the seed, also the mode accepted by the fiber has to be analyzed in
order to adapt the first to the second one. An intuitive method to do so, as sketched
in Fig. 3.6, is to couple the seed light into the output port of the fiber (which, in
the actual design, injects light into the amplifier) and analyze the beam coming
out from the input port of the fiber (which is the one we want to couple in the
first place). In this case the coupling efficiency is very low, therefore there is no
need to dim the light using a PBS, and only the neutral density filters are used.
Results of the beam analysis are summarized in Tab. 3.2. Thanks to the collimator
on the output fiber the mode is only slightly divergent, but still astigmatic and
elliptical, with a ratio between horizontal and vertical waists of 1.32 (substantially
identical to the value we found for the input beam). Since fibers do not correct
this aberration, the only option would be to use a suitable cylindrical lens before
L1, but this is not crucial to have a working MOPA, as we will see in the next section.

At this level, we are just interested in achieving the correct waist wf and divergence

Table 3.2. Fiber features

waist size horizontal w0xf 528± 34 µm
vertical w0yf 702± 22 µm

waist location horizontal z0xf 1.1± 0.5 m
vertical z0yf 1.3± 0.1 m

spot size on collimator wf ∼ 850 µm

divergence after collimator θf ∼ 0.4 mRad
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Figure 3.6. Fiber configuration for the input fiber beam analysis (not-to-scale). The
output fiber is plugged into a focusing lens that allows coupling with seed light.

θf of the laser beam on the fiber collimator, to optimize the coupling efficiency.
These two quantities can be calculated starting with values in Tab. 3.2, and using
Eq. 3.3 to find wx and wy exactly on the collimator surface, that lies 16.2 cm from
the first position of the camera. To have a good estimation of wf we then average the
calculated values. Now, the mode matching problem consists in choosing a suitable
lens that transforms ws of the seed in wf over a total length d1 + d2, respectively
separating the lens from each waist location. This problem can be solved using the
transfer matrix formalism reviewed in Appendix A, and, in particular the following
relations:

d1 = f ± ws
wf

√
f2 − f̃2

d2 = f ± wf
ws

√
f2 − f̃2

(3.4)

with the quantity f̃ = (π/λ)wswf setting a lower limit for the focal length of the
beam. If instead, we set d2 = 0 choosing to put the optical fiber directly after the
lens, we have an equation for the optimal focal length fopt

fopt = π

λ
w2
f

√√√√ w2
0

w2
f − w2

0
. (3.5)

With our parameters we obtain a fopt of 38 cm at a distance d1 of 40 cm, and a
focal length lower limit f̃ of about 37.6 cm. This suggests to choose a 40 cm focal
length for the lens L1, which unfortunately gives a total path d1 + d2 ∼ 1.60 m that
exceeds the breadboard dimensions. Longer focal lengths will lead in general to
longer total paths, making a single lens exact mode matching impossible, without a
custom lens. Nevertheless, a compromise can be found looking for a configuration in
which the beam has more or less the same wf , but is slightly convergent, with θ not
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significantly different from θf .

The solution we adopted for this design exploits a lens with f = 35 cm, that couples
light into the fiber with an efficiency ≤ 65%. This means we have an injected power
into the fiber amplifier of Pin ∼ 120 mW, well above the minimum power accepted by
this instrument. However, the coupling efficiency remains curiously low. To explain
why, we analyzed the fiber mode coming out from the output fiber, discovering
abnormalities in the modal shape suggesting a damage on the fiber tip. In Fig. 3.7,
we can clearly see that, while the input fiber tip shows a nice TEM00 mode, the
same does not happen for the output one. The origin of the damage might be a
strong back-reflection from the fiber amplifier. This is a known problem in this
type of amplifiers, which indeed have a protection circuit that switches them off if
the back-reflection is too strong. So, in principle there should not be any power
buildup at the fiber tip. Nevertheless, it may happen that before the protection
circuit enters in action, some power buildup takes place, damaging the fiber. As a
matter of fact, the achieved coupling was good enough to operate the amplifier, so
we did not explore the phenomenon further.

3.3 Fiber Amplifier

The NUA-1064-PD-0015 is a fiber amplifier based on rare-earth-doped fibers acting
in the same time as waveguide and active medium of the system. The typical
dopants we can find in the fiber cores of such amplifiers are trivalent ions, such as
Er3+, Yb3+ or Nd3+, depending on the lasing wavelength range requested. Our
amplifier uses Ytterbium Doped Fibers (YDF), which in fact have an emission range
of 1.0− 1.1 µm. The population inversion for Yb3+ atoms involves just two energy
levels: 2F7/2 (ground) and 2F5/2 (excited). This is possible because the crystal
electric field produced by the host glass of the fiber core splits each one of those
two levels in a Stark manifold, where all the sub-levels are coupled by non-radiative
processes. When some laser pump excites Yb3+ atoms, they end up in the higher
sub-levels of the excited state manifold. From here, they can quickly thermalize to
the lower sub-level which is (thanks to the energy gap between 2F7/2 and 2F5/2) a

Figure 3.7. Intensity profile captured on the CCD camera for the input fiber tip (left)
and the output one (right). The latter exhibits a non-gaussian profile with a ring of
scattered light around a central spot, suggesting a damage on the fiber tip.
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Figure 3.8. Basic scheme of a two stage fiber amplifier. The voltage signals VDC , VT and
V2 are respectively the supply voltage of the amplifier, the trigger of the first stage and
the power control of the second stage. Here the input fiber is same one sketched in
Fig. 3.6.

metastable state able to store population. Therefore, the lasing wavelength depends
on the Stark splitting, which can vary depending on the host glass composition,
dopants concentration and disorder.

