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Abstract

During the three years of my PhD I have worked in the laboratory of ultracold
atomic K Rb mixtures of Prof. Giovanni Modugno in the group of Prof. Mas-
simo Inguscio at LENS of Florence. In this period two main experiments have been
performed by our team: during the years 2005-2006, we investigated a mixture of
fermionic potassium (40K) and rubidium (87Rb); more recently, we studied a Bose
Einstein condensate of potassium (39K) which we realized for the first time in the
year 2007. Both these systems may find applications in a very broad range of re-
search areas. In particular, the Fermi Bose mixture is extremely appealing for study-
ing superfluid, strongly correlated and disordered systems, and it is considered very
promising for the creation of ultracold polar molecules. KRb dimers are in general
interesting to study because they can be either bosons (39K-87Rb and 41K-87Rb) or
fermions (40K-87Rb) and, once in a deeply bound state, they feature a large electric
dipole moment. This paves the way to study new kind of ultracold gases with tun-
able, long-range, anisotropic interactions. Furthermore, when loaded into the sites
of an optical lattice, these systems can also be used for implementing new quantum
computing schemes.

As for the 39K gas, we instead discovered that it can be employed for the realiza-
tion of an almost ideal, non-interacting Bose Einstein condensate, and therefore it is
one of the most promising candidates for realizing new atom interferometers with
trapped condensed gases; moreover, this system can allow the investigation of other
physical phenomena for which it is important to reduce the interatomic interaction,
that otherwise can mask the underlying physics of interest (a notable example of
such phenomena is the so-called Anderson localization).

Both the experiments rely on the possibility of tuning the interatomic interaction
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in the gases by means of a so-called magnetic Feshbach resonance. In proximity of
such kind of features, the s-wave scattering length a -the only parameter needed
to describe the interactions in the ultracold regime- shows a dispersive behavior;
so it can assume values between +∞ and −∞, just varying the field around the
resonance position. This means that a Feshbach resonance offers a unique tool to
manipulate the interaction strength within the gas (or mixture of gases), allowing
us to range from strongly repulsive/attractive, down to weakly interacting regime,
both for hetero- and homo-nuclear samples.

All the physics that I’m going to describe in this work, relies on a detailed knowl-
edge of the scattering properties of the gases we have been studying: this knowledge
arises from an exhaustive characterization of both the 40K 87Rb and 39K 87Rb mix-
tures, and the 39K gas via extensive Feshbach spectroscopy that we have performed
during the last three years and that is in itself an interesting result. This allowed us
to develop an accurate near threshold quantum collisional model for K-Rb mixtures,
and to refine an already existing one for K isotopes. Each of the two models can
precisely reproduce the observed spectroscopic patterns, and it can be employed to
evaluate the scattering lengths, the dispersion coefficients, the location of other still
not observed resonances, and the near threshold molecular states of the system. Fur-
thermore, via mass scaling process, both models have a high prediction power for
the collisional properties of still unexplored K Rb and K systems.

In the year 2006 we have for the first time demonstrated the possibility to tune
the interaction of the 87Rb-40K mixture in the degenerate regime (BEC + Fermi gas).
We have investigated the phenomena that arise in strongly interacting samples: the
collapse of the system- when the attractive interaction becomes too strong for the
system to have a stable ground state- and the phase separation of the two compo-
nents of the mixture- when the strong interspecies repulsion causes the expulsion
the Rb BEC from the Fermi gas of K. The last phenomenon is peculiar of mixtures
and not observable in homonuclear systems.

We have also investigated the possibility to associate molecules performing sweeps
in the magnetic field across a Feshbach resonance to associate Rb and K atoms into
weakly bound KRb dimers, performing a preliminary characterization of the pro-
cess.

In the year 2007 the apparatus has been employed for realizing and investigat-
ing a Bose Einstein condensate of 39K. This atomic species, despite its unfavorable
zero field scattering properties (a ∼ -33 a0) that prevented in the past its condensa-
tion, is extremely interesting since the presence of very broad Feshbach resonance
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allows a fine tuning of its interaction strength. In particular, the accurate control of
the scattering length around zero leads to the creation of an almost ideal Bose gas.
The realization of the first 39K BEC had not been achievable without the remarkable
scattering properties between this atomic species and rubidium, relying on the pos-
sibility to tune both inter- and intra-species interactions: the first one offers the pos-
sibility to greatly increase the efficiency of sympathetic cooling of potassium atoms
with rubidium, and the latter one allows us to stabilize the sample against collapse.
We have investigated the possibility to precisely tune the interaction strength of this
system within its stability region, limited on one side by three body recombination,
due to the vicinity of the FR center, and on the other side by collapse, due to the
negative value of the scattering length.

As already mentioned above, an almost ideal BEC is interesting for atom interfer-
ometry, since it represents the analog of an optical laser for what concerns monochro-
maticity and coherence properties. We have recently investigated this by realizing
an atom interferometer with a weakly interacting BEC of 39K. The suppression of the
atom atom interactions by orders of magnitude that is realized by tuning the exter-
nal magnetic field greatly enhanced the precision and accuracy of our interferometer,
clearly demonstrating a strong suppression of interaction induced decoherence. The
possibility to fine tune the scattering length in this system allows us also to control
the size of the atomic cloud; in particular, the possibility to create samples of ∼ 1
micron size (the dimension of an ideal BEC confined in a 100 Hz harmonic trap)
makes this system very appealing for precise measurements of weak forces at short
distances. Furthermore, one could exploit the tunability of the scattering length of
the condensate in order to create number squeezed states and to also open new di-
rections towards Heisenberg-limited interferometry. Concerning this most recent
experiment I will here recall just some of the main results.

The thesis is organized as follows: I’ll give some details of the experimental pro-
cedure used to cool both the mixtures down to temperatures of the order of 1 µK.
In fact, as it will be clarified in the following, the Bose-Bose system can be easily
achieved starting from an apparatus for Fermi-Bose mixtures and viceversa, by mak-
ing few changes to the laser lights for potassium, and to the evaporative cooling stage.
I’ll briefly describe also the optical trap and the magnetic coils we employed in all the
experiments described in the thesis. The second part is devoted to the construction
of quantum collision models able to describe the scattering properties of the atomic
gases we investigated, that are based on our characterization of the systems: in order
to understand the techniques we used in the experiment, and the successive analysis
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of the data, I’ll remind some basic theoretical points concerning the scattering theory
and the physics related to magnetic Feshbach resonances. Third and fourth parts of
this work are devoted to the description of the various experiments we have done
with the Fermi-Bose mixture and the 39K gas in the degenerate regime.
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Introduction

The field of ultracold atomic gases is fascinating, since as the temperature of the
sample approaches very low values, the quantum behavior of the system becomes
visible and an enormous quantity of new phenomena arise. The great success of this
recent field of research relies on the experimental ability to cool down to nearly zero
temperature the atoms and to store them into magnetic and optical potentials, thus
assuring them long lifetimes and nearly perfect isolation from the external environ-
ment. Moreover the use of radiofrequency, microwave, optical and magnetic fields
allows the manipulation of the atoms in a well controlled way. Therefore, almost
pure and well defined quantum systems are achievable, and they can be theoreti-
cally treated with extremely high efficacy.

The field of ultracold gases has been further enriched by the achievement of Bose
Einstein condensation [1, 2, 3] and of quantum degeneracy in a Fermi gas [4]. These
two milestones have paved the way to a large series of investigations, both in experi-
ments and theory: the Bose Einstein condensate, with the macroscopic occupation of
the lowest available quantum state, is the matter wave analogue of the optical laser
regarding the properties of coherence and monochromaticity. An atomic Fermi gas
offers the possibility, especially when trapped into an optical lattice [5], to investi-
gate many solid state physics phenomena, without impurities in the system and in
an almost ideal environment.

As well as the achievement of degenerate Bose and Fermi gas, the availability
of magnetic Feshbach resonances [6] has given a tremendous impulse to the field of
ultracold systems: on one side they offer the possibility to tune the interatomic inter-
action strength in a well controlled way, from attractive to repulsive and from very
small to very large [7, 8]; on the other side they allow formation of weakly bound
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molecules. In fact, since their first observation [9], they gave rise to a variety of new
experiments and breakthroughs in the last years as, e.g., the preparation of pure
molecular quantum gases out of bosonic atoms [10, 11, 12], the formation of bright
solitons in a weakly attractive Bose Einstein condensate [13], and the observation of
Efimov states [15].

While at the beginning the main aim of this field of research was the investigation
of strongly interacting systems, in the last years there has been a growing interest for
bosonic systems in which the interatomic interaction can be finely controlled and ac-
curately tuned down to very small values, reaching an almost non interacting Bose
gas [16]. Among the reasons that stimulated the research of such kind of systems is
that for applications to matter wave interferometry [17] and for investigation of sub-
tle phenomena related to disorder [18], interatomic interaction can be detrimental
[19], and mask the real physics of interest [20, 21]. In this context we have investi-
gated the last stable alkali atom brought to Bose Einstein condensation, the 39K, and
found it a very interesting candidate to be employed within the field of low interact-
ing condensed gases, as well as 7Li and 133Cs.

In the last years also more complex systems were both experimentally created
and theoretically investigated, employing more than a single species, in order to en-
rich the field of novel quantum phases: both different spin mixtures of the same
atom [4] and heteronuclear mixtures [22, 23, 24, 25, 26, 28, 27] opened several inter-
esting new fields of research, especially in combination with the presence of inter-
species Feshbach resonances. Notable examples are the recent exploration of BEC-
BCS crossover by means of a mixture of two different spin states of a Fermi gas
[29, 30, 31] and the achievement of heteronuclear Feshbach molecules [32, 33]. In
fact, quantum degenerate atomic mixtures are promising for the study of a variety
of novel physical phenomena, such as boson-induced superfluidity of fermions [34],
quantum phases of matter in optical lattices [35] or random potentials [36], and pro-
duction of quantum gases of polar molecules [37]: these compound particles would
further enrich the physics of ultracold systems, since they would not only have many
more degrees of freedom than atoms to be manipulated, but also they would give
rise to new controllable, anisotropic interactions.

In this context, K-Rb mixtures are very promising since both fermion-boson and
boson-boson mixtures are easy to bring into the degenerate regime [26, 38, 39, 40],
the main isotopic combinations present several accessible Feshbach resonances [41,
42, 43], and their molecular association seems to be very interesting in the field of
polar molecules, since the ground state dimer has a large electric dipole moment
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[44].
In this thesis I report on experimental studies performed on ultracold gases of

potassium and rubidium atoms with tunable interaction. In Chapter 1 I describe
the apparatus and the experimental procedures needed to cool the mixture down to
temperatures of ∼ 1µK.

The scattering properties of both Fermi-Bose and Bose-Bose systems have been
exhaustively investigated and characterized by means of Feshbach spectroscopy;
this has allowed us to construct a quantum collision model able to accurately predict
resonance positions and molecular levels close to the dissociation threshold for all
the K-Rb pairs. Also an ultracold gas of 39K has been investigated for the first time
by means of Feshbach spectroscopy: the accurate determination of the magnetic-
field resonance locations allowed us to optimize a theoretical model for potassium
isotopes able to predict the magnetic-field dependence of scattering lengths and of
near-threshold molecular levels. This will be object of Chapter 2.

Chapter 3 describes the experiments performed when a degenerate Fermi-Bose
mixture is brought in a magnetic field region close to a broad interspecies Feshbach
resonance. A characterization of the regimes of strong attraction and strong repul-
sion between the system components is described in detail and our first tests of KRb
molecule association are discussed.

Chapter 4 describes the realization of the first Bose Einstein condensate of 39K:
despite its unfavourable zero field collisional properties, the gas is efficiently cooled
down to few hundreds nK exploiting forced evaporative cooling of rubidium and
sympathetic cooling of potassium into an optical trap. Both interspecies and in-
traspecies interaction are tuned by means of Feshbach resonances, in order to in-
crease the sympathetic cooling efficiency and to stabilize the 39K against collapse
just before reaching the degenerate regime. Due to the presence of broad homonu-
clear Feshbach resonances the interaction within 39K can be finely tuned over a wide
range of values, especially within the weakly interacting regime. First experiments
on this new system are described and future ideas are discussed.
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Chapter 1
Experimental procedures

The starting point of all the experiments described in my thesis is a spin polarized
mixture of an ultracold cloud of 87Rb and 40K or 39K atoms in an optical dipole trap,
in presence of a tunable, homogeneous external magnetic field. In this chapter I will
give a short overview about the experimental techniques employed to obtain these
samples. The individual steps are described in detail in [49] and can be summarized
as follows:

• Pre-cooling and trapping of rubidium and potassium atoms in a magneto op-
tical trap (MOT)

• Preparation of the two species into a stable, magnetically trapped mixture

• Evaporative cooling of rubidium and sympathetic cooling of potassium

• Loading of the mixture into an optical dipole trap

• Application of a homogeneous magnetic field and transfer of the two species
onto the desired Zeeman sublevels

To obtain a degenerate mixture several technical requirements must be met. We
need a special experimental apparatus working at ultrahigh vacuum conditions be-
cause at all stages of the experiment the atoms have to be protected from collisions
with background gas. This apparatus has been constructed in 2000-2001, using a
double chamber scheme. Despite its simplicity and limited optical access, and even
though several necessary improvements to the original system performed during the
years made it sometimes hardly manageable, the apparatus is robust and extremely
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1. EXPERIMENTAL PROCEDURES

versatile. We need additionally a complex laser and magnetic field system for cool-
ing, trapping and manipulating the atoms. A computer controls at the microsecond
level the sequences of the experiment. Only few technical details of the experimen-
tal setup will be discussed here, since they have already been described in detail in
previous theses in our group [49, 52, 53, 54].

1.1 Preparation of the cold mixtures

1.1.1 The rubidium and potassium atoms
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Figure 1.1: Schematic diagram of the levels of the three atoms we employ in our
experiments. Black and red arrows indicate the repumper and cooling transitions for
the three atoms. The cooling light is red detuned by some MHz with respect to the
atomic transition.

Potassium is an alkali atom and in nature it is present in three different stable
isotopes, 39K, 41K and 40K with natural abundance of 93.26%, 6.73% and 0.012% re-
spectively. Two isotopes, the 39K and the 41K are bosons (nuclear spin I = 3/2), while
the 40K is a fermion (nuclear spin I = 4). We have focused our attention to the well
known fermionic isotope of potassium [8], and to the most abundant bosonic isotope,
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1.1. Preparation of the cold mixtures

despite its zero field scattering properties are unfavourable for achieving a stable Bose
Einstein condensate [45]. Also rubidium is an alkali metal and it is present in two
stable bosonic isotopes, 85Rb (72.2%), and 87Rb (27.8%). As 39K, 85Rb is characterized
by a negative scattering length, that does not allow the formation of a stable conden-
sate, unless its stabilization employing a Feshbach resonance [46, 47]. Conversely,
the 87Rb has a positive scattering length [48] and it was the first atom brought to
quantum degeneracy in 1995 [1]. Differently from potassium, 87Rb is an easily and
efficiently coolable atom and this is the reason why it has been used for the sympa-
thetic cooling of K atoms [25]. The scheme of the hyperfine structure of the three
atomic species we employ in the experiments are schematically reported in Fig.1.1.
As shown, potassium atoms have a small hyperfine structure, extremely reduced
on the excited states in the case of the bosonic isotope, that makes sub Doppler cool-
ing schemes unavailable, and the sympathetic cooling with Rb crucial for efficiently
reaching the ultracold regime. The atomic gases are generated from a reservoir of
rubidium and potassium connected to the vacuum chamber, and heated up to about
40 ◦C.

