A programmable quantum vortex collider

Print

We realize a programmable quantum vortex collider in planar and homogeneous atomic Fermi superfluids with tunable inter-particle interactions. We follow a bottom-up approach reminiscent of other atomic platforms featuring control at the single-particle level, and gain exquisite control of individual 2D vortices to assemble them one by one in arbitrary arrangements. In particular, we use the combination of a high resolution microscope objective and a Digital Micromirror Device to create on-demand vortex configurations and we monitor their evolution across the BEC-BCS regimes of fermionic superfluidity. By engineering collisions within and between vortex‚Äďantivortex pairs we distinguish the different relaxation processes of the irrotational vortex energy due to sound emission and due to interactions with normal fluid. For the first time, we directly visualize how the annihilation of vortex dipoles radiates a sound pulse. We progress towards a complete microscopic description of the dissipative dynamics of both single and colliding vortex‚Äďantivortex pairs, which is at the heart of the relaxation of non-equilibrium states in bosonic and fermionic superfluids, thereby opening the route to exploring new pathways for quantum turbulence decay, vortex by vortex.

W. J. Kwon et al.
Sound emission and annihilations in a programmable quantum vortex collider
Nature 600, 64 (2021)