As one can see in Fig. 3.8 this amplifier has two stages of YDFs, both with a gain
gamp = +20 dB. The first stage is triggered by a +5 V TTL signal labeled VT and
has a fixed output power, while the second stage can be adjusted by controlling the
power of the pump laser via an external analog DC voltage V2. When the voltage
V2 is 0 V there is the minimum power (the one given by the first stage), when V2 is
5 V, there is the maximum power. Multiple stages allow to have more control on the
output power of the amplifier and, more important, to increase the damage threshold
of the system. Indeed, one can use a double-clad fiber with large mode area for the
second stage, reducing damages due to high intensity withing the fiber. Another
important feature of this system is the optical isolator installed at the output, which
prevents back scattered light to be re-amplificated causing huge damages to the
doped fibers together with the seed.

In order to work properly, the system has to be powered by a DC voltage VDC = 24 V
and needs a minimum injected light power of 50 mW. In the previous section we
have seen that Pin is around 120 mW, which is enough to make the amplifier work
even with a non-optimal coupling between the input fiber and the first stage.

Characterization

We first want to measure the output power of the amplifier, testing its linearity
with the control voltage V2. Lacking of a power meter able to manage high powers,
it is useful to split the beam using the usual λ/2 plate with a PBS directly after
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Figure 3.9. Output power (W) as a function of the voltage V2. The last four points
are the calculated values of the total power, based on the power of the weak beam in
Fig. 3.10. The horizontal gray dashed line at ∼ 1.3 W corresponds to the power given
by the amplifier first stage. The vertical red line at 4.5 V marks the maximum working
voltage V2.

the amplifier isolator, having two beams with 97% (transmitted) and 3% (reflected)
of the total power. At high voltages (last four experimental points in Fig. 3.9) we
measure only the weak beam and calculate the power for the intense beam knowing
the previous percentages. In Fig. 3.9 we can see that the total output power is
linear with ∼ 3 W/V slope up to 4 V, where saturation effects begin to be visible. A
maximum output power of about 14.1 W is reached for V2 = 4.5 V, which represents
our working limit to avoid damaging the system (VMAX

2 is 5 V).

Another important characterization is once again the beam analysis. Due to high
power we need to change a bit our filtering scheme, to prevent damaging the camera
sensor and overexposing the images. As sketched in Fig. 3.10 we use a beam sampler
that, with the right polarization (selected by the first λ/2 plate), reflects about 4%
of the incoming light. On the reflected beam, we put our usual filtering set up and,
lastly, the CCD camera. The measuring and fitting procedure is the same used
in the previous sections. The results are summarized in Tab. 3.3, where the waist
locations are referenced to the first position of the camera, about 30 cm far from the
isolator head. The mode is basically circular and less divergent with respect to the
seed one: the ratio w0y/w0x is about 1.08, while θ is around 1 mRad. The beam is
again slightly astigmatic, with a distance between the horizontal and vertical waist
locations of about 5 cm. As we will see in the next section, this is not a problem for
stabilization purposes, since we are not going to focus the beam inside the AOM we
use as feedback in the control loop.

3.4 Output power stabilization

In the last section of this chapter I will focus on the power stabilization of the
laser source I have previously described, and on the possibility to control it over
time. Indeed, controlling the light intensity of a laser with high precision is very
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Figure 3.10. Sketch of the filtering scheme for the beam analysis.

Table 3.3. Ampliffied beam features

waist size horizontal w0x 201 ± 3 µm
vertical w0y 220 ± 3 µm

waist location horizontal z0x -37 ± 1 cm
vertical z0y -32 ± 1 cm

important when we use it to build atomic manipulation and trapping tools such
as optical lattices. For example, to ensure an high efficiency loading or unloading
of cold atoms in a lattice, the latter has to be adiabatically turned on and off; in
addition, when we want our sample to expand freely, we need to suddenly turn off
the trapping potentials. This operations happen on much shorter time scales with
respect to the system lifetime, therefore a very stable and precise control mechanism
is necessary. In principle, all we need to do is to control the light power coming out
our system relying on an external control signal that we can set at will. In general,
this requires the three basic bricks of control loops: a sensor to read the system
status; a controller that compares the sensor signal to a reference one generating
some sort of error value; and an actuator which provides the feedback we need to
minimize that error.