1.1.2 Lights for the three species

All the experiments performed with ultracold quantum gases rely on the possi-
bility of laser cooling, and therefore a complex system of lights is required in order
to bring the atomic temperature down to few hundreds of µK. The laser sources em-
ployed in our apparatus for generating both cooling and repumper light for the MOT,
optical pumping, and imaging lights for rubidium are two standard laser diodes.
Potassium laser source is a single Ti:Sa laser, since the small hyperfine structure of
this atom allows to achieve all the frequencies just starting from a single laser, and
making use of few acousto-optic modulators (AOM). Note that due to the very sim-
ilar level structure of the two isotopes, their lights preparation is possible using the
same laser source, and only small changes in the AOMs scheme are necessary to
switch the apparatus from the Fermi-Bose to the Bose-Bose mixture. Furthermore,
consider that in the apparatus also a source of 41K enriched to 99% is present, and
also this isotope is easily achievable in the MOT by simple changes in the light prepa-
ration, see [49].

In order to have large power on the MOT beams the four cooling and repumper
lights are injected into two home-made tapered amplifier, and successively com-
bined together by means of optical fibers. These act as filters for the beam quality
and make the MOT beams immune from coarse misalignments. Also the four opti-
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1. EXPERIMENTAL PROCEDURES

cal pumping beams and the two imaging beams are combined on optical fibers and
brought in the vicinity of the vacuum cell.

lock

lock

) TAD1

D2

lock

))

)

)) TA

OP
MOT I

MOT II

Ti:Sa

Imaging

K lights
Rb lights
Fiber
AOM scheme

TA: tapered amplifier
D1,2: Rb diode lasers
Ti:Sa: K laser

Figure 1.2: Scheme of the laser lights employed in the experiment. The picture
doesn’t contain all the details of the apparatus and must be regarded just as a quali-
tative description of the real case.

1.1.3 Scheme of the apparatus

As already mentioned in the introduction of this chapter, our system adopts a
standard double MOT chamber scheme. Once the MOT of potassium and rubid-
ium in the first cell is produced (Pressure ∼ 10−9 Torr), the atoms are pushed into
the second cell (Pressure ∼ 10−12 Torr) by means of a light beam of ∼ 1 mW/cm2

intensity, near resonant with the cooling transition; for potassium the push beam
contains also some repumper light. The second MOT is loaded within twenty sec-
ond of continuous pushing of rubidium and successively eight seconds of pulsed
pushing of potassium, after which approximatively 109 rubidium atoms at ∼ 100µK
and 106 (107) potassium 40 (39) atoms at ∼ 300µK are stored into the second cell. A
C-MOT [50] and molasses cooling phase follow, that lower the temperature of the
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1.1. Preparation of the cold mixtures

mixture down to some tens of µK 1; then the two species are optically pumped in
their stretched Zeeman states by means of a hundred microsecond light pulse. A
bias field (∼ 1Gauss) assures the stability of the mixture against spin-flip transitions.

Ion &
Ti

pump Ion
pump

MOT1MOT2

K
40

41
99%

5%

K

Rb

magnetic guide

Figure 1.3: Two chamber scheme of our apparatus. Between the two cells differential
pressure is maintained. The figure shows also the reservoirs of the atomic species,
41K included.

1.1.4 Magnetic trapping and cooling

Rubidium and bosonic potassium are prepared in the |f = 2,m = 2〉 state2, while
fermionic potassium is prepared in the |f = 9/2, m = 9/2〉 state: all these states
are low-field seekers and therefore magnetically trappable. Both the K-Rb mixtures
are then stored in a magnetic potential, created by a QUIC trap (Quadrupole Ioffe-
Pritchard Configuration) [51], where evaporative cooling on rubidium and sympa-
thetic cooling of potassium can take place. The axial and radial frequencies of rubid-

1For bosonic potassium, whose small hyperfine structure makes inefficient the sub-Doppler cooling, it
is crucial the successive thermalization with the rubidium atoms.

2I will always use lower case letters for indicating an atomic state, and I’ll adopt capital letters for
denoting molecular quantum numbers.
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1. EXPERIMENTAL PROCEDURES

ium in the magnetic potential are 16 and 197 Hz respectively; the ones of potassium
are

√
mRb

mK
times larger. The evaporative cooling of Rb atoms can be performed in

two ways: by means of radio frequency resonant with the splitting of the Zeeman
levels |f = 2,m〉 7→ |f = 2,m− 1〉, or by means of a microwave signal resonant with
the hyperfine transition |f = 2,m = 2〉 7→ |f = 1,m = 1〉 at 6.834GHz. Both schemes
can be efficiently used with fermionic potassium; for the cooling of 39K, instead,
only the second one can be employed, since its Zeeman splitting is the same than
that of rubidium, and therefore the rf signal would expel it from the trap. In both
cases, after 22 − 25 s of evaporation in the QUIC trap the samples are cold enough
to be efficiently transferred in our optical trap. We found the best compromise be-
tween low temperatures, atom number and stability against thermal fluctuations of
the bottom of the magnetic trap, when we stop the evaporative cooling at tempera-
tures around 800 − 1200 nK. In this conditions, our samples are typically composed
by 106 rubidium atoms, mixed with 2 · 105 (6 · 105) fermionic (bosonic) potassium 3.
Note that further cooling in the magnetic potential is in principle possible, but since
both the mixtures must be successively transferred into different Zeeman states, and
this unavoidably causes a heating of the sample, it is not convenient to further force
the evaporation in the magnetic trap. We therefore adiabatically transfer the sample
into an optical potential.

1.2 The optical trap

Our trap is created with two focused laser beams with beam waists of about
100µm and crossing in the horizontal plane, see Fig. 1.4, generated with a 1032 nm
Yb:YAG disk laser. The laser frequency is sufficiently far away from the atomic tran-
sitions to assure scattering rates lower than 0.1 Hz at the maximum power. The trap
depth is initially approximately six times larger than the atom kinetic energy, in or-
der to ensure that no atom losses and no significant heating accompany the transfer
from the magnetic to the optical potential.

The raise of the optical potential is performed by means of a 200 ms exponen-
tial ramp of the beams power. The two species are then transferred to their abso-
lute ground states via adiabatic rapid passage (see below), and further cooled by

3The difference in the potassium populations arises from the different abundance we have of the two
gases at the beginning, and not on a major efficiency of sympathetic cooling of the bosonic potassium with
respect to the fermionic isotope. The final atom number is actually limited by the flux of atoms present in
the first cell: by renewing the reservoirs of the three species we expect to easily increase it by almost an
order of magnitude.
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1.2. The optical trap

Z

X

Y

Figure 1.4: Scheme of the optical trap: two focused laser beams (waist ≈ 100µm)
crossing in the horizontal plane create a potential that trap both potassium (blue)
and rubidium (green). The gravitational sag causes that the two samples overlap
only partially along the vertical direction, with the lighter element laying at a larger
height than the heavier. The Feshbach coils, placed along the vertical axis, are also
shown.

reducing the intensity of the laser beams by means of acousto-optic modulators. The
optical trap is designed in such a way to evaporate mainly Rb by exploiting the in-
creased gravitational sag of this heavier element. The optical potential allows us to
trap both low and high field seekers atomic states within an external magnetic field
of hundreds of Gauss, and it turns out to be extremely efficient for the storage and
the further cooling of the atoms. As it will be explained in chapter 4, by lowering
the optical potential we can also reach experimental conditions in which rubidium is
completely evaporated, and potassium is still trapped. In general, by modifying the
absolute and relative powers of the two directions of the crossed trap, we can eas-
ily design potentials of different geometries and depths, reducing or increasing the
gravitational sag between the two species, depending on the experiments we want
to perform.
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1. EXPERIMENTAL PROCEDURES

1.3 The Feshbach field
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Figure 1.5: Scheme of the stabilization system for the current of the Feshbach coils.

The magnetic field necessary for all the experiments described later is realized by
means of a couple of coils in Helmholtz configuration 4, generating a field that points
in the vertical direction, and centered on the QUIC position. In principle we could
generate it by inverting the current in one of the quadrupole coils of the magnetic
trap, but then the axis of the system would be horizontally shifted with respect of
the QUIC position of approximately 7 mm. The coils are water cooled, and the field
is actively stabilized with a standard PID control (see Fig. 1.5), with a bandwidth
of ∼ 4 kHz, that ensures for any field value up to 1000 Gauss a short term stability
of ∼ 30 mGauss , and a long term one (day to day) of better than 100 mGauss. We
calibrate the field by means of microwave and radio frequency spectroscopy on the
two |2, 2〉 −→ |1, 1〉, |2, 2〉 −→ |2, 1〉 transitions of Rb.

4Actually, a non perfect symmetry of the coils loops generate an undesired small gradient of∼ 4·10−3·
B(Gauss) Gauss/cm in the direction of the pinch axis.
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1.4. The mixtures preparation

1.4 The mixtures preparation

Feshbach resonances (both homonuclear and heteronuclear) are not possible in
stretched states of the system. In order to perform experiments of spectroscopy and
control of the interaction is therefore necessary to transfer the atomic species into
combinations of states where resonances occur. For both the isotopic pairs, we have
studied the ground state manifold: f=1 of 39K and 87Rb system, and f=9/2 of 40K.
In order to do this, after the sample is loaded into the optical trap and the magnetic
potential is abiabatically switched off, we apply a 10 Gauss homogeneous magnetic
field and transfer the atoms into the absolute ground state of the mixture: |1, 1〉⊕|1, 1〉
for the pair 39K-87Rb, |9/2,−9/2〉 ⊕ |1, 1〉 for the pair 40K-87Rb 5. In the case of Bose-
Bose mixture this is performed by two consecutive adiabatic rapid passages over
the hyperfine transitions around 6857 MHz for 87Rb and 485 MHz for 39K atoms,
in a 10 G homogeneous magnetic field. The preparation of the Fermi-Bose mixture
employs the same procedure described above for rubidium atoms, and a 3.5 MHz
rf sweep resonant with the Zeeman spacing of the ground state manifold for the
fermionic potassium. In fact, at such a low field the Zeeman effect is linear, both
in the case of potassium and rubidium, and Landau-Zener tunneling between the
different sublevels of the hyperfine states can efficiently take place. The transfer
efficiency is typically better than 90 % and the non transferred atoms are removed
by means of a few microsecond blast of resonant light. Note that in the procedure
the sequence of the two transfers is important in order to have a mixture always
stable against spin exchange collisions. Such processes conserve the projection of the
hyperfine angular momentum in the direction of the magnetic field, MF = mfa +
mfb. If states with internal energy lower than the initial one and with the same
value of mf exist, the system will in general undergo rapid spin-exchange decay:
the internal energy released in the collision will be converted into kinetic energy,
that usually exceeds the trap depth, allowing the atoms to escape from the confining
potential. As an example, I report in Fig. 1.6 the energies of different combinations
of Zeeman states in the Bose-Bose mixture. They are identified by the value of mf ,
and the stability region of every mixture is marked with solid lines.

Most of the measurements described in the following chapters concern the abso-
lute ground state of both mixtures. Nevertheless, in the Feshbach spectroscopy ex-
periment we have investigated also different combinations of states. In order to do

5We adopt here the notation |fa, mfa〉 ⊕ |fb, mfb〉, where the first state refers to potassium and the
second one to rubidium.
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Figure 1.6: Level scheme of different spin mixtures of 39K and 87Rb with mf =
+1, 0,−1,−2. For each spin combination, the solid (dotted) line indicates the region
where the mixture is stable (unstable) against spin-exchange collisions.

this, we always started from the absolute ground state mixture and performed one
or more successive transitions in the linear or anomalous Zeeman regimes of mag-
netic field. In the latter case the spacing between the consecutive Zeeman sublevels
is not constant and the rf sweep allows to populate one particular level. Moreover in
the case of a mixture the two species levels under investigation must differ enough
to allow the selective transfer of one species without inducing the transition in the
other.

Two examples can clarify the experimental procedure: suppose that we want
to investigate the Bose-Bose mixture to the |1,−1〉 ⊕ |1,−1〉 state. For low fields,
the Zeeman splitting is the same for potassium and rubidium; therefore we apply a
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1.4. The mixtures preparation

radio frequency sweep about 7.6 MHz at the 10 G field and induce on both the atoms
the transition from |1, 1〉 to |1,−1〉. Suppose now we want to investigate the mixture
|1, 0〉 ⊕ |1, 1〉: for the transfer of the potassium atoms from |1, 1〉 to |1, 0〉 state we
ramp the magnetic field up to 38.5 G, where the Zeeman splitting of potassium and
rubidium already differ by some MHz, and apply a radio frequency sweep around
28.5 MHz. In this way we do not have any Rb atom in the |1, 0〉 state or any K atoms
in the |1,−1〉 state.
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Chapter 2
Feshbach spectroscopy

This chapter is devoted to describe the experimental work we have performed
to characterize the K-Rb and 39K systems by means of Feshbach spectroscopy. The
experimental effort in determining the location of more than 30 resonances within
the Bose-Bose and Fermi-Bose mixtures was of fundamental importance for the de-
vising of a quantum collision model able to describe the scattering properties and
the behavior of the near threshold potentials of K-Rb isotopic pairs. Only two previ-
ous works existed in this context. A first theoretical work predicted the position of
Feshbach resonances within the 0-500 Gauss region in various hyperfine states [62].
Four resonances in the ground state were then discovered in an experiment at JILA,
and a tentative model able to reproduce to some extend the observed pattern was
proposed [63, 64]. We successively found that such model was not able to reproduce
most of the Feshbach resonances we observed, indicating a need for an alternative
model. The development of the model has been done by Dr. Andrea Simoni from
University of Rennes, with which we have been working in very strict collaboration.
The scattering properties, the resonances locations and the molecular levels close to
dissociation threshold can be accurately determined for all the isotopic pairs, and
this is intriguing for two reasons: the first one is that we can predict with high pre-
cision the behavior of many still unexplored mixtures; the second one is that by
means of such a model, combined with information about the short range part of the
interaction potential that come from photo-association studies and standard molec-
ular spectroscopy [55, 56], one can develop schemes for efficient transfer of Feshbach
molecules down to the ground state.

The homonuclear Feshbach spectroscopy we performed on 39K was necessary for
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2. FESHBACH SPECTROSCOPY

having an exhaustive knowledge of the system. The investigation performed on this
species allowed us to refine an already existing model, that is based on photoassoci-
ation spectra of 39K, see [57, 58], data relative to shape [59] and Feshbach resonances
[8, 60] in 40K, and two-photon spectroscopy of 39K near-dissociation molecular levels
[61]. In this context, the Feshbach spectroscopy we have performed allowed enhanc-
ing the precision of the determination of the scattering parameters, and the predic-
tion power of the model.

In order to understand the phenomena related to the physics of cold collisions,
the problems concerning the development of a quantum collision model and the
experimental methods we employed in our system for detecting the resonance loca-
tions, I will first dedicate few pages to recall some theoretical aspects of the problem.

2.1 Elements of theory

Although all the physics described in this thesis occur in dilute gases, atomic in-
teractions play a major role in them: for example, they determine the shape and sta-
bility of Bose Einstein condensates, assure thermalization in the traps and therefore
the efficiency of evaporative and sympathetic cooling, and they set constraints to the
experimental possibilities. Since we are in the low density regime, basically binary
collisions dominate, and then the theoretical treatment is facilitated by the simplic-
ity of the system. Interactions between ultracold samples have become the subject
of intensive study, not only because of their importance in all the areas of cold-atom
physics, but also because cold-atom interaction have proved to be a powerful tool for
measuring atomic and molecular parameters. Moreover, in the recent past ultracold
collisions became object of a growing number of theoretical and experimental stud-
ies, since in some atomic species they can be easily manipulated employing static
magnetic fields [6, 65], giving rise to new interesting phenomena.

The basic two body problem is introduced in its general aspects; the notion of
cross section and scattering length, collision channels, near threshold molecular lev-
els, and Feshbach resonance are briefly discussed. Even if in the Chapters 3 and
4 the discussion will be done within the standard mean field treatment and there-
fore the real shape of the two body hamiltonian will be somehow washed out, also
there concepts like scattering length and interatomic interaction will play a crucial
role, and can be derived from the microscopic treatment of the problem that follows.
I will try here to give just the essential notions needed to understand the experi-
mental and theoretical work that has been done in the context of this thesis. For
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further information and exhaustive description of the general problems described in
the following, standard books of quantum mechanics and molecular physics can be
consulted [66, 67].

2.1.1 Two-body hamiltonian and scattering theory

The starting point for describing two colliding particles of masses M1 and M2 is
the following hamiltonian:

H ′ =
p2
1

2M1
+

p2
2

2M2
+ V (r1 − r2) (2.1)

This can be easily decomposed within two parts related to the center of mass motion
and the relative motion:

H ′ =
P 2

2M
+ (

p2

2µ
+ V (r)) (2.2)

where µ is the reduced mass of the system and r ≡ r1 − r2. Therefore the binary
collision can be described as a single particle quantum mechanical problem. All the
information about the properties of the colliding pair are carried by the interaction
potential V (r). One has therefore to treat the time independent Schrödinger equation

Hψ(r) = Eψ(r) (2.3)

H being the second term in eq. (2.2), and extract the eigenvalues of the system: the
bound and the continuum states of the system fully characterize the properties of
the colliding pair.

Since general issues can be derived even without any information on the inter-
action potential, and since several important notions will be deeply used in the fol-
lowing, let’s briefly reconstruct some of the most important results of the scattering
theory. We look for stationary states ψk(r) that solve eq. (2.3) that have the asymptotic
form

ψk(r) ∼ eik·r + f(k,n,n′)
eikr

r
(2.4)

relative to eigenvalues Ek = ~2k2/2µ. Here n ≡ k/k and n′ ≡ r/r. This kind
of solutions have an intuitive meaning: the first part of (2.4) represents an incident
plane wave propagating with wave-vector k, while the second one is the diffuse
wave. The amplitude of the diffuse wave, f(k,n,n′) is called the scattering amplitude
and assumes the general implicit form [67]:

f(k,n,n′) = − µ

2π~2

∫
exp(−ik′ · r′)V (r′)ψk(r′)d3r′ (2.5)
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where k′ ≡ kn′. This is related in a very simple way to the differential and total
scattering cross-section:

dσ

dΩ
= |f(k,n,n′)|2; σ(k,n) =

∫
|f(k,n,n′)|2d2n′ (2.6)

The solution of such a 3D problem is in general non trivial. Fortunately, in many real
cases one works with potentials that have a central symmetry:

V (r) = V (r) (2.7)

In this case the hamiltonian H commutes with the angular momentum l and the 3D
original problem reduces to a 1D problem for the radial wavefunction. In fact, since

[H, l] = 0 (2.8)

a simultaneous set of eigenvectors of H and l exists. In this case we can separate the
generic function in a radial and an angular part and therefore write it in the following
form:

ψk(r) =
∞∑

l=0

m=l∑

m=−l

Yl,m(θ, φ)
uk,l,m(r)

r
(2.9)

where φ is the azimuthal angle and Yl,m(θ, φ) are the spherical harmonic functions
(i.e. the eigenfunctions of the angular momentum l). Therefore the problem (2.3)
reduces to solve for every k, l, m Eq.

u′′k,l,m(r) + (k2 − l(l + 1)
r2

− 2µV (r)
~2

)uk,l,m(r) = 0 (2.10)

At the beginning we said that we were interested to find states with asymptotic
behavior (2.4): we can rewrite this condition now decomposing the function in terms
of eigenstates of the angular momentum. We can assume the incoming plane wave
directed along the z axis without losing generality, and this is eigenvector of the
lz operator with eigenvalue m = 0. Its expansion in terms of spherical harmonic
functions (that reduce to Legendre polynomials in the case lz = 0, not depending on
the azimuthal angle ϕ) is well known:

eikz ' 1
2ikr

∞∑

l=0

(2l + 1)Pl(cosθ)((−1)l+1e−ikr + eikr) (2.11)

As a consequence of the conservation of lz for every r, also the function in the
expansion (2.9) will not depend on the azimuthal quantum number; and based on
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the behavior (2.11) of the plane wave, ψk(r) will have the form:

ψk(r) ' 1
2ikr

∞∑

l=0

(2l + 1)Pl(cosθ)((−1)l+1e−ikr + αle
ikr) (2.12)

Since the conservation of the flux must be satisfied for every partial wave in the case
of spherical symmetry, necessarily |αl| = 1 for every l, i.e.

ψk(r) ' 1
2ikr

∞∑

l=0

(2l + 1)Pl(cosθ)((−1)l+1e−ikr + ei2δleikr) (2.13)

For every l contribution, the knowledge of δl solves the scattering problem. Let’s
compare the expression (2.13) with the asymptotic behavior (2.4), considering that
(2.11) is valid: in terms of the phases δl we then obtain

the asymptotic behavior of the radial wavefunction:

uk,l,m(r) ∝ (−1)l+1e−ikr + e2iδleikr (2.14)

the scattering amplitude:

f(k, θ) =
1

2ik

∑

l

(2l + 1)(e2iδl − 1)Pl(cosθ) (2.15)

the scattering cross-section σ(k):

σ(k) =
∞∑

l=0

σl(k) (2.16)

having defined the partial wave contributions as

σl(k) =
4π

k2
(2l + 1)sin2δl(k) (2.17)

In the case of two identical colliding particles, all the expressions derived above
in terms of partial wave expansion must be modified, taking into account the sym-
metry (antisymmetry) properties of the pair of bosons (fermions) under the particle
exchange. Remember that the Legendre polynomials have (−1)l parity: it is then
clear that the expansion for identical bosons (fermions) will contain only even (odd)
waves. Moreover a factor of 2 appears in the formulas for the cross section, arising
from the (anti)-symmetrization of the wavefunction; therefore for identical particles
we have that:

σ(k) =
8π

k2

∑

even,odd

(2l + 1)sin2δl (2.18)
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Some important results can be derived from this expressions. It is possible to demon-
strate that in the limit of vanishing k the phases δl have the following behavior

δl(k) ≈ k2l+1 for k → 0 (2.19)

Note In fact, for a spherical potential that vanishes as r−α for r → ∞, the behavior
indicated above is valid only if α > 2l + 3. Otherwise the behavior is different
and one can find that δl(k) ≈ kα−2. Note that in the case of potentials decreas-
ing with α ≤ 3 this behavior causes that all partial waves contribute at low
energy! I will come back on this point in subsection (2.2.2), where I’ll show
how this fact can have important consequences on the scattering properties of
the system.

In all the other cases, from eq. (2.19) it follows that for low energies the nonzero
contribution to the total scattering cross section will be given just from few par-
tial waves, and in the limit of zero energy only s-wave scattering will take place.
This causes two consequences: the scattering process in the limit of zero energy is
isotropic1, and collisions result fully suppressed in the case of two identical fermions.
Within this regime, the corresponding cross section for distinct particles (bosons) can
be written in terms of the s-wave scattering length as:

σl=0(k) = (2×)4πa2 for k → 0 (2.20)

being the s-wave scattering length

a = − lim
k→0

tan δ0(k)
k

(2.21)

Note that the concept of s-wave scattering length is crucial in general in the field of
cold gases: provided that the gas is in the dilute regime (i.e. n|a|3 ¿ 1, where n is
the spatial density of the gas) and that it is cold enough to be in the region of validity
of (2.20), it can be shown that the many body description of the system depends only
on the scattering length and not on the details of the interaction potential. This means
that if two distinct interatomic potentials generate the same scattering length, they
lead to the same properties for the atomic system, even if they have a completely
different microscopic shape (e.g. one being attractive and the other being repulsive)!

1This could also be deduced from the general form of the scattering amplitude (2.5); the only contribu-
tions to the integral are from r′ inside the sphere of action of the potential delimited by the range b of the
potential, i.e. |k′ · r′| ≤ kb. As k → 0 we have that kb ¿ 1, and therefore one can replace exp(−ik′ · r′)
by 1, i.e. the integral in (2.5) is independent of the scattering direction n′. Since the problem is time re-
versal symmetric, i.e. f(k,n,n′) = f(k,−n′,−n), one derives that f(k,n,n′) is independent also of the
incident direction, and therefore the scattered wave is spherical.
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2.1.2 A simple model case: the square potential well

Let’s apply now the results described in the subsection 2.1.1 to the simple case of
a square potential well. The results related to such a toy model are easy to be derived
but at the same time extremely general: therefore, even if the problem is very well
known and can be found in several standard books of quantum mechanics (see e.g.
[67, 68]), I’ll spend some pages about it in this section.
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Figure 2.1: (a) Scattering length as a function of the parameter k0b. The scattering
length can be either positive or negative: it diverges for values of k0 corresponding
to the appearance of a bound state. (b) Square potential well.

Consider a potential of the form

V (r) =

{
−V0 if r < b

0 otherwise

and look for the solution with zero energy of the 1D Schrödinger equation for s-wave
scattering (2.10):

u′′(r)− 2µV (r)
~2

u(r) = 0 (2.22)

with asymptotic behavior deduced from (2.14):

u(r) ∼ r − a for large r (2.23)
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The result is immediately derived:

u(r) =

{
C1(r − a) if r < b

C2sin(k0r) otherwise

k0 ≡
√

2µV0/~. The continuity of the wavefunction and of its first derivative at the
boundary b requires that:

a = b− tan(k0b)
k0

(2.24)

 

 

oddeven

Figure 2.2: Graphic solution of the determination of bound states of the 1D well
potential. The red (black) line refers to the boundary conditions for the even (odd)
eigenvectors. The blue line is the graph of eq. (2.2): every intersection of the blue line
with the red (black) one indicates the presence of an even (odd) bound state. In the
case of a spherical potential well only the odd functions must be taken into account,
therefore only potentials deep enough can support at least a bound state.

From this toy model some basic and general ideas can be derived. Note the fol-
lowing points:

• If the well is small, k0b < π/2 and the scattering length is negative. This condi-
tion is equivalent to have a scattering potential too low for supporting a bound
state.

This fact can be derived with the standard treatment of the quantum mechan-
ics, reaching the solutions of the eq. (2.22) at negative energy values −E,
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E ∈ (0, V0). In the case of the purely 1D well for −b < x < b one can sep-
arate the eigenfunctions of the system into odd and even. The result is the
following:

ψodd(x) =

{
B exp(−k|x|) if |x| > b

Asin(k′r) otherwise

ψeven(x) =

{
B exp(−k|x|) if |x| > b

Acos(k′x) otherwise

being k ≡
√

2µ(V0 − E)/~ and k′ ≡ √
2µE/~. The conditions of continuity of

ψ and ψ′ at |x| = b require that:

k′/ tan(k′b) = −k for odd functions

k′/ tan(k′b) = k for even functions

The problem can be solved with a graphic method, introducing the variables

η ≡ k′b, ξ ≡ kb

in terms of which, the two boundary conditions above are given by

η = −ξ tan ξ (odd) η = ξ tan ξ (even)

From the definitions of k and k′ one has also

ξ2 + η2 =
2µV0b

2

~2
(2.25)

The result is plotted in Fig. (2.2). The abscissa corresponding to the intersec-
tion between the two curves and the circumference (2.25) give us the values of
k′ that satisfy the boundary conditions. The number of bound states is always
finite and in the purely 1D problem the potential always supports one (even)
bound state; the first odd bound state appears as

√
2µV0/~ = π/2. This is ex-

actly the condition found above for the 3D problem: in this case, in fact, the
even reduced wavefunctions must be excluded, since a total even wavefunc-
tion would exhibit a singularity in r = 0.

• Increasing the depth of the potential one reaches the condition for which the
first bound state appears at threshold: this is accompanied by a divergence of
the scattering length. And this happens every time that k0b = (2n + 1)π/2:
the appearance of a bound state in the potential well is related to a divergence
of the scattering length, see (2.24). This relation is general and is known as
Levinson’s Theorem.
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• When V0 is slightly lower than the value required for the appearance of a new
bound state at threshold, the scattering length a is large and negative; if, in-
stead, it is slightly above this threshold the scattering length is large and posi-
tive (see Fig. 2.1). This result is also absolutely general.

Both these properties will be recovered in the real situations.

2.1.3 The real case

In real systems the problem we treated in the last subsections become definitively
more complex for two main reasons. The first is that one has to consider the collid-
ing particles not as simple point-like masses M1 and M2, but as atoms, composed
of electrons and nuclei. The treatment is performed then within the Born Oppen-
heimer approximation: at first, one has to solve the electronic problem and extract
the eigenvalues parameterized in terms of the positions of the nuclei; and after one
inserts these eigenvalues in the hamiltonian of the relative motion of the two nuclei
as an effective potential. The second one is that this potential is not known and there-
fore, before starting to solve the eq. (2.2) for the nuclei, one has to construct it. The
complexity of the problem makes fully ab initio calculations of the scattering proper-
ties of a real system impossible, unless in the simplest case of Hydrogen collisions.
The standard procedure that is used in order to treat these kind of problems is the
following:

• Theoreticians construct a microscopic potential to insert in the hamiltonian
from ab initio calculations.

• Experimentalists measure the spectra of the system by means of optical and
Feshbach spectroscopy.

• Based on the spectroscopic measurements theoreticians refine the potential
shape, adjusting the system parameters in order to reproduce as closely as pos-
sible the experimental data.