For this last task, we use an AOM, that basically is a TeO2 crystal able to diffract
light and shift its wavelength in a controllable way. The AOM uses sound waves
(controlled by an external radio-frequency driver) to spatially modulate the index
of refraction in the crystal, which acts like a diffraction grating. It is instructive
to note that, changing the amplitude or frequency of the sound wave has different
effects on the diffracted light. Passing through the space modulated medium, the
light undergoes constructive interference when the Bragg condition is met

2 sin (θm) = m
λ

nd
m = 0, ±1, ±2, . . . (3.6)

with θm and λ being the diffracted light angle and wavelength, n the index of
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Figure 3.11. Block diagram of the control loop used for the power stabilization of the laser
source.

refraction of the crystal, and d the spacing of the modulation, that is the wavelength
of the sound wave. Therefore, changing the latter will change θm, deflecting the
light for any m 6= 0. Furthermore, from a microscopic perspective, what happens
when the condition 3.6 is met, is that a phonon in the medium interacts with a
photon of the incoming beam changing its momentum, hence shifting its frequency.
On the other hand, changing the amplitude of the sound wave will only change the
peak intensity of the diffraction fringes, varying the efficiency with which the AOM
transfers light into a certain diffraction order. This is the effect we use in our control
scheme, outlined in Fig. 3.11.

As we will see, the AOM is aligned to maximize diffraction efficiency on the m = +1
order, that constitutes the output beam of the whole light source. Sensing is achieved
using a low-noise, fast silicon photodiode, exposed to ∼ 1% of the total power in the
beam. This can be done exploiting a very little misalignment between the two PBS
in Fig. 3.3, preventing damages to the photodiode even at maximum power. Going
back to Fig. 3.11, we see that the photodiode generates a voltage signal Vsense that
is then compared to a reference signal Vset by a PI controller. The latter, described
in detail in the last paragraph of this chapter, produces an output signal Vout that
is plugged into the AM bias input of the AOM driver. Closing the control loop, the
amplitude modulated radio-frequency of the driver directly controls the diffraction
efficiency of the AOM.

Single pass AOM alignment

Without using a lens to focus the beam into the modulator, we need to take special
care about the AOM alignment. The basic idea is to exploit the divergence of the
incoming beam, placing the AOM where the spot size is large enough to cover the
whole working surface of the modulator, without being vignetted by the entrance
hole. This will maximize the volume of crystal in which the sound wave meets
the light, optimizing the diffraction efficiency. Once placed, the modulator is then
slightly tilted to meet the 3.6 condition for m = +1. The power diffracted on this
order is maximized first by tuning the radio-frequency to an optimal value, and then
walking the beam with the help of a mirror, until an efficiency ≥ 85% is reached.
Our AOM works at ∼ 104 Mhz, near to its central frequency of 110 MHz. In this
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Figure 3.12. Image of the intensity profile on the AOM m = 0 order, exhibiting its typical
two-lobe structure.

Table 3.4. Diffracted beam features

waist size horizontal w0x 208 ± 4 µm
vertical w0y 222 ± 4 µm

waist location horizontal z0x -29 ± 1 cm
vertical z0y -24 ± 1 cm

configuration we have first checked that the diffraction efficiency does not depend
on the beam power, spanning through the whole range of V2. We also studied how
the efficiency changes with the polarization of the incoming beam, finding only a
weak dependence that gives ±1% maximum over 90°. If we observe the zero order
captured by the CCD camera in Fig. 3.12 at optimal alignment, we find a two lobe
structure with a central cut in the intensity profile that corresponds to the missing
light transferred by the modulator in the m = +1 order with an efficiency of ∼ 90%.

We also analyzed the diffracted beam profile with the same method used in the
previous sections, obtaining the results summarized in Tab. 3.4. The beam waists
and locations (referenced to the first position of the camera, 35 cm far from the
isolator) are compatible with the same quantities measured for the incoming beam,
suggesting that the AOM does not effectively changes the beam profile but slightly
shifts the position of the beam waist. Indeed, the diffracted beam remains a bit
elliptical and astigmatic (as the incoming beam) with waists positioned respectively
∼ 6 cm and ∼ 11 cm from the isolator head.

PI control loop

A PI controller is basically an analog circuit able to the generate an error signal and
process it to give an output that is proportional to the error itself and to its integral
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over time. In our case, the error signal is the difference between a setpoint value Vset
(chosen arbitrarily) and the signal produced by the photodiode Vsense. On the left
part of Fig. 3.13 we can see a typical example of the subtraction circuit generating
Verr = Vsense − Vset, that is then given as input to the proportional and integral
parts constituting the actual PI controller. For this simple case we can define the
proportional and integral gains gP and gI as the ratio between the output voltage of
each operational amplifier and the error signal, obtaining:

gP = −R2
R1

(3.7)

gI (ω) = − 1
R1 (jωC1) (3.8)

where j is the imaginary unit. As we see, while gP is constant, gI depends on the
frequency ω of the error signal. The output voltage of the device is given by:

Vout = − (VP + VI) = +Verr (gP + gI (ω)) . (3.9)

Note that here we have neglected the finite bandwidth of the operational amplifiers.
To take this aspect into account let us consider the more general circuit in Fig. 3.14,
where the op-amp used has a bandwidth of ∆ωBW . Given z1 and z2 as the circuit
impedances, the gain is in this case [24]

g (ω) = z2
z1

 1
1− z1+z2

z1
1

A(ω)

 (3.10)

where A (ω) accounts for the finite bandwidth of the amplifier

A (ω) = A0

1 + jω
∆ωBW

. (3.11)

When ω � ∆ωBW , A (ω) → 0 and we have a vanishing gain from Eq. 3.10, as
we expect when we exceed the amplifier bandwidth. On the other hand, when
ω � ∆ωBW , A (ω)→ A0 and the gain is simply given by z2/z1, as it is in the ideal
case we considered in Eq. 3.9.

We report the gain of a typical PI controller as a function of frequency in Fig. 3.15,
where we can clearly see three different regions. At high frequency the gain rapidly
decreases, meaning that the system is not working: this happens when the signal
frequency exceeds the bandwidth of the op-amp used in the controller. Decreasing ω
we enter the region where the proportional part of the controller dominates, holding
the gain constant at gP . At low frequencies the gain grows rapidly because the
integral part of the controller dominates. This means that the controller is going
to stabilize the quick oscillations using the P-part while the I-part will deal with
slow oscillations of the system. The frequency that marks the boundary between
these two regions, is given by ωC = (R2C1)−1, where gI (ω) = gP . This is equal to
the characteristic frequency τ−1

RC = (R1C1)−1 when gP = 1.
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Figure 3.13. Scheme of a standard PI controller. On the left we see the subtraction
circuit that produces the error signal Verr. In the central part, the proportional (top)
and integral (bottom) circuits process the error signal producing VP and VI , which are
summed by the last operational amplifier.
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Figure 3.14. Basic scheme of an inverting operational amplifier. Here, z1 and z2 are
generic impedances. The amplifier has a finite bandwidth, hence the gain is described
by Eq. 3.10.
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Figure 3.15. Response of a simulated PI controller. The proportional gain is 50 and the
characteristic frequency of the I-part is ∼ 15 kHz. The red dashed line at 160 kHz marks
the cut-off frequency of the op-amp which have a gain-bandwidth product of 8 MHz.
The gray dashed line at ωC ∼ 300 Hz marks the limit of the constant gain region at low
frequencies, where the I-part start to be dominant.



52 3. Realization of a one dimensional optical lattice

IC2

err
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Figure 3.16. A picture of the device used to build the PI controller for the stabilization of
our laser source, together with a detail of its electrical scheme. Here IC2 is the OP27
operational amplifier used for the PI part of the device. Besides IC2 and the switch SV2,
only the circuital elements highlited in red are used.

For the stabilization of our source we used a board, developed at LENS, that we
adapted to serve as a PI controller. The board, depicted in Fig. 3.16, is based
on three OP27 amplifiers with a gain-bandwidth product of about 8 MHz MHz,
and a zero-frequency open-loop gain A0 of 1.8× 106. The first one is used for the
subtraction circuit in the same configuration sketched in Fig. 3.13. The second
OP27 combines the proportional and integral part of the controller, as reported
in Fig. 3.16, giving the same result as the redundant scheme in Fig. 3.13. Indeed
only the discrete elements highlighted in the scheme are used, therefore Vout can be
calculated using Eq. 3.10 with z1 = R4 and z2 = R7 + (iωC1)−1. In this case we
have

z2
z1

=
(
R7
R4

+ 1
iωC1

)
(3.12)

where we clearly recognize the proportional and integral gains defined in Eqs. 3.7
and 3.8, which we can tune by varying R4, R7 and C1. Note that the integral part
of the controller can be turned on and off using a switch that provides a short-circuit
across C1 (SV2 in the scheme). The controller could also be upgraded to a full PID
circuit by simply adding R12 and C7, accounting for the derivative part. A third
operational amplifier is used as a buffer for monitoring either Vset or Vsense, that
can be selected using another switch.

As we said in the beginning of this section, stabilizing the power of our source is
crucial to have a precise control of the light intensity over time, for example, when
we adiabatically ramp-up the optical lattice, or when we suddenly want to turn it
off. Another important aspect we have to take into consideration when choosing the
system gains is the intensity noise, that, as we saw in Section 2.3, is a natural source
of heating for the trapped system. In particular we are interested in stabilizing the
noise at twice the frequency trap, which in our case means ∼ 100 kHz. Since in our
PI the gain-bandwidth product is 8 MHz, with R4 = 1 kW we choose R7 = 50 kW: in
this way gP = 50 and the bandwidth is nominally 160 kHz. To choose the integral
time constant, we require that the typical knee at ωC would be of the order of 100 Hz.
Therefore we set C1 = 66 nF, giving ωC ∼ 300 Hz. This values are the same one
used in the simulations in Fig. 3.15, so it is possible to compare the theoretical
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Figure 3.17. Open loop response of the control system used for the power stabilization
(sketched in Fig. 3.11). Here the red and gray vertical lines corresponds to the theoretical
values of ωC and the bandwidth cut-off frequency plotted also in Fig. 3.15. The gray
horizontal line corresponds to −90°.

Figure 3.18. Images of two specific measurements in Fig.3.17, showing Vsense (yellow) for
two different frequencies of Vset (blue): 1 kHz (left) and 300 kHz (right).

response of the controller with the real one. To do so, we measured the open loop
response of our control system using a synthetized sine wave as set-point signal Vset,
disconnecting the photodiode Vsense from the PI. For different values of the sine
wave frequency ranging from 1 Hz to 1 MHz, we measured the ratio between the
amplitudes of Vsense and Vset and their phase difference.

The results are plotted in Fig. 3.17. The measured gains are quantitatively different
from the simulated case, since here we have also the contribution of the optical part
of the feedback loop (AOM and photodiode), which apparently have no significant
influence on the characteristic frequencies of the system. Indeed, the measured
bandwidth and ωC are in good agreement with the expected values. In Fig. 3.18
we can see two specific measurements respectively at 1 kHz and 300 kHz. In the
first case we are near the unitary gain region, where the Vsense (yellow) is almost in
phase with Vset (blue). At lower frequencies the phase begin to increase (around
ωC) due to the onset of the I-part of the controller. At high frequencies, the gain
starts to decrease due to the finite bandwidth, and the two signal get out of phase.
The fast variation of both gain and phase at very large frequencies is presumably
due to additional impedances in the circuit, not included in our simple model.
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Figure 3.19. Pictures of the MOPA (right) and of the first part of the optical scheme for
the power stabilization (left).

From this results we see that our device has a bandwidth large enough to reach
2ωtrap, where the intensity noise can heat the atoms or molecules sitting in the lattice.
However, this is not enough to be sure that the stability conditions described in
Section 2.3 are met. In particular, based on our estimations, we require the fractional
rms intensity noise (over a bandwidth of 150 kHz) to be less than 2×10−3 in order to
have lifetimes due to heating of about 1 s. Checking this specification, would require
a precise measurement of the power spectrum of the intensity noise, which cannot
be done with the oscilloscope available in the lab due to its limited resolution. In
the future, we will carry out this measurement with a dedicated spectrum analyzer.

3.5 Building the optical lattice

In this Section I briefly summarize the realization of the one dimensional optical
lattice we will use in our experiment, to trap a strongly dipolar superfluid in two
dimensions. The lattice beam enters the main vacuum cell depicted in Fig. 2.2 from
below, crosses the optical dipole trap where the dysprosium BEC is held, and it is
back reflected by a mirror positioned outside the vacuum cell, about 25 cm from the
atoms. Here I discuss the how I designed the optical setup needed to focus the beam
onto the atoms, and how the laser source I have built has been integrated with the
main experiment currently operating in the lab.

Since the main part of new laser source has been realized on a movable breadboard,
only the stabilization of the MOPA power needed to be reconstructed on the experi-
ment optical table. As we can see in Fig. 3.19 (right) the laser has been mounted
next to the vacuum apparatus where, choosing the right position for the amplifier
optical isolator, we can easily reach the lower window of the cell. In Fig. 3.19 (left)
we see the first part of the laser stabilization, where the light is coupled into the
AOM. Differently from the original design, sketched in Fig. 3.3, here we did not use
a mirror to optimize the coupling with the AOM, instead we use directly PBS1 to
reach the optimal alignment. In this case the beam diffracted by the AOM is the
one reflected by PBS1, so the optical scheme of the power stabilization needed to be
re-designed. As we can see from Fig. 3.20, this time the beam sampled by PBS2
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Figure 3.20. Schematic view of the optical scheme for the power stabilization of the MOPA.
This is a re-design of scheme in Fig. 3.3, already discussed discussed in this chapter. All
the optical elements are the same, except from the lenses L3 and L4, which constitute
part of the focusing system realized to build the lattice. Differently form the old design,
here the two beam splitters are used in reflection configuration, and the AOM is aligned
directly without a mirror.
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Figure 3.21. Focusing lenses L3 (f3 = 500 mm) and L4 (f4 = 750 mm). The black marks
are the waist positions right after the isolator (left) and on the atoms (right). Lengths
are in mm.

is the transmitted one, which is then focused on the photodiode using the same
lens. The reflected beam, with ∼ 99% of the total power in sent in the direction of
vacuum apparatus using a couple of mirrors.