Let’s see here more in detail the interactions that take place when the colliding par-
ticles come close one to each other.

First of all, when we treat the process of collision of a pair of cold alkali atoms, we
have to consider that in general the kinetic energy of the pair can be orders of magni-
tude less than the hyperfine and Zeeman energy splitting Ekin ¿ Ehf , ∆EZ(B), and
therefore the scattering properties of the system will depend both on the hyperfine
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and Zeeman states of the two colliding particles. As convention we adopt here the
notation |f, mf 〉 for describing the internal state of an atom immersed in a magnetic
field, indicating both the Zeeman level and also the hyperfine level at which it adi-
abatically correlates as B → 0. Moreover, in the reduced mass system, the particles
will have in general an orbital momentum l, and projection ml, characterizing the
scattering process. We will indicate the generic scattering channel with the notation

α ≡ {f1,m1, f2, m2, l, ml} (2.26)

specifying the quantum numbers that describe the two atoms system when the par-
ticles are initially separated. Note that as already mentioned in sec. 2.1.1 identical
bosons (fermions) can have only symmetric (antisymmetric) wave functions with re-
spect to a pair permutation: this is indicated by the braces. 2.26 is usually indicated
as separated atom spin basis description of the scattering channel. The energy associ-
ated to the generic α-channel is Eα = Ef1m1 +Ef2m2 : a channel is called closed (open),
if its energy is larger (smaller) than the energy E of the entrance channel. If E < Eα

for all α, then all the channels are closed and E can refer just to molecular discrete
levels. If instead it exists one α for which E > Eα, then at least one channel is open
and E is associated to a stationary state of the continuum.

The great complexity of the two body problem in the case of alkali atoms arises
from the fact that at short distances the different channels couple one to each other
by means of the interaction potential, and therefore the hamiltonian is no more di-
agonal in the separated atom spin basis: this means that the various channels are
intrinsically coupled.

In order to solve the problem one has to consider many coupled Schrödinger
equations for the different channels; defining the radial wavefunction of the α chan-
nel as ψα(r,E) = uα(r, E)/r following the partial wave expansion (2.9) one has:

∂2uα(r, E)
∂r2

+
2µ

~2

∑

β

[Eδαβ − Vαβ ]uβ(r, E) = 0 (2.27)

where Vαβ has the following form:

Vαβ(r) = [Ef1m1 + Ef2m2 +
~2

2µr2
l(l + 1)]δαβ + V int

αβ (r) (2.28)

The complex part of the scattering is inside the interaction matrix V int(r), that con-
tains the Born Oppenheimer potentials and electron spin dependent interactions.
This matrix can be divided into other parts:

V int(r) = Vel(r) + Vss(r) (2.29)
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The first one describes the interactions between the electronic clouds of the atoms,
and it gives the main effect. At short distances strong coupling between electronic
spin occur, giving rise to singlet (1Σ+

(g)) and triplet (3Σ+
(u)) states, with a (g, u) symme-

try that is present only in the homonuclear case. Therefore Vel can be conveniently
written in the form:

Vel(r) = V0(r)P0 + V1(r)P1 (2.30)

where P0,1 are the projectors onto the subspaces with total electronic spin S = 0, 1
and

VS(r) = −(
C6

r6
+

C8

r8
+

C10

r10
+ ....)− (−1)SVexch (2.31)

the two potentials differing of twice an exchange potential that has an asymptotic
behavior [69]:

Vexch(r) ∼ Jr
7
2α−1 exp−2αr (2.32)

The above contributions to the potential maintain some symmetry properties:

• the system is invariant under independent rotation of the spin system and of
the orbital system around the quantization axis, and therefore ml,mF are good
quantum numbers.

• Since both V0(r) and V1(r) are central, the orbital angular momentum l, is con-
served.

As a consequence, this first part is a block diagonal matrix, each block having a well
defined l value.

The second part of the potential describes the (weak) interaction between the
electronic spins via their magnetic moments, and contributions deriving from second
order spin orbit interactions 2. Both the contributions have a functional form:

Vss(r) = f(r)[s1 · s2 − 3(s1 · r̂)(s2 · r̂)] (2.33)

where asymptotically

f(r) ∼
{

1/r3 for dipole dipole interaction
exp(−β(r − rS) for second order spin orbit interaction

The VSS contribution is weak but not negligible, and must be taken into account. It
is not diagonal both in f1,m1, f2,m2 and in l, ml. Since it is a tensor of rank 2, it can

2In the case of ground state alkali atoms the first order spin orbit contribution VSO ∼ ∑
i li · si is zero,

since li = 0.

28



2.1. Elements of theory

couple blocks corresponding to l′ = l and l′ = l ± 2 for Wigner-Eckart theorem [70].
Therefore it couples many states.

The resulting matrix is a three-diagonal block matrix of the form shown in Fig.
2.3.

)

)

0

0

Figure 2.3: Schematic form of the interaction potential developed in the separated
atom spin basis. Every gray block corresponds to a well defined value of the orbital
momentum; the red blocks correspond to coupling between l and l ± 2 due to the
VSS potential.

Since the interaction potential couples different scattering channels as the inter-
nuclear distance become small, it is sometimes useful to indicate the state we are
referring to in terms of other short range basis. We can couple s1 and s2 to form a
total spin S = s1 ⊕ s2; the same can be done for the nuclear spins, that generate a
total nuclear spin I = i1 ⊕ i2. Then S and I can couple each other and create F , that
further couples to the orbital momentum l to give the total angular momentum of
the dimer FTOT. Therefore we can treat the problem also in terms of the molecular
basis (S, I)F, l, FTOT ,MTOT , taking advantage that at short range the electronic part
of the potential is diagonal in S.

2.1.4 The Feshbach resonance

In subsection 2.1.2 we have seen how the vicinity of a bound state at threshold
can cause a strong modification in the scattering length value: the phenomenon is
well known and indicated as zero energy scattering resonance. In general the situa-
tion of a bound state Eb nearly resonant with the entrance channel Eα might appear
quite difficult to be experimentally observed: instead, at least in some real cases,
and in particular for all alkali atoms, this situation can be easily achieved, by ac-
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Figure 2.4: The scheme of how a Feshbach resonance arises. The energy detuning
between a bound molecular level and the threshold of the two colliding atoms can
be tuned by means of the external magnetic field.

tively tuning the entrance channel energy with respect to the bound state level. In
fact, since the atoms have a Zeeman splitting when a magnetic field is applied, and
the energies of different channels usually vary in different ways as functions of the
field, i.e. ∂Eα/∂B 6= ∂Eβ/∂B, it might happen that a bound state supported by a
closed channel becomes resonant with the entrance channel threshold. This situation
is what is called a magnetic Feshbach resonance and that is schematically indicated
in Fig. 2.4. In general we will refer to ∂Eα/∂B as the magnetic moment of the channel
α, and it is usually indicated as µα. The magnetic field dependence of the scattering
length in the vicinity of a magnetic resonance can be described by the well known
approximate formula [72]:

a(B) = abg(1− ∆
B −B0

) (2.34)

abg being the scattering length far from the resonance, B0 the center of the resonance,
∆ ≡ BZC−B0 the width of the resonance, and BZC the point at which the scattering
length vanishes, called zero crossing.
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The experimental ability to bring two colliding particles resonant with a molec-
ular bound state allows three main kind of phenomena to occur, as I already men-
tioned in the Introduction: it opens the way to the association of ultracold molecules,
if one is able to adiabatically transfer the unbound pair across the resonance onto the
molecular level [10, 11, 12]; it offers the possibility to control the interaction, since
the real case does not differ very much from the toy model case of Fig. 2.1: one can
in principle scan values of the scattering length from very negative to very positive,
just tuning the molecular level above or behind the threshold shifting it via Zeeman
effect. Finally - and this is what I’m going to report herein- the knowledge of the lo-
cation of Feshbach resonances allows to refine quantum collision models, and offers
the possibility to have very precise information about the scattering properties of a
system.

2.1.5 Three body losses

Up to now, in the discussion about cold collisions between two atoms I spoke
about scattering events that are elastic. Actually, if we consider the realistic potentials
of subsection 2.1.3, both elastic and inelastic scattering processes can be supported
(see e.g. [71]). In general, three kind of inelastic processes can take place in a real
atom trap:

• Collisions of the trapped atom with the background gas: they induce an expo-
nential decay of the number of trapped particles, Ṅ = −N/τ .

• Two body spin relaxation: atoms trapped into a magnetic potential have their
magnetic moment antiparallel to the field (low field seekers), and therefore
the atom-field interaction is given by: −µ · B = µB. The dipolar interaction
between two magnetic moments, see (2.33), can induce a spin flip of one of the
two colliding atoms. It can be derived that this process release an amount of
energy of the order of µB, see e.g. [73]: consequently, since this energy can
greatly exceed the trap depth, the process induces losses of atoms.

• Three body recombination: when three atoms are closed enough, two of them
can form a molecule, and the third one carries away the released momentum
and energy. They induce a decay of the form:

ṅ = −K3n
3 (2.35)

This process usually causes losses from the trap, since the energy of the result-
ing particles exceeds the trap depth. At the same time it can cause a heating of
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the remnant sample, since the recombination takes place preferentially into the
more dense (and cold) part of the gas, and losses concern mostly the coolest
particles. This can be seen if one considers the mean potential energy associ-
ated to a thermal atom (at temperature T ) trapped in a harmonic potential and
undergoing a three body process:

〈U〉 =
∫

Un3dV∫
n3dV

=
1
2
kBT (2.36)

This energy is less than the mean potential energy in the gas 3
2kBT ; therefore

every atom lost by means a three body process releases in the system an excess
energy kBT . Consequently, the temperature associated to the remnant gas is
higher than the starting one. I will come again to speak more in detail about
three body processes in Chapter 3 and Chapter 4, showing two cases where the
three body recombination doesn’t produce any heating, or even it can have a
cooling effect on the sample. In general, at very large scattering lengths val-
ues, one has to consider that an extra heating occurs due to the vicinity of a
molecular level of energy ε to the dissociation threshold. In this case, not only
the process takes place preferentially within the more dense part of the cloud,
but the molecule and the third atom produced after collision have kinetic en-
ergies ε/3 and 2ε/3 respectively, that can be smaller than the trap depth. Con-
sequently, the products of the collision can remain in the trap: the molecule
collides rapidly with a fourth atom and decays on a deeply bound state, re-
leasing a large energy and escaping from the trap, while the atom involved in
the first collision remains in the sample with the extra energy 2ε/3 [74].

In particular, Vel is responsible for elastic scattering and inelastic spin-exchange col-
lisions, and gives rise to the broadest resonances; Vss, instead, is responsible for in-
elastic spin dipolar relaxation and originates narrow resonances.

Both broad and narrow resonances are accompanied by an increment of the three
body losses, as one approaches the center of the resonance: in fact it has been shown
both theoretically [75] and experimentally [74] that the three body coefficient scales
as K3 ∼ a4; therefore, the divergence of the scattering length at resonance causes a
raise in the number of three body processes. This seriously limits the possibilities
to exploit the resonance for tuning the scattering length in regions of very strong
interactions; nevertheless, losses and heating can be exploited as an indication of
the presence of a Feshbach resonance, and this is what is usually done in Feshbach
spectroscopy.
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2.2 Interisotope Feshbach spectroscopy on K Rb mix-
tures

2.2.1 Detection of the resonances: three body losses and molecule
association

We have performed extensive Feshbach spectroscopy in the K-Rb mixtures we
have in our apparatus, following the idea described at the end of last section. The
starting point of the experiment is the following: a mixture of spin polarized potas-
sium and rubidium atoms held in an optical trap, with a temperature around 800 −
1000 nK, immersed in a magnetic field. Once the desired mixture is prepared, we
change the external magnetic field in few tens of ms and actively stabilize it to any
value between 0 and 1000 G. Heteronuclear Feshbach resonances are detected as an
enhancement of three-body losses. We look at the mixture populations after some
time spent in the trap3 as a function of the magnetic field, and locate the resonances
as absorbtion-like peaks in the atom numbers. A typical feature indicating the pres-
ence of a Feshbach resonance is shown in Fig. 2.5: this corresponds to an s-wave
resonance between |9/2,−7/2〉 and |1, 1〉 states of the Fermi Bose mixture located
around 598 Gauss. Despite the change of sign of the scattering length on the two
sides of the resonance, the behavior is more or less symmetric and we fit it with a
Gaussian function. Note that the width associated with three body losses is not con-
nected to the width ∆, at least not in a trivial way. Nevertheless this is an important
parameter that we employed in the fitting procedure for developing our model (see
below). In general, in the Fermi-Bose mixture, fermion-fermion-boson (F + F + B)
collisions are suppressed by effects related to the statistics [81]: in fact, since the
possibility of having these processes depends on the probability to have the three
particles sufficiently close one to the others, the B +B +F processes are more proba-
ble than the B+F +F ones. One has therefore to expect twice the losses for rubidium
than for potassium. In the Bose-Bose mixture this does not take place, and the losses
are "symmetric" in the two species.

At the typical temperatures of the mixture thermal broadening [76] is already
negligible: nevertheless, for an accurate detection of also weak features, such as the
resonances near 248 G in the |1, 1〉-|1, 1〉 Bose-Bose mixture or the one located at 674
G in |1, 0〉-|1, 1〉 collisions, see Tab. 2.2, we have performed studies also at lower tem-

3The time we wait can vary from one resonance to another, depending on their strength and on the
conditions of temperature and densities they are investigated. Typically it varies between 1 second for
weak resonances/ very dilute samples, to few tens of ms, in the case of strong features/nearly degenerate
samples.
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Figure 2.5: Standard detection of a Feshbach resonance, by looking at three body
losses. Both samples, after some time spent in the trap immersed in the external
magnetic field, have lost atoms when the interspecies scattering length is increased
towards very large values.

peratures (250-350 nK) and higher densities. These experimental conditions allow to
reduce the waiting time necessary to get a good spectroscopic signal, and are cru-
cial for resolving p-wave resonances, as it will be discussed in the next subsection.
The mixture is cooled by reducing the trap depth in 2.4 seconds with an exponen-
tial ramp in the power of the two laser beams. As already mentioned, the optical
potential is designed in such a way to force evaporation of rubidium along the ver-
tical direction, while potassium is sympathetically cooled without significant atom
losses.

An alternative way to detect the location of Feshbach resonances with high pre-
cision is to associate molecules by an adiabatic sweep across the feature [77]: the
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Figure 2.6: Detection of the s-wave Feshbach resonance in the Fermi-Bose mixture
between |9/2,−9/2〉 and |1, 1〉 located around 546 Gauss by looking at molecule as-
sociation. We perform a sweep in the magnetic field, from the region of negative
scattering length to positive scattering length, adiabatically transferring the atom
pairs in the entrance channel into weakly bound dimers. The dimers that are cre-
ated cannot be detected by the imaging light and they appear as losses in the atom
populations.

application of this method leads to measurements like the one shown in Fig. 2.6. In
this case, we perform linear sweeps in the magnetic field, slow enough to be sure
of the adiabaticity of the process, but fast enough to avoid three body processes to
affect the populations of the mixture. The final value of the field is varied and sud-
denly after the end of the sweep we take an absorption image of the atoms. Since
the sweep transfers the unbound pairs onto the molecular state, the imaging light
- resonant with the atomic transition - is not able to detect the dimers, already for
small magnetic field detunings; moreover, the dimers are lost within few hundreds
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microseconds by via atom molecule collisions (see Chapter 3). The resulting behav-
ior is fitted with a Boltzmann growth function, from which we deduce the resonance
center. Note that this detection method in principle is not accompanied by heating,
unless the sweep rate is too slow, or you wait for too long before acquiring the im-
age, letting three body processes take place. All Feshbach resonances experimentally
detected both in the Fermi-Bose and Bose-Bose mixtures are summarized in first col-
umn of tables 2.1 and 2.2.

2.2.2 Detection of p-wave resonances

I have previously pointed out that at ultralow temperatures all l 6= 0 partial
waves do not contribute to the total scattering cross section, unless the interaction
potential has an asymptotic behavior r−α, α ≤ 3, see the note in subsection 2.1.1: in
this case, all partial waves contribute to the total cross section even for T → 0. This
happens in the case of p-wave resonances, in contrast to s-wave features: in fact,
they experience a non vanishing contribution of dipole dipole interaction in lowest
order, that has a r−3 dependence and that is contained in VSS , see section 2.1.3, that
makes p-wave scattering possible even at very low temperatures.

B B

Figure 2.7: Schematic representation of classical dipoles interacting in different cir-
cular orbits. In the first picture is shown the case of an orbit with ml = 0, which
is in a plane containing the magnetic field. Here the dipoles sometimes attract and
sometimes repel each other. In the second picture is shown an orbit with |ml| = 1, in
a plane perpendicular to the magnetic field. Here the dipoles predominately repel
one another.

l = 1 Feshbach resonances exhibit two main behaviors that differentiate them
from the s-wave case:

• The presence of a centrifugal barrier (the interaction potential (2.28) has the
repulsive contribution ~2/2µr2) through which the wavefunction must tunnel
to access the resonant state makes the scattering process extremely sensitive
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Figure 2.8: (a): Experimental Rb loss features due to a 39K-87Rb heteronuclear |1, 1〉+
|1, 1〉 p-wave resonance. The doublet structure is peculiar of the p-wave character of
the resonance. Losses are accompanied by heating of the sample, as shown in panel
(b). A similar behavior has been observed on the potassium cloud.

on temperature and on magnetic field: only within a narrow region of these
parameters the continuum wavefunction can be influenced significantly by the
bound state.

In ref. [76] the peculiarities of higher order partial wave resonances in a Fermi
gas of 40K have been investigated. In particular, the authors remark a non triv-
ial behavior of these features with respect to the temperature of the sample,
showing a sudden raise of the cross section as temperature is lowered, and a
high dependence of the tails of the resonance to thermal broadening, which
grows dramatically as the temperature increases. The raise of the scattering
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cross section takes place from the sudden appearance of a narrow resonance at
positive collision energies as the magnetic field is tuned, and it is not tempera-
ture dependent. By contrast, the high-field tail of the resonance is sensitive to
temperature and thermal broadening is particular important in that region.

• p-wave features have a complex structure that arises mainly from the mag-
netic dipole dipole interaction included in VSS . In fact, its anisotropic charac-
ter makes that different coupling occurs for distinct values |ml| of the projec-
tions of the orbital angular momentum of the pair. In particular, the ml = 1
case takes place at higher energies with respect to ml = 0: this can be easily
understood in a classical picture of dipolar interaction, see Fig. 2.7. ml = 0
corresponds to the case of two (classical) dipoles that rotate one with respect to
the other in a plane that contains the magnetic field direction. In this case they
alternate repulsive interaction (side by side) to attractive interaction (head to
tail); viceversa, ml = 1 corresponds to two dipoles that rotate in a plane per-
pendicular to the field, therefore they are always feeling repulsive interaction.
Since the dipole-dipole interaction for ml = 1 has only a repulsive influence, it
forms a resonant state with higher energy.

In general when higher order partial waves resonances are considered, their
complex structure will exhibit l + 1 peaks corresponding to distinct |ml|.

The complex structure associated to p-wave resonances can be experimentally
resolved if temperature is low enough to avoid that thermal broadening masks it.
This has already been observed in a Fermi gas [76], and more recently in the 40K-
87Rb fermion boson mixture [78]. Also we have observed this multi-peak feature for
two resonances located at 277.5 Gauss (see Fig. 2.8) and 495.5 Gauss respectively, in
the Bose-Bose mixture. As already remarked in [76], the doublet splitting represents
a direct evidence of the p-wave character of such resonances. As I will discuss in next
subsection 2.2.4, the splitting between the peaks experimentally measured for these
two features has been crucial for refining our quantum collision model parameters.

2.2.3 Detection of the zero crossings

In our investigation, we have looked also at some zero crossings associated to
broad Feshbach resonances: this is not easy in general in the case of homonuclear
systems, and would require tedious studies of cross thermalization. In the case of
a K-Rb mixture, instead, the detection of a zero crossing is extremely easy, since its
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Figure 2.9: Experimental observation of the zero crossing near the 598.4 G Fermi Bose
resonance. As the magnetic field assumes values close to the zero crossing point, the
heterouclear elastic cross section vanishes and the efficiency of sympathetic cooling
during further evaporation in the optical trap decreases. A similar behavior has been
observed in the Bose Bose mixture for the zero crossing associated to the resonance
located at 318 G, see Tab. 2.2.

position is revealed by the cooling of potassium. The location of the zero crossing
has been determined both in the Fermi Bose and Bose Bose mixtures by recording
the efficiency of sympathetic cooling of potassium as a function of the magnetic field
applied during the evaporation in the optical potential, see [79]. In fact, we have
shown how in the ultracold regime the total elastic cross section vanishes with the
s-wave scattering length: and this results in a strongly reduced sympathetic cooling
rate. For this kind of investigation we lowered the beam intensities of the optical
trap and after 2.4 s of forced evaporation measured the temperature of the potassium
cloud as a function of the external magnetic field. As shown in Fig. 2.9, the position
of the zero crossing appears then as a sharp peak in the K temperature.

In Tab. 2.1 and Tab. 2.2 we report zero crossing positions for few broad reso-
nances, as well as the doublet splitting of p-wave resonances for the boson-boson
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mixture.

mfa,mfb Bexp(G) Ba
th(G) Bb

th(G) ∆th(G) abg (a0) −µ(µB) `
1, 1 247.9(2) 248.05(3) 247.97(12) 0.28 34 2.8 0

277.57(5) 277.53(3) 277.44(11) 1
277.70(5) 277.70(3) 277.6(2) 1
317.9(5) 318.30(3) 318.23(14) 7.6 34 2.0 0
325.4(5)∗ 325.92(3)∗ 325.84(14)∗ 0
495.19(6) 495.19(3) 495.15(7) 1
495.62(6) 495.65(3) 495.61(8) 1
531.2(3) 530.72(3) 530.68(16) 2.5 35 2.0 0
616.06(10) 615.85(4) 615.80(16) 9.5[-2] 35 1.9 0

0, 1 623.47(6) 623.48(5) 623.41(18) 6[-3] 0
673.62(8) 673.76(4) 673.7(2) 0.25 0

−1, −1 117.6(4) 117.59(3) 117.59(8) -1.3 0

Table 2.1: Experimental magnetic-field positions Bexp and theoretically calculated
positions Bth for collisions of 39K and 87Rb in the fa = 1, fb = 1 manifold. Zee-
man states of the atomic fragments correlate in zero field with |fa = 1, mfa〉 and
|fb = 1, mfb〉, respectively (first column). Theoretical model a is based on both iso-
topes, model b on the fermion-boson pair only, assuming the correct singlet potential.
Calculations use parameters of Eq. (2.38) and (2.40), respectively. Errors shown in
parenthesis represent one standard deviation for both experimental and the theoreti-
cal values. In addition, the magnetic widths ∆ are provided for the observed s-wave
features. In view of future experiments on molecule formation the background scat-
tering length abg and magnetic moment µ are also given for resonances in the lowest
Zeeman sublevel.

2.2.4 The near threshold model

Let’s see now how the spectroscopic signal experimentally observed in our ex-
periment allowed us in collaboration with Andrea Simoni to construct an accurate
near threshold model for K-Rb mixtures. The starting point are ab initio or spec-
troscopic singlet X1Σ+ and triplet a3Σ+ potentials that can be found in literature:
several of them are available, slight differences distinguishing one from another. If
one is interested in creating a model able to accurately describe a single specific sys-
tem (e.g. only the 39K-87Rb mixture), one can adopt indifferently one or another
potential curve. They are parameterized in terms of the as and at scattering lengths,
respectively: then a comparison of the experimental data to maxima in the two-body
elastic cross section computed for different as,t is performed, until a good agreement
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|famfa〉+ |fbmfb〉 Bexp(G) Ba
th(G) Bb

th(G) `
|9/2,−9/2〉+ |1, 1〉 456.1(2) 456.31(7) 456.32(12) 1

495.6(5) 495.31(12) 495.3(2) 0
515.7(5) 515.35(7) 515.38(11) 1
543.3(5)∗ 543.66(8)∗ 543.70(12)∗ 0
546.6(2) 546.75(6) 546.78(9) 0
658.9(6) 659.02(13) 658.99(16) 0
663.7(2) 663.80(10) 663.78(16) 2

|9/2,−7/2〉+ |1, 1〉 469.2(4) 469.03(13) 469.09(18) 0
584.0(10) 584.01(11) 583.99(14) 0
591.0(3) 590.85(7) 590.8(2) 2
595.5(5)∗ 595.60(7)∗ 595.63(10)∗ 0
598.4(2) 598.17(6) 598.20(8) 0
697.3(3) 697.37(9) 697.41(14) 0
705.0(14) 704.33(13) 704.31(16) 0

|9/2,−9/2〉+ |1, 0〉 542.5(5)∗ 542.79(5)∗ 542.81(7)∗ 0
545.9(2) 545.95(7) 545.97(10) 0
957.6(5)∗ 957.70(13)∗ 957.70(18)∗ 0
962.1(2) 962.04(13) 962.03(17) 0

|9/2, 7/2〉+ |1, 1〉 299.1(3) 298.51(5) 298.53(7) 0
852.4(8) 851.93(14) 851.9(2) 0

Table 2.2: Same as Tab. 2.1 but for collisions of 40K and 87Rb. As already mentioned
in Tab. 2.2, few experimental zero crossing positions have been used for theoretical
modeling and are also here identified by an asterisk.

is found. A global least square fit is done, leading to the best fit parameters. Also
dispersion coefficients Ci are left to vary in the fit procedure: depending on the rich-
ness of the experimental data, one can let them completely free to vary and to extract
independent values, or in the case of few available features one can adopt their val-
ues known from literature (see e.g. [82, 83]) and let them vary within their estimated
uncertainty. Differences between two similar spectroscopic potentials will be imma-
terial, and the model will work well in both cases.

When instead one wants to generate a model able not only to reconstruct the res-
onance observed pattern but also to infer the resonance location and the near thresh-
old behavior of other isotopes (or isotopic pairs), then also small deviations between
two similar potentials can become important, and can lead to significant differences
in the model: in particular an uncorrect potential shape can lead to the same accu-
racy for the single species, but it can generate predictions for the other isotopes (or
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isotopic pairs) affected by systematic errors. Usually these details concern the shape
of the interaction potentials at short internuclear distances, therefore they regard the
deeply bound molecular physics of the system. In particular, the number of bound
states supported by these potentials is crucial in order to construct a model with high
prediction power.

Usually, the correct details of the potentials are inferred by optical spectroscopy,
that investigates the short range interactions, while cannot be deduced by Feshbach
spectroscopy, that can detect only long range behavior of the system. In the case of
potassium-rubidium mixtures the uncertainty by few units [41, 56, 84] on the num-
ber of bound states supported by the singlet and triplet interaction potentials limited
the prediction power of the model with regard to different isotopic pairs. In fact, a
first characterization of the single Bose-Fermi mixture [41] lead to the construction of
a model that accurately fitted the experimental resonance pattern and made predic-
tions also for other isotopic pairs; this was based on the two ab initio potentials 1Σ+

and 3Σ+, developed by Rousseau [85]: in particular they support a number of vibra-
tional levels equal to N b

S = 98 and N b
T = 32, respectively. Once we started to charac-

terize the other mixture, we found the resonances locations in good agreement with
the positions predicted in [41]. This circumstance is by itself sufficient to conclude
that the N b

T = 32 is correct, as variations of ±1 in N b
T gives rise to shifts of 39K87Rb

Feshbach resonances as large as 10 G, for fixed values of aS,T (40 − 87). Shifts are
in general less dramatic upon variation of the dissociation energy of the deeper 1Σ+

potential. In addition, the Bose Bose resonances observed here have mostly triplet
character, and therefore predictions from the model based on the only fermion-boson
system are most of the time accurate, even if an uncorrect number of bound states
of the singlet potential is used. Fortunately, the specific feature at ∼ 616 G shown
in Fig. 2.10 has sufficient singlet mixing for its position to shift of about ±3 G per
bound state added or subtracted from the 1Σ+ potential. This has been sufficient to
conclude that the number of bound states N b

S = 98 of the Rousseau singlet potential
was uncorrect: the location of this resonance fixes conclusively N b

S = 100. This fact is
important, since this is the first time that a typical short range information concerning
the details of the interaction potential can be accurately fixed by means of Feshbach
spectroscopy, that instead usually refers to long range properties of the system. This
has been possible since the spectroscopy regarded two different isotopic pairs: it had
not been possible even with hundreds of resonances of just a single mixture. The va-
lidity of this result has been confirmed by recent accurate spectroscopic studies [56].
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Figure 2.10: Experimental determination of the singlet character interspecies Fesh-
bach resonance located around 616 Gauss by looking at three body losses on potas-
sium: this feature allowed us to univocally fix the number of bound states supported
by singlet and triplet potentials. The uncertainty of the measurement is of ∼ 100
mGauss, while a variation of ±1 singlet bound state would cause a shift of the max-
imum of the losses of 3 Gauss, indicated in the figure by red lines.

We therefore adopted the spectroscopic singlet 1Σ+ potential of Amiot [86] ob-
tained at regular internuclear distances using the near-dissociation coefficients given
by Amiot [86] and the RKR1 code [87], that supports the correct number N b

S(40-
87)= 100 vibrational levels. Since the experimental data here available are many
more than in our first work, it is possible to determine independently of ab-initio cal-
culations both leading long-range coefficients C6 and C8. As already mentioned, the
model is also parameterized in terms of s-wave singlet-triplet scattering lengths aS,T

of the Fermi Bose mixed system, and includes relativistic spin-spin and second-order
spin order corrections [88]. After the preliminary characterization of the interaction
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potentials, that allows us to check the correct interaction potentials to adopt, we pro-
ceed to fine-tune the potential shape in order to reproduce the present experimental
spectra. The presence of narrow resonances in our data is crucial to improve the
parameters precision, as their position can be determined experimentally with high
precision [45]. The experimental width of the losses peak is exploited as a weight of
the corresponding resonance in the fitting procedure: the narrower is the width of
the feature, the more significative is the experimental datum.