To realize the one-dimensional optical lattice, the beam needs to be focused on the
atom cloud with the right waist, which we have found starting from the calculations
carried out in Chapter 2. Since the beam waist is about 220 µm right before the
AOM, and the desired waist on the atoms is about 200 µm, a possible solution is to
design an optical system with magnification 1. In particular we use a combination
of two lenses with focal lengths f3 = 500 mm and f4 = 750 mm. The first one, L3, is
positioned at ∼ 55 cm (about its focal length) from the laser waist location, while
the second one, L4, is ∼ 60 cm far from the atoms. This last distance is long enough
to have room for all the other optical elements needed for the MOT and imaging
lasers, which also enter from the same window cell. The distance between L3 and L4
is about 10 cm, and can be slightly modified in order to slightly change the effective
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focal length of the system, hence the beam spot size on the atoms. Note that this
will also change the position of the waist slightly off the atom clod, nevertheless
this can be compensated by adjusting the distance between L3 and the laser waist,
moving the couple of mirrors used for the alignment. The last part of the optical
scheme consists on a single lens with focal length f5 = 250 mm mounted directly on
top of the upper window of the cell, right before the mirror, to focalize the back
reflected beam onto the atom cloud, realizing the lattice.
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Conclusions

In this thesis I addressed the problem of designing a stongly dipolar superfluid based
on weakly bound magnetic molecules confined in two-dimensions. This new kind of
dipolar system can be realized starting from a dysprosium BEC, already available in
a research laboratory in Pisa, where the experimental part of this thesis has been
carried out. Indeed, exploiting a Feshbach resonance, it is possible to associate
pairs of atoms into weakly bound magnetic molecules, which have dipolar lengths
of the same order of the inter-particle distance. Molecules are greatly unstable in
three dimensions, because of the inelastic collisions at short range, which, however,
are suppressed in two-dimensional systems. For this reason, this strongly dipolar
quantum gas has to be prepared in two-dimensional optical traps, realized using a
deep one-dimensional optical lattice, whose set-up I designed and realized in this
thesis.

In the first part of my thesis I considered the relevant theoretical aspects for the
study of these strongly dipolar systems, combining the fundamental role of dipolar
interactions in the molecular stability with the physics of two-dimensional super-
fluids. I discussed the role of the system density in determining both the critical
temperature of the BKT transition and the loss rates. These quantities are also
linked to the strength of the two-dimensional confinement given by the optical lattice.
Starting from this analysis I obtained a realistic set of parameters to be used in
our experiment to realize a two-dimensional superfluid made of strongly dipolar
Dy2 molecules. I also studied the effect of possible variations of the experimental
parameters, discussing how to compensate them in the real case.

From the experimental point of view, I designed and built a new light source with
high power for the realization of the one-dimensional optical lattice needed for the
experiment. The source is a MOPA consisting of a seed laser coupled to a fiber
amplifier, giving 15 W of 1064 nm light. Besides its optical setup, I also realized the
power stabilization system, based on a PI control loop. As a last part of this work, I
designed and realized the optical lattice which will be used for the two-dimensional
confinement. Since the main experiment was temporarily non-operative due to
an ongoing replacement of the the dysprosium oven, I did not get the chance to
complete the alignment of the lattice on the atoms. This, naturally constitutes the
next step in the continuation of of the work started in this thesis.

Looking forward, the next important step will be to measure the lattice depth with
standard techniques based on atomic diffraction by the lattice potential, checking
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the agreement with the estimations I carried out in this thesis. Next, we will start
experiments with the adiabatic loading of the dysprosium superfluid, aimed to verify
that the resulting two-dimensional system is in the BKT regime. This can be done
with time-of-flight imaging, observing the absence of free vortices below the critical
temperature. Switching to molecules will require a careful characterization of the
Feshbach resonances involved in the association process, together with the study of
the association efficiency.

Besides these exciting experimental challenges, we also expect to observe new
phenomena arising in this strongly dipolar systems. A very interesting perspective,
is to study what happens when our two-dimensional gas is loaded in a regular 2D
optical lattice. In this kind of experiments the interplay between the dipolar length
and the lattice constant, that in strongly dipolar systems are of the same order, lead
to the emergence of exotic insulator phases. In particular I am interested in studying
checkerboard insulators (where the lattice filling factor is 1/2) that are the long
range counterpart of Mott insulators. While the latter have been extensively studied
with both bosons and fermions in non dipolar quantum gases, the checkerboard case
has never been observed experimentally and, for this reason, constitutes a fascinating
objective for the future.
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Appendix A

Gaussian beams

Here I will briefly cover the basics of gaussian beam propagation, recalling important
definitions and setting up the notation.

A.1 Fundamental Mode
A gaussian beam is a particular solution of Maxwell’s equations under the paraxial
approximation, that basically discards all the plane waves solutions of Helmholtz
equation, except ones with wave vector k at small angles from the propagation axis
ẑ. The electric field of a paraxial wave can be therefore written as E (x, y, z) =
E0 u (x, y, z) exp (−ikz), with u being a slowly varying complex function satisfying
the paraxial wave equation

i (2k) ∂u (x, y, z)
∂z

=
(
∂2

∂x2 + ∂2

∂y2

)
u (x, y, z) (A.1)