It has been recently remarked in Ref. [56] that the splitting observed in the 40K-
87Rb mixture [78] between ` = 1 resonances with different projections m = 0 and
|m| = 1 of ` along the magnetic field, cannot be accounted for by electron spin-spin
interactions only. Comparison of two ` = 1 doublet features of the boson boson sys-
tem (see Tab. 2.1) with theoretical calculations confirms this observation. In partic-
ular, the spin-spin induced splitting of the doublet at ∼ 495 G is found theoretically
to be of 900 mG, versus an observed value of ∼500 mG. With the present resolution
(50 mG) this discrepancy might be sufficient to bias our analysis. Hence, a prelimi-
nary χ2 minimization including only s-wave resonances is performed: in fact, they
are virtually unaffected by spin interactions. Next, we introduce a phenomenologi-
cal second order spin-orbit operator of the form [88]

Vso(R) =
Cα2

2
e−β(R−RS)

(
3S2

z − S2
)

(2.37)

where α is the fine-structure constant, S is the total electrons spin and z is taken
along the internuclear axis. The parameters β and RS are assigned the arbitrary yet
reasonable values 0.085a−1

0 and 10a0 and the strength is fixed to C = 1.910−3Eh in
order to reproduce the observed doublet separations. We perform a final optimiza-
tion including all ` > 0 features for both isotopes. Result of the fit is :

aS = −110.6(4) a0

aT = −214.0(4) a0

C6 = 4290(2) a6
0Eh

C8 = 4.79(4)105 a8
0Eh. (2.38)

The reduced chi-square (i.e. the χ2 per degree of freedom) is χ̃2 = 0.84 and the
maximum discrepancy with the experimental data is less than two standard devia-
tions. The aS,T fully agree with our determination in Ref. [41]. The C6 is consistent
to about one standard deviation with the value 4274(13) given by Derevianko et al
[82] while our C8 deviates by two standard uncertainties from the result 4.93(6)a8

0Eh

of Ref.[83].
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Note that potential parameters are statistically correlated: for instance, if C6 and
C8 were kept constant the position of a given experimental feature could be approx-
imately obtained by increasing aS (i.e. by making the 1Σ more binding) and concur-
rently decreasing aT (i.e. by making the 3Σ less binding). As all parameters are left
to vary correlations become more complex and can be summarized in the symmetric
covariance matrix:

C(a.u.) =




0.14 2.4[−2] −0.47 −9.2[2]
0.18 −0.10 8.3[2]

2.1 4.5[3]
. . . . . 1.6[7]




(2.39)

The C matrix has been used to compute error bars on the theoretical resonance po-
sitions (second column in Tabs. 2.1, 2.2) using standard error propagation, whereas
neglect of correlations might lead to grossly overestimated uncertainties.

Our improved model can be used to determine the evolution of molecular levels
near dissociation, taking advantage of the profound relation between near-threshold
bound states and scattering properties. Molecular levels for the Fermi Bose system
have been recently presented in Ref. [43]. Here we discuss the nature of boson boson
molecules focusing on the experimentally relevant case of ` = 0 molecules that can
be magnetically associated starting from atoms in the lowest Zeeman sublevel |11〉+
|11〉.

With reference to Fig. 2.11, the bound level at −0.2 Ghz running parallel to the
energy of the separated atoms is associated to background scattering. That is, its
position would correspond to single channel scattering with the same background
scattering length and long-range coefficients. It is characterized by Hund’s case (e)
quantum numbers (fa, fb, f) = (1, 1, 2), where f = f1 + fb. The triplet near −1 Ghz
is formed by S = 1 molecules with different total nuclear spins I , split by hyper-
fine interactions. They are described by Hund’s case (b) quantum numbers (S, I, f)
equal to (1, 3, 4), (1, 2, 3), and (1, 1, 2), respectively. Next two levels at −1.5 Ghz are
singlet-triplet mixed levels: the degree of mixing can be quantified by the average
value of the electron spin operator 〈S2〉 ≈ 1.2 − 1.3. These levels are still exactly
characterized by f = 2, 3. Moreover the strong hyperfine interaction forces coupling
of Rb electron and nuclear spin to form fb = 1. The other quantum numbers are
otherwise undefined.

In the procedure we followed for the analysis described above, we have used
the mass scaled interatomic potential for the two isotopes, thus assuming validity
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Figure 2.11: Near threshold 39K87Rb ` = 0 molecular levels magnetically coupled to
atoms in the lowest Zeeman sublevel. The energy of the separated atoms is taken as
zero (dashed line). Collision parameters are from Eq. (2.38).

of the Born Oppenheimer approximation [89]. We can quantify the accuracy of this
hypothesis first optimizing the potential on a single isotopic pair, and then deriv-
ing the location of the resonances of the other mixture via mass scaling procedure.
We make this test by creating the single species model with the Fermi Bose system,
which is found to provide tighter error bars when taken into account alone. The best
fit parameters in this case are found to be the following:

aS = −110.7(7) a0

aT = −214.1(11) a0

C6 = 4290(9) a6
0Eh

C8 = 4.8(3)105 a8
0Eh. (2.40)

As expected, the quality of the fit is good (see second column in Tab. 2.2) with
χ̃2 = 0.6 the same value obtained (for 40K-87Rb) from the model optimized on both
isotopes.

Next, we recalculate the resonance pattern for 39K-87Rb, see third column in
Tab. 2.2. The average discrepancy between theory and experiment, weighted with
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K-Rb pair aS(a0) aT (a0)
39-85 33.78(6) 63.27(2)
39-87 1.98(4) 103 35.61(3)
40-85 65.39(5) -28.63(6)
41-85 103.25(6) 349.0(4)
41-87 7.13(9) 163.82(6)

Table 2.3: Calculated singlet and triplet s-wave scattering lengths for collisions be-
tween K and Rb isotopic pairs employing all our spectroscopic data both of the Fermi
Bose and of the Bose Bose mixture.
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Figure 2.12: Same as Fig. 2.11 but for 41K85Rb. With reference to table 2.3, note how
the presence of a bound state very close to threshold causes a large and positive
background value of the interspecies scattering length, see subsection 2.1.2.

the in-quadrature combination of experimental end theoretical errors is of 0.2: this
has to be compared with the value 0.3 obtained from the two-isotope parameters of
Eq. (2.38). We remark that theoretical resonance positions do not show any prefer-
ential, positive or negative shift with respect to the experimental ones. We also note
that optimization of the Bose Bose model alone does not lead to any significant im-
provement. We can conclude that even at the present level of precision no evidence

47



2. FESHBACH SPECTROSCOPY

is found for breakdown of the Born Oppenheimer approximation. Mass-scaling can
then be used for predicting properties of other isotopes. In particular, the aS,T along
with the long-range coefficients determined in this work are sufficient in order to
predict all relevant threshold properties of any K-Rb pair.
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Figure 2.13: Same as Fig. 2.11 but for 41K87Rb.

The s-wave singlet-triplet scattering lengths are shown in Tab. 2.3 for all isotopic
combinations. We can also predict with high precision the value of the s-wave scat-
tering length for the absolute ground state, see Tab. 2.4. Two isotopic pairs already
discussed in our previous work [41] are especially interesting: 41K-85Rb, and 41K-
87Rb. In the first case one could use a sample of 41K to optimize the evaporation of
85Rb atoms which is typically very inefficient in a pure homonuclear sample due to
occurrence of the first zero in the 85Rb cross-section already at temperatures on the
order of 100 µK [24]. In fact, we have checked that the large magnitude of the zero
energy interspecies cross section persists even up to the mK regime. The availability
of several Feshbach resonances at relatively low field could also prove to be use-
ful for the production of binary Bose-Einstein condensates where both the self- and
the interspecies interaction are tunable. In the case of the 41K-87Rb pair, a system
for which the production of a stable binary condensate has already been reported
[26, 40], availability of very broad resonances allow the mutual interaction to be
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K-Rb a (a0) Bth (G) ∆th (G) abg (a0) −µ (µB)
39-85 58.01(2)
40-85 −21.06(6)
39-87 28.29(3)
40-87 −184.4(3)
41-85 283.1(3) 132.39(7) 0.19 242 2.33

140.98(5) 2.0 10−4 242 3.42
146.4(3) 0.025 242 2.88
185.2(9) 3.5 327 2.14
191.72(7) 0.48 327 2.14
672.19(15) 5.7 343 1.89
695.90(12) 14 343 1.70

41-87 640(3) 39.4(2) 37 284 1.65
78.92(9) 1.2 284 1.59
558.0(4) 81 173 0.012
724.8(3) 0.07 90 1.93

Table 2.4: Predicted zero-field s-wave scattering lengths for the absolute ground state
of K-Rb isotopes. Resonance positions and widths, background scattering length
and magnetic moments associated to the Feshbach state are also provided for two
isotopic pairs of experimental interest.

precisely tuned, and make this system also interesting for ultracold molecule for-
mation. For both isotopomers the scattering parameters and molecular levels have
been calculated: note that the resonance positions are slightly shifted with respect to
the ones of our previous predictions in Ref. [41] because of the different number of
bound states in the singlet potential.

Finally, we present in Figs. 2.12 and 2.13 near threshold-molecular potentials for
the two pairs. These data should represent a key piece of information for implement-
ing efficient transfer scheme to low vibrational levels using Feshbach molecules as a
bridge, and for the calculation of Franck-Condon overlap matrix with excited states.

2.3 Feshbach spectroscopy on 39K

As mentioned in the Introduction of this thesis, we have performed also extensive
Feshbach spectroscopy on the bosonic potassium isotope we employ in our appara-
tus. Potassium systems have been characterized in the last years, both by means
of photoassociation studies [90, 91, 92] on 39K and Feshbach spectroscopy on the
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fermionic potassium [8]: in particular, the intensive study of two specific resonances
in 40K was motivated by possible applications to fermionic superfluidity. Even if
magnetic Feshbach resonances had not yet been investigated in the bosonic potas-
sium isotopes, some indication about the presence of broad features at relatively low
fields in the 39K system already existed before our study was performed [90, 93]:
this, combined with a small (negative) background scattering length, motivated us
to investigate this still not well known system, since it seemed to be finely tunable
in the weakly interacting regime. If sympathetic cooling of this atom with rubid-
ium had already been demonstrated to be efficient [40] by our colleagues at LENS,
and therefore it was clear that the system was easily available within the ultracold
regime, nevertheless the achievement of a Bose Einstein condensate of 39K was not
so straightforward: in particular, due to the negative sign of the zero field scattering
length of this system, it was evident that its condensation could take place just by
stabilizing the sample in the vicinity of a Feshbach resonance. For this purpose, that
will be described in chapter 4 we have performed a characterization of this atomic
species, by means of which we could locate eight resonances with high precision,
and derive an accurate model able to describe the scattering properties of the sys-
tem.

I report here the results of Feshbach spectroscopy in three different hyperfine
states of 39K performed by observing on-resonance enhancement of inelastic three-
body losses and molecule formation, following the same techniques described for the
mixtures. The observed resonance locations are used to construct an accurate theo-
retical quantum model which explains both present and pre-existing observations
[8]. The model allows us to compute both scattering properties (evaluating back-
ground scattering lengths and resonance widths), and hyperfine-coupled molecular
levels near the dissociation limit. As I already mentioned in the case of potassium
rubidium mixtures, all this study relies on the close collaboration between our group
and Andrea Simoni.

2.3.1 Experimental detection of the 39K Feshbach resonances

We have studied Feshbach resonances in all the states immune from spin-exchange
collisions, the three Zeeman sublevels of the F = 1 manifold. The starting point of
the experiment is the absolute ground state (|1, 1〉⊕|1, 1〉) of the potassium rubidium
mixture optically trapped at a temperature of ∼ 1µK. We further lower the tem-
perature of the mixture down to 200 − 500 nK by decreasing the laser beams power
with a 2.4 s exponential ramp. During this phase we also increase the efficiency
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of sympathetic cooling between the mixture components, fixing the magnetic field
value close to the interspecies Feshbach resonance located at 316 Gauss, see subsec-
tion 2.2.4. Once the final temperature is achieved, rubidium atoms are completely
evaporated from the optical potential, and a pure sample of ultracold potassium is
available. The transfer in the |1, 0〉 (|1,−1〉) state is performed by lowering the field at
38.5 (10) Gauss, and applying a radio-frequency sweep about 28.5 (7.6) MHz. After
the atomic sample is prepared, the field is ramped up again and actively stabilized
to any desired value below 1000 Gauss.

39K presents both very narrow (B < 0.5 Gauss) and very broad resonances (B ∼
50 Gauss). Examples of two such resonances in the |1, 1〉 state are shown in Fig. 2.14.
The narrow resonance around 26 Gauss gives rise to a rather sharp, symmetric loss
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Figure 2.14: Experimental determination of Feshbach resonances in the |1, 1〉 state of
39K: (a) remaining atom number; (b) sample temperature. The hold time for the low
field (high field) resonance was 480 ms (36 ms). The curves are phenomenological
fits with Gaussian distributions.

features centered at B0. On the converse, the broad resonance around 400 Gauss
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originates a broader, highly asymmetric loss and heating feature. A possible source
of asymmetry will be discussed later. The different strength of the two resonances
is indicated by the different hold time required to have about 90% peak losses; this
amounts to 480 ms for the narrow resonance and 36 ms for the broad one.

The same procedure was repeated for the two other hyperfine states. In total
we have studied eight Feshbach resonances, whose centers are listed in first column
of table 2.5. For most broad resonances, we have found the asymmetry in loss and
heating profiles similar to the one shown in Fig. 2.14. In the absence of a precise
model of our system, we have fitted the experimental profiles with a single Gaussian
to determine the resonance centers Bexp. The error we give on Bexp is the quadratic
sum of our magnetic-field accuracy and of the error deriving from the fit, which is
usually dominating for broad loss profiles.

|mfa〉+ |mfb〉 Bexp(G) Bth(G) −∆th(G) −µ(µB) abg (a0) (SIf)
{SIMS}

|1〉+ |1〉 25.85(10) 25.9 0.47 1.5 -33 (133)
403.4(7) 402.4 52.0 1.5 -29

745.1 0.4 3.9 -35 {113}
752.3(1) 752.4 0.4 3.9 -35 {111}

|0〉+ |0〉 59.3(6) 58.8 9.6 0.83 -18 (133)
66.0(9) 65.6 7.9 0.78 -18 (111)

471.0 72.0 3.9 -35
490.0 5.0 1.70 -28
825.0 0.032 3.92 -36 {113}
832.0 0.52 3.90 -36 {111}

| − 1〉+ | − 1〉 32.6(1.5) 33.6 -55.0 -1.9 -19 (112)
162.8(9) 162.3 37.0 1.2 -19 (133)

562.2(1.5) 560.7 56.0 1.4 -29

Table 2.5: Experimental magnetic-field positions Bexp and theoretically calculated
positions Bth, widths ∆, magnetic moments µ, background scattering length abg ,
and approximate quantum numbers (see text) of 39K l = 0 Feshbach resonances.