The lowest order solution of Eq. A.1 is in the form

u (x, y, z) ∝ exp
[
−i
(
p (z) + k

2q (z)
(
x2 + y2

))]
(A.2)

where p (z) represents the phase difference associated to propagation, while q−1 (z) is
the complex curvature of the beam. Substituting this solution in A.2 we can derive
to differential equations for p (z) and q (z) which must hold for paraxial waves

∂q

∂z
= 1 ∂p

∂z
= −i1

q
(A.3)

To put some physical meaning into these quantities, we first have to integrate the
left of A.3 from z0 to z obtaining A.4, then we can write the latter separating its
real and imaginary part A.5 which define the radius of curvature R (z) of the beam
and its spot size w (z)

q (z) = q (z0) + z (A.4)
1

q (z) = 1
R (z) − i λ

πw2 (z) (A.5)
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With this notation w (z) measures the distance from the propagation axis at a fixed
z, at which the electric field is attenuated of a factor 1/e. The beam spot size w (z)
is therefore half its diameter.
We can chose z0 to be the position on z axis in which the curvature A.5 is purely
imaginary, hence R (z0) diverges, meaning that wavefronts are planes. From A.5 one
can see that

q (z0) = −iπw
2 (z0)
λ

:= −izR (A.6)

which defines the Rayleigh length for the beam. Taking together A.4, A.5 and A.6 we
can derive the expression of w (z) and R (z), where we set w (z0) = w0 for practical
reasons

R (z) = z

[
1 +

(
zR
z

)2
]

(A.7)

w (z) = w0

√
1 +

(
z

zR

)2
(A.8)

This functions are plotted in Fig. A.1, where we have called w0 beam waist, as it
is the minimum value taken by w (z), and the position z0 beam location. Another

Figure A.1. Plots of the radius of curvature and the spot size as a function of z for z0 = 0.

useful parameter of the beam is its divergence, that is the angle between the as
asymptotic value of w (z) and the z axis

θ = w0
zR

= λ

πw0
(A.9)

Note that a gaussian beam is intrinsically divergent for z > zR, therefore the Rayleigh
length is a measure of the distance over which the beam is collimated.

Now, if we integrate the right of A.3 from z0 = 0 and z, we find

ip (z) = ln
(
w (z)
w0

)
− iΦ (A.10)

where Φ = arctan z/zR is the Gouy phase of the beam, representing the phase
difference between a spherical wave and the actual paraxial wave.
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Figure A.2. Intensity profile for a gaussian beam in the plane transverse to the propagation
axis.

Putting together all the previous results, the electric field for the gaussian beam
reads

E(ρ, z) = E0
w0
w (z) exp

(
− ρ2

w2 (z)

)
exp

[
−i
(
kz + kρ2

2R (z) − Φ (z)
)]

(A.11)

where ρ2 = x2 + y2 is the distance from z axis. In this expression one can recognize
in the factor w0/w (z) the attenuation of the electric field due to beam divergence,
together with its typical gaussian profile exp

(
− ρ2

w2(z)

)
for a fixed z.

The intensity of the beam, proportional to 〈|E (r, t)|2〉, can be written as

I(ρ, z) = I0

(
w0
w(z)

)2
exp

(
− 2ρ2

w(z)2

)
. (A.12)

which again have a gaussian profile for fixed z, as sketched in Fig. A.2 with σ =
w (z) /2. Even if Eq. A.12 is coherent from a mathematical point of view, it can
be arranged in a more practical way introducing the beam power P , that can be
easily measured with a suitable power meter. For this reason the intensity of the
fundamental gaussian mode is more commonly written as

I(ρ, z) = 2P
πw2(z) exp

(
− 2ρ2

w(z)2

)
(A.13)

with 2/πw2(z) being the normalization factor for a two-dimensional gaussian.

A.2 Real gaussian beams
Previous results holds only for the fundamental mode TEM00, but can always be
extended to higher order modes. Similarly to what one do in Quantum Mechanics,
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the idea is to start with paraxial wave equation A.1 (which replace Schrödinger
equation) and build a complete set of orthogonal solutions exploiting a particular
symmetry of the system. Tipically the cartesian coordinates are chosen, hence the
amplitude u can be factorized as

u (r) = ux (x, z)uy (y, z) (A.14)

and we can write two different equations for the amplitudes ux and uy. In order to
have a more general result with respect to A.2, we look for solutions in the form of

ux (x, z) = Gx (x, z)Fx (z) exp
[
−i
(
px (z) + k

2qx (z)x
2
)]

uy (y, z) = Gy (y, z)Fy (z) exp
[
−i
(
py (z) + k

2qy (z)y
2
)] (A.15)

where Gx,y, Fx,y and px,y are real functions and qx,y are the usual complex param-
eters. Independently on the functional form of Gx,y and Fx,y, one can derive the
same differential equations A.3 and expressions similar to Eq. A.5 for the curvature.
The latter will be different along x and y axis in the case of astigmatic beams, which
is the more general case. For non-astigmatic beams, we can lighten notation by
dropping x and y subscripts. It is important to note that, because the curvature
q−1
x,y(z) does not depend on Gx,y and Fx,y, all the modes will have the same spot size
and radius of curvature: only the transverse profile will change.