2.3.2 Near threshold model for 39K

As mentioned at the beginning of this section, early information about K colli-
sion properties was obtained from the analysis of photoassociation (PA) spectra of
the bosonic isotope 39K, see [90, 91]. The collision model has then been refined by
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theoretically analyzing observed shape [59] and Feshbach resonances [8] in fermionic
40K. Subsequently, the Nist/Connecticut groups have inferred potential parameters
from two-photon spectroscopy of 39K near-dissociation molecular levels [92]. Fi-
nally, cold collision (CC) measurements have been performed on 39K from our col-
leagues at LENS [40]. These different determinations are summarized in table 2.6
(scattering quantities are defined in the following). As in the case of potassium ru-

Reference aS(a0) aT (a0) C6(a.u.)
This work [45] 138.90(15) -33.3(3) 3921(8)
CC [40] -51(7)
CC [8, 60] 139.4(7) -37(6) 3927(50)
PA [92] -33(5) 3897(15)
CC [59] > −80, < −28 3813 [95]
PA [91] > 90, < 230 > −60, < −15 3813 [95]
PA [57],[90] 140+6

−9 −21− 0.045δC6 ± 20

Table 2.6: Comparison of collisional parameters for 39K determined from CC mea-
surements and PA spectroscopy of ultracold atoms. Some analysis did not determine
the value of C6, which was taken from theory (value and reference are then reported
in the third column of the table). The δC6 is the shift in C6 from the value C6 = 3897
a.u. of [82].

bidium mixtures, the present collision model developed for potassium isotopes com-
prises adiabatic Born Oppenheimer singlet X1Σ+

g and triplet a3Σ+
u interaction poten-

tials determined from spectroscopic data [86, 94]. The adiabatic potentials asymptot-
ically correlate with the dispersion plus exchange analytical form of eq. (2.31), and a
short-range correction is finally added to the adiabatic potentials to model the data
[90]. Also in the homonuclear case, experimental resonance locations are used in
a weighted least square procedure to determine the correction size. The resulting
optimized potentials are parameterized in terms of s-wave singlet aS and triplet aT

scattering lengths and of the long-range parameters Cn, n = 6, 8, 10. Resonance po-
sitions are mainly sensitive to the leading van der Waals coefficient C6, which along
with the aS,T is a parameter in the fitting procedure. In order to obtain maximum
constraint we also include in the empirical data the positions of two already known
40K resonances [8, 60], and a p-wave resonance we have recently discovered at∼ 436
Gauss in collisions of 40K |9/2, 7/2〉 atoms. We use the same potential for the two iso-
topes assuming thereby the validity of the Born Oppenheimer approximation. Result
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of the fit is:

aS = (138.90± 0.15)a0

aT = (−33.3± 0.3)a0

C6 = (3921± 8)a.u.

The final reduced value is χ2= 0.52 only. The singlet-triplet scattering lengths herein
derived agree well with previous determinations (see Tab. 2.6) and our result rep-
resents an improvement of more than one order of magnitude in aT . The C6 agrees
to one standard deviation with the accurate value of Derevianko et al. [82], C6 =
3897 ± 15a.u. If we calculate the singlet-triplet scattering lengths of 40K with the
present model, they result 104.56 ± 0.10 and 169.7 ± 0.4 respectively, in very good
agreement with [8].

I have already remarked that a magnetic Feshbach resonance arises at a value
B0 of the magnetic field when the energy of the separated atom pair becomes de-
generate with the energy of a molecular bound level. Scattering near a magnetic
resonance is fully characterized [71] by assigning B0, ∆, the background scattering
length abg, the C6 coefficient, the magnetic moment µ of the molecule associated to
the resonance with respect to free atoms

µ =
∂(Eat − Emol)

∂B
(2.41)

where Eat and Emol represent the energy of the separated atoms and of the molecule,
respectively, and the derivative is taken away from resonance. The parameters val-
ues for observed and theoretically predicted resonances are listed in Tab. 2.6. Also
Feshbach resonances due to molecular states with l 6= 0 are in principle present in
this system, even if we haven’t investigated them. In cases where resonances are
overlapping (i.e. when the magnetic width is comparable to their magnetic field
separation) we will parameterize the effective scattering length with one background
parameter abg, two widths ∆i and two positions B0,i (i=1, 2) as

a(B) = abg(1− ∆1

B −B01
− ∆2

B −B02
) (2.42)

This expression clearly reduces to Eq. (2.34) when the resonances are isolated,
|B0,2 − B0,1| ¿ ∆1,∆2. A comparison of experimental and theoretical resonance
locations in Tab. 2.6 indicates that all measured resonances with large ∆ feature
an asymmetric profile. In all these cases, the center of the gaussian fit to the loss
profiles is indeed shifted towards the region of negative scattering lengths, as in
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the case reported in Fig. 2.14. A possible explanation for such asymmetry is the
onset of mean field effects for large positive and negative scattering lengths close
to the resonance center. In fact, for B > B0 (B < B0) the density is expected to
increase (decrease) with respect to the noninteracting value. This would accordingly
vary the loss rates through their density dependencies and promote losses on region
with B > B0. In absence of a detailed model of our finite temperature system, we
made an independent experiment to determine the center of the broad ground-state
resonance in Fig. 2.14, by studying molecule association, using the scheme already
described for the heteronuclear case.
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Figure 2.15: Molecule formation at the broadest Feshbach resonance in the |1, 1〉 state
of 39K. The magnetic field is linearly swept from 410 Gauss to a final field B in 2 ms.
The resonance center B0 = 401.5(5) Gauss is determined by fitting the atom number
with a Boltzmann growth function.

In general, molecule formation can be studied in 39K, as well as in other bosonic
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systems, employing a cold but thermal sample, or a three-dimensional optical lattice
that prevents collapse of the condensate on the atomic side of the resonances and
shields inelastic decay of molecules [96]. We have used the standard technique of
adiabatic magnetic-field sweeps over the resonance from the atomic to the molecu-
lar side [77]. We start with a cold thermal gas of 39K at a temperature of 220 nK,
initially prepared at a magnetic field well above the resonance center, Bi = 410
Gauss. The field is then swept to a lower value B in 2 ms, allowed to stabilize for
0.1 ms, and suddenly after switched off. As shown in Fig. 2.15, as B crosses the reso-
nance the atom number drops to about 50% of the initial value, in the absence of any
heating of the system. This indicates that a fraction of the atoms are converted into
weakly-bound molecules. The dimers are then very rapidly lost from the trap via in-
elastic collisions. A fit using a Boltzmann growth function gives a resonance center
of B0 = 401.5(5) Gauss. This is almost 2 Gauss lower than the center of the broad
loss profile, and is consistent with both Bth = 402.4(2) Gauss and the value at which
the maximum atom loss and heating is seemingly taking place in the data shown in
Fig. 2.14, B = 402.2(2) Gauss. This agreement confirms that the global fit we make
is able to accurately fix the position of all resonances, although the broad resonances
centers are individually determined with poorer accuracy by loss measurements.

As I already showed for K-Rb mixtures, the development of the quantum colli-
sion model enables us to have a detailed knowledge of the molecular levels close to
dissociation threshold for the potassium systems: even if heteronuclear molecules
appear to be extremely more interesting than homonuclear dimers, let’s briefly see
the characterization of the potassium isotopes from the molecular point of view. In
particular, we can assign the correct quantum numbers that must be used to label the
Feshbach molecules. Neglecting weak dipolar interactions and for vanishing mag-
netic field the internal angular momentum of the dimer F = S + I is conserved.
Moreover, because of the small hyperfine splitting of 39K with respect to the split-
ting between neighboring singlet-triplet levels, S and I separately are approximately
good quantum numbers, at least for low B. Because of the spherical symmetry of
the problem, the orbital angular momentum l of the atoms is also a conserved quan-
tity. All of the observed resonances have l = 0. Zero-energy quantum numbers are
shown in Figs. 2.16, 2.17, 2.18 for the closest to dissociation levels in the |1, 1〉, |1, 0〉,
|1,−1〉 states of 39K.

As the field increases, these quantum numbers are not any longer good. In fact,
for intense magnetic fields the Zeeman energy becomes larger than both the hyper-
fine and the singlet/triplet vibrational splitting. In this regime S and I uncouple, and
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Figure 2.16: Upper panel: magnetic field dependence of the effective scattering
length for |1, 1〉 39K collisions. Dashed lines indicate the resonance positions. Lower
panel: near-threshold molecular levels for MF = 2. Zero energy is taken at the sep-
arated atoms limit. The quantum numbers shown in brackets (SIF ) are good in
general only for weak magnetic fields, see text.

precede independently about the magnetic field. The molecular quantum state can
then be identified by S, I and by the spin projections MS and MI on the quantization
axis. In the intermediate regime neither coupling scheme is accurate as singlet and
triplet levels are sufficiently close to be strongly mixed by off-diagonal hyperfine
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Figure 2.17: Same as Fig. 2.16 but for |1, 0〉 atoms and MF = 0.

interactions. However, since the axial symmetry of the problem is always main-
tained, the magnetic quantum number MF (i.e. the axial projection of F ) is always
a good quantum number. Examples of resonances arising from such mixed levels
are the 402 Gauss (Fig. 2.16), the 561 Gauss (Fig.2.17), and the 471 and 490 Gauss
(Fig. 2.18) features. One can note from the figures broad avoided crossings caused
by spin-exchange interaction between levels of different S and same F. An approx-
imate assignment constructed for low and high field by averaging the appropriate
spin operators on the molecular wavefunctions is presented in Tab. 2.5. Resonances
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Figure 2.18: Same as Fig. 2.16 but for |1,−1〉 atoms and MF = −2.

arising from mixed levels are left unassigned. Their zero-field correlation can be
easily inferred from the figures.

• Note The quantum numbers discussed above are in principle only valid away
from resonance. Actually, there is always a range of magnetic fields near reso-
nance where the amplitude of the molecular state is almost entirely transferred
to the open background channel [97], which is not represented by the same
quantum numbers as the molecule. This magnetic field region can be estimated
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as
B −B0

∆
¿ Ma2

bgµ∆
~2

M being the atomic mass, and the other parameters being already defined be-
fore. As convention, the resonances for which the right hand side term of the
above expression is rhs À 1 (¿ 1) are called open (closed) channel dominated.
When the above condition is fulfilled, the energy of the molecule takes the uni-
versal form

Emol(B)− Eat(B) = − ~2

M(a(B)− lvdW )2

having defined

lvdW =
1
2
(
MC6

~
)

1
4

and scattering can be described in terms of a single effective channel. The
present resonances range from closed channel dominated to an intermediate
situation (rhs'1): the universal behavior is only attained in a region of few
Gauss even near the broadest resonances with ∆ ' 50 Gauss. Outside this
region, at least a two-channel model based on the parameters reported in Tab.
2.6 is needed [97].

In conclusion of this section, I firstly remark that the 39K system has at least one
broad resonance (∆ ' 50 Gauss) available in each level of the lowest hyperfine man-
ifold. By virtue of their large width such resonances can be used to precisely tune
the interactions in ultracold samples: the small background scattering length makes
this system particularly appropriate for the exploration of regimes of weak inter-
actions, as well as Cesium and Lithium: for example, at the zero-crossing location
(350.4±0.4) Gauss for |1, 1〉 collisions, the model predicts a small magnetic-field sen-
sitivity ∂a/∂B = 0.55a0/G. This implies a control of a to zero within 0.05 a0 for a
field stability of 0.1 Gauss. I will discuss in detail the possibilities of such a fine tun-
ing of the interaction in a 39K gas in Chapter 4. In general, the system might allow
one to study a broad range of phenomena: from atom interferometry with weakly
interacting condensates and strongly-correlated systems in optical lattices, to molec-
ular quantum gases and Efimov physics [14, 15, 98].

Concerning the magnetic field dependence of the scattering properties of the
|1, 0〉 atoms shown 2.17 note how the magnetic-field region around 80 Gauss in
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2.3. Feshbach spectroscopy on 39K

which the scattering length of this state is small and positive (a ' 11a0) coincides
with the maximum in energy of the state: within this region an ultracold 39K sample
presents at the same time a relatively weak interatomic interaction strength and a
nearly vanishing magnetic moment. This peculiar combination is clearly interesting
for interferometric applications, and it could be object of further investigation.

Finally, we can also use the model to calculate the magnetic-field dependent scat-
tering length of the other bosonic isotope, 41K. Bose-Einstein condensation of this
species can be achieved without the need of Feshbach resonances, because of the
naturally positive scattering length [26]. Our analysis shows that even if some reso-
nances exist for magnetic fields in the range 0-1000 Gauss, they are much narrower
than in 39K, making 41K less interesting for applications where a precise tuning of
the interactions is needed.
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Chapter 3
Bose Fermi mixture with tunable
interaction

In this chapter I will discuss the experiments I performed on a degenerate Fermi-
Bose mixture. The starting point of all the measurements described herein is a Fermi
gas of potassium atoms and a Bose Einstein condensate of rubidium atoms trapped
in a harmonic potential, close to an interspecies Feshbach resonance that allows us
to tune the strength of the interspecies interaction. In section 3.1 I will recall some el-
ements of theory, that will be useful to describe the observed phenomena presented
in the next of the chapter. I will briefly describe the achievement of the degenerate
mixture in section 3.2.1; section 3.2.2 is instead devoted to describe the experimen-
tal results concerning the tuning of the interaction within the degenerate mixture.
Finally, in section 3.3 I describe the first tests of molecule association we performed
within our dipole trap by means of magnetic field sweeps across resonance.

3.1 Elements of theory of quantum gases

The quantum lengthscale of a classical object is determined by the De Broglie ther-
mal wavelength λDB = h/(2πMkBT )1/2, h being the Plank’s constant, kB the Boltz-
mann’s constant, T and M the temperature and the mass of the particles of the
gas. If the mean inter particle distance n−1/3 is sufficiently low (n being the mean
density of the gas) and the temperature of the sample sufficiently high such that
λDB/n−1/3 ¿ 1, the system can be very well described by classical thermodynam-
ics, that allow us to derive the spatial and momentum distribution of the particles,
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3. BOSE FERMI MIXTURE WITH TUNABLE INTERACTION

and the thermodynamical quantities of interest. On the contrary, as the temperature
of a gas approaches zero, the quantum nature of the composing particles becomes
apparent (see the schematic picture in Fig. 3.1), and this can modify macroscopically
the shape and the dynamic of the sample, significantly moving away from classical
behavior. A different description is then needed, involving the quantum-mechanical
features of the gas.