To get to the general solutions, we make now a few assumptions:

1. the amplitude in Eq. A.14 needs to be proportional to (w0/w (z))2 as for the
fundamental mode, so we set

F (z) =
√

w0
w (z)

2. the phase p has to be equal to the Gouy phase in Eq. A.10 multiplied by a
factor which depends on the mode order

p (z) = −
(
m+ 1

2

)
arctan z

zR
m = 0, 1, 2...

3. the G functions depends on z only through the spot size w (z) as

G (x, z) = g

( √
2

w (z)x
)

with the same expression for G (y, z).

Substituting back in the paraxial wave equation will give us a differential equation for
the functions g (x, z) and g (y, z) having Hermite polynomials as solutions. Labeling
with m the increasing order of the Hermite polynomial Hm, we find

um (x, z) = u0

√
w0
w (z)Hm

( √
2

w (z)x
)

exp
[
−i
(
pm (z) + k

2q (z)x
2
)]

(A.16)
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and the same expression for un (y, z). This result holds also for astigmatic beams,
re-introducing two different waists w0x and w0y along the two directions. The
resulting electric field can be written as

Em,n (r) = E0
w0
w (z)Hm

( √
2

w (z)x
)
Hn

( √
2

w (z)y
)
×

× exp
(
− ρ2

w2 (z)

)
exp

[
−i
(
kz + k

2q (z)ρ
2 − Φm,n (z)

)] (A.17)

with Φm,n (z) = (m + n + 1) arctan z/zR being a generalized Gouy phase and
m,n = 0, 1, 2... positive integers labeling the increasing mode order.

This equation describes the so-called Hermite-Gauss Transverse Electromagnetic
Modes, indicated as TEMmn. Even if any given monochromatic distribution of
light will be a linear combination of these modes, a practical way to describe a real
beam is to compare its actual waist and divergence with the parameters of an ideal
TEM00 mode. To do so, we define M quality factor of the beam as

M2 = w̃θ̃

w0θ0
= π

λ
w̃θ̃ ≥ 1 . (A.18)

An increasing M means that more higher order modes are contributing and less
likely the beam will be well described by the intensity profile in Eq. A.13. Typical
solid-state lasers have M2 between 1.5 and 2.

For astigmatic beams with M2 low enough, we can generalize Eq. A.13 obtaining:

I(x, y, z) = 2P
πwx(z)wy(z)

exp
(
− 2x2

wx(z)2 −
2y2

wy(z)2

)
(A.19)

A.3 Propagation with transfer matrices
In direct analogy with spherical wavefronts, the propagation of gaussian beams
can be calculated using the transfer matrices formalism. These matrices are 2×2
matrices (known also as ABCD matrices) representing the optical system in which
the beam is propagating, transforming the complex curvature of the beam as follows

q′ = Aq +B

Cq +D
(A.20)

where A, B, C and D are the element of the transfer matrix, while q′ and q are
respectively the final and initial values of the beam curvature. The most useful
aspect of this formalism, is that any composite optical system can be described as a
matrix MTOT , which is the product of single matrices Mi representing elementary
subdivisions of the same system. Let us consider Fig. A.3: the matrix M3 is calcu-
lated as the product M2 ·M1, which represents respectively the propagation across
a thin lens with focal length f and a free propagation for a distance d.



64 A. Gaussian beams

Figure A.3. Transfer matrices for common optical systems [27].
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The minor extension to this example consists in the addition of another free space
region after the lens: this is a very common case and lead to a transfer matrix which
have use in many applications. To calculate it we just need to multiply an M1 type
matrix with an M2 type matrix and another M1. Naming d1 and d2 the distances
before and after the lens, we have:

M =
(

1 d2
0 1

)(
1 0
− 1
f 1

)(
1 d1
0 1

)
=
(

1− d2
f d1 + d2 − d1d2

f

− 1
f 1− d1

f

)
(A.21)

A typical case of use of the matrix M is when the waists of the incoming and
transformed beams lie at z = 0 and z = d1 + d2, hence both q and q′ are purely
imaginary and can be write as

q = − iπw
2
0

λ

q′ = Aq +B

Cq +D
= −iπw

′2
0
λ

(A.22)

where A, B, C and D are the element of the transfer matrix M , while w0 and w′0
are the waists of the incoming and transformed beams. Separating the real and
imaginary part of the last equality we can solve for the distances d1 and d2

d1 = f ± w0
w′0

√
f2 − f̃2

d2 = f ± w′0
w0

√
f2 − f̃2

(A.23)

with f̃ = (π/λ)w0w
′
0. It’s important to note that, in order to obtain real solutions,

we need f ≥ f̃ . In practice, Eq.A.23 can be used to determine the position of the
lens when we need to transform the waist of the beam, for example to match the
mode of a cavity or an optical fiber. In these cases we also need to make sure that
the distance d1 + d2 do not exceed the total space we have for the mode matching,
therefore it is not always possible to find suitable solutions.
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