Temperature

Classical Quantum

Figure 3.1: Crossover from classical to quantum behavior of an atomic gas as a func-
tion of the temperature and for fixed density: at high temperatures the atoms are
distinguishable and the thermal De Broglie wavelength λDB is small compared to
the interparticle distance. Decreasing the temperature, λDB becomes comparable
and then larger than the interparticle distance: the atoms lose their individual iden-
tity, interference between matter wave packets occur and quantum description is
needed.

In nature two different kind of particles are present: fermions and bosons. For the
first ones, Pauli principle states that the only possible states of a system of two fermions
are those that can be represented by vectors that are antisymmetric under the exchange of the
two particles. For a system composed of more than two fermions the only possible states are
those represented by vectors that are antisymmetric with respect to the exchange of any pair
of particles. The states of a bosonic system, on the contrary, are represented by vectors
that are symmetric under the exchange of two particles.

As the sample is cooled down this different symmetry of the many body wave-
function generates a completely dissimilar behavior: the bosons undergo a phase
transition, known as Bose Einstein condensation, that favors the macroscopic occu-
pation of the ground state of the system. The fermions, instead, do not show any
transition and tend to occupy the lowest energy levels of the system one by one fol-
lowing the Pauli exclusion principle.
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3.1. Elements of theory of quantum gases

Let’s briefly review the main properties of a thermal sample, a Bose gas and a
Fermi gas, and of a mixture of such kind of systems, respectively, when trapped in a
harmonic potential. The following description is not exhaustive and complete, and
just wants to summarize some aspects of the physics of these systems that will be
useful in the next of the chapter in order to discuss the experimental results.

3.1.1 Thermal gas

In the case of λDBn−1/3 ¿ 1, N classical particles trapped in a harmonic poten-
tial characterized by the frequencies (ωx, ωy, ωz) arrange themselves following the
Maxwell Boltzmann distribution:

fc(E) = A exp−
E
β (3.1)

being β ≡KBT , A a normalization constant, such that
∫ ∞

0

fc(E)dE = N

and
E =

p2

2M
+

1
2
M(ω2

xx2 + ω2
yy2 + ω2

zz2) (3.2)

This means that the gas has a gaussian distribution, both in coordinate and in
momentum space, whose dimensions are set by the temperature and by the trap
geometry. The distribution of the particles in coordinate space has the form:

fc(r) =
N

(2π)3/2σ3 exp{−(
x2

2σ2
x

+
y2

2σ2
y

+
z2

2σ2
z

)} (3.3)

where the width of the gaussian along the direction i is given by

σi =

√
KBT

Mω2
i

(3.4)

and σ ≡ (σxσyσz)1/3 is the mean width of the sample. Note that in the limit of zero
temperature the dimensions of a classical gas vanish with

√
T dependence.

The momentum distribution is instead isotropic despite the asymmetry of the
trap, and is given by:

fc(k) =
N

(2π)3/2σ
3/2
k

exp(−k2
x + k2

y + k2
z

2σ2
k

) (3.5)

indicating p = ~k and having defined σk =
√

MKBT
~2 .
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3. BOSE FERMI MIXTURE WITH TUNABLE INTERACTION

In general, in the experiments, all information about the system- like the spatial
and velocity distribution, the presence of excitations in the gas etc.-, are obtained
by taking an absorption image of the atoms. One can reveal the particles in two
ways: by means of in situ imaging, that gives the spatial atom distribution within
the harmonic potential, or after a certain expansion time, once the trapping potential
is switched off: the expansion of the thermal gas is ballistic and the imaged spatial
distribution of the expanding cloud can be directly related to the initial momentum
distribution as texp → ∞. The time evolution of the widths of a thermal sample is
the following (i=x, y, z):

< r2
i > (t) = σ2

i (0)(1 + ω2
i t2) (3.6)

Therefore, observing the shape of the system in a plane perpendicular to one of the
trap axes (e.g. y axis) as a function of the time of flight, one will see the gas changing
its aspect ratio from

AR(0) =
σz

σx
(0) =

ωx

ωz

in the case of in situ image, to the asymptotic value

AR(t →∞) = 1

that reflects the isotropy of the momentum distribution described above.

3.1.2 Fermi gas

I consider here a gas composed by N identical fermionic atoms trapped in a har-
monic potential: the single particle hamiltonian will be then of the form:

H =
p2

2M
+

1
2
M(ω2

xx2 + ω2
yy2 + ω2

zz2) (3.7)

I suppose here in the following to work in the zero temperature limit1: the problem
must be treated quantum-mechanically, and the spectrum of the three dimensional
harmonic oscillator (3.7) is well known :

E(nx, ny, nz) = ~ωx(
1
2

+ nx) + ~ωy(
1
2

+ ny) + ~ωz(
1
2

+ nz)

Remember also that the ground state of the harmonic oscillator is a gaussian of the
form:

ψ0(r) = (
Mω

π~
)3/4 exp[−M

2~
(ωxx2 + ωyy2 + ωzz

2)] (3.8)

1A more exhaustive description of the Fermi gas at finite temperature can be found, for example, in
[99].
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3.1. Elements of theory of quantum gases

where ω = (ωxωyωz)1/3 is the geometrical average of the frequencies of the trap.
The width of the ground state along the i-direction is given by aho,i = (~/Mωi)1/2,
that is the size

√
〈x2

i 〉 of the ground state of (3.7).
Since the Pauli exclusion principle forbids the multiple occupation of a single

energetic level, in the lowest energy configuration the fermions will occupy one by
one all the energy levels of the system until the last is filled. In general, the energy
of the highest level is called the Fermi energy EF , and it corresponds to the Fermi
temperature TF =EF /kB . In general the ratio between the temperature T and TF ,
T/TF , defines the degree of degeneration of the system. Indeed, if T/TFÀ1, the
probability that a single quantum state is occupied is low and the system is classical,
while if T/TF≤1 the system enters in the degenerate regime.

For describing the fermionic atoms in the low temperature limit, the Maxwell
Boltzmann distribution must be replaced by the Fermi-Dirac distribution that is
given by:

fF (E) =
1

e
(E−µ)

β + 1
(3.9)

where µ is the chemical potential and β has been defined above. In the case of T = 0,
the chemical potential is just the Fermi energy, µ = EF , and the Fermi distribution
reduces to the simple form:

fF (E) =

{
1 for E≤ EF

0 otherwise

Note that the expression above is anyway a good approximation even for finite tem-
peratures, provided that T ¿ TF , see [100]. In the momentum space, this corre-
sponds to define a sphere of radius kF ≡ (2MEF /~2)1/2: i.e. at T = 0, all the
particles of the system must have momentum k ≤ kF and all momentum states with
k ≤ kF are occupied.

In general, if ~ωi ¿ kBT for i = x, y, z, it is possible to neglect the discreteness
structure of the harmonic oscillator levels, and then to write the density of states as
follows:

g(E) =
E2

2(~ω)3
(3.10)

At the mean time, if also the condition T ¿ TF is fulfilled, one can employ the
density of states (3.10) and approximate the Fermi distribution with the simple step
function (3.1.2), and therefore one can easily evaluate the expression for the Fermi
energy:

N =
∫ EF

0

dEg(E) (3.11)
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3. BOSE FERMI MIXTURE WITH TUNABLE INTERACTION

from which it follows the explicit expression for the Fermi energy:

EF = ~ω[6N ]1/3 (3.12)

The first important information it is possible to get from (3.12) is the size of the Fermi
gas, given by:

RFi = [2EF /Mω2
i ]1/2 (3.13)

i = x, y, z. In terms of the harmonic oscillator length, the Fermi radius is given by:

RF,i = aho,i

√
ω

ωi
(48N)1/6 (3.14)

Note that the mean dimensions RF = (RF,xRF,yRF,z)1/3 of the trapped Fermi cloud
will be in general much greater than the ground state size of the trap aho,i, as a
consequence of the Pauli exclusion principle, that induces an effective "repulsion"
between fermions in the trap (Fermi pressure) and forbids to the fermions to occupy
the ground state of the system even at very low temperature.

In order to find out the spatial and momentum distribution of the Fermi gas
trapped at T = 0 in the harmonic confinement (3.7), let’s define a "local" Fermi
wavenumber kF (r) by:

~2k2
F

2M
+ V (r) = EF (3.15)

The spatial density n(r) is given by the volume of the Fermi sea in momentum space
times the density of state 1/(2π)3, i.e.

n(r, T = 0) =
k3

F (r)
6π2

(3.16)

with the assumption that n(r) 6= 0 only if |r| < RF . If we substitute (3.15) inside
(3.16), we obtain:

n(r, T = 0) =
2ME

3/2
F

6~2π2
[1− (

Mω2
x

2EF
x2 +

Mω2
y

2EF
y2 +

Mω2
z

2EF
z2)]3/2 (3.17)

The cloud is an ellipsoid with diameters RF,i in the x, y, z directions respectively,
and the aspect ratios taken along any imaging direction are the same as that of a
classical gas in the same potential. The momentum distribution for a Fermi gas can
be obtained similarly to (3.17) and it results to be:

n(k, T = 0) =
N

k3
F

8
π2

[1− |k|2
k2

F

]3/2 (3.18)
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3.1. Elements of theory of quantum gases

where the maximum wavenumber populated is kF = (48N/R3
F )1/3. As for classical

gases, the momentum distribution of a Fermi gas is isotropic despite the anisotropy
of the trap due to dependence of (3.18) only from the magnitude of k.

In the case of Fermi gas, the evolution of the expanding cloud after release from
the trap is similar to the one described above for thermal samples: from equation
(3.18), we see that even in this case, we expect to have a complete isotropic expansion
of the cloud. Indeed, solving the Boltzmann transport equation [101] for this case,
and then extracting the temporal evolution of the radii of the Fermi gas, we get:

< r2
i > (t) =

1
4
R2

F,i(1 + ω2
i t2) (3.19)

(3.20)

that, except for the initial dimensions and shape, is analog to the classical gas case.
Consequently, the evolution of the aspect ratio of the Fermi gas will be of the same
kind of that of a thermal sample trapped into the same potential.

3.1.3 Bose gas

The fact that the many body wavefunction of a system of N bosons must be sym-
metric under the exchange of any couple of particles causes that, as the quantum ef-
fects become visible (λ3

DBn ∼ 1), the gas is no longer well described by the Maxwell
Boltzmann distribution function (3.1), that must be replaced by the Bose Einstein
distribution function [100]:

fB(E) =
1

e
E−µ

β − 1
(3.21)

where µ is the chemical potential. Note that, as in the case of the Fermi distribution
function, at hight temperatures the (3.21) is approximately:

fB(E) ' fc(E) = e−
ε−µ

β (3.22)

i.e. the classical case (3.1). Defining the fugacity as Λ = exp(µ
β ), the relation (3.21)

can be written as:

fB(E) =
Λ

e
E
β − Λ

(3.23)

It is evident that 0 < Λ < 1: assuming that E = 0 is the energy of the ground state,
(3.23) becomes:
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3. BOSE FERMI MIXTURE WITH TUNABLE INTERACTION

fB(E = 0) =
Λ

1− Λ
(3.24)

that is the occupation number fB(E = 0) of the lowest energy level of the system,
that can be extremely large if the fugacity Λ goes to 1. It is possible to show that the
mean occupation number of all the other energy states with energy bigger than zero
cannot exceed a certain value fixed the temperature T [102]. This means that all the
other atoms that are added to the system must occupy the lowest possible energy
level, the ground state, whose population becomes then macroscopically large. It
can be shown that the onset of the degenerate regime is reached for a critical value
for the quantity nλ3

DB , precisely [103]

nλ3
DB = 2.6 (3.25)

Eq. (3.25) simply says that when the mean interparticle distance d ∝ (n)−1/3 is
larger than the DeBroglie wavelength λDB then we lose completely the possibility of
distinguish the particles between themselves, because the wave-packets associated
to each atom start to interfere. The system must be described by quantum mechanics
laws, and in particular, in the case of N identical bosons by a single wavefunction,
namely the order parameter: at this point the system is said to be a Bose Einstein
condensate (BEC).

It is possible also to show ([103]) that in the case of a cylindrical potential (ωa =
λωr),

N −N0 =
ζ(3)
λ

(
kBT

~$
)3 (3.26)

where N0 is the condensate fraction and ζ(x) is the Riemann function. If we set
N0 = 0, then we can obtain the expression for the critical temperature TC :

TC =
~ωr

kB
(
Nλ

ζ(3)
)1/3 = 0.94

~
kB

ωr(Nλ)1/3 (3.27)

Combining Eq. (3.26) and Eq. (3.27) we get the T-dependence of the condensate
fraction:

N0

N
= (1− T

TC
)3 (3.28)

In the case of an ideal gas of bosons at zero temperature trapped in a harmonic
potential (3.7) the description of the system is trivial: every atom is described by
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3.1. Elements of theory of quantum gases

means of the wavefunction given by the expression (3.8), and the density distribu-
tion of the trapped condensate is given by ∼ N |ψ2

0(r)|, normalized to the total atom
number N. This has a gaussian shape, as in the thermal gas case, but now the width
of the envelope (along the direction i), instead of being σi =

√
KBT
Mω2

i
, it is given by

aho,i/
√

2 =
√

~
2Mωi

. The peak density is proportional to the condensed atom num-
ber, while the extension of the system is "number independent".

The expansion of the ideal BEC is described by the relations:

< r2
i > (t) =

1
2
a2

ho,i(1 + ω2
i t2) (3.29)

(3.30)

and in this case the aspect ratio evolves from

AR(0) =
aho,z

aho,x
(0) =

√
ωx

ωz

in the case of in situ image, to the asymptotic value

AR(t →∞) =
√

ωz

ωx

that differs both from the thermal gas and the Fermi gas expansion.
However, in real situations bosonic condensed atoms strongly differ from the

ideal case, and the effects of atom atom interaction deeply affect the behavior of the
condensate: if we "turn on" the interaction between particles spatial shape, momen-
tum distribution, evolution of the cloud after release from the trap, are influenced by
such interaction, and the scenario changes completely.

The dilute nature of these system (the mean interparticle distance is almost ten
times the range of the interatomic force), allows to describe the interaction between
atoms by a single parameter, the s-wave scattering length, a, see (2.1.1), and the
complex effective atom atom interaction can be described by means of a mean field
potential, given by

U =
4π~2a

M
n(r) ≡ gn(r) (3.31)

having defined the coupling constant g = 4π~2a/M . Remember that the sign of the
scattering length sets the nature of the interaction: in case of positive (negative) sign
of a, the interaction between atoms create a repulsive (attractive) contact potential.
Within the mean-field approximation, the ground state of the system is obtained by
solving the the Gross-Pitaevskii equation (GPE):

∂

∂t
Φ(r, t) = (−~

2∇2

2M
+ Vext(r) + gn(r, t))Φ(r, t) (3.32)
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3. BOSE FERMI MIXTURE WITH TUNABLE INTERACTION

with n(r) = |Φ(~r, t)|2. In this approximation it is possible to write the wavefunction
as Φ(r, t) = φ(r)exp(−iµ/~) and the (3.32) as:

(−~
2∇2

2M
+ Vext(r) + gφ2(r))φ(r) = µφ(r) (3.33)

where µ is the chemical potential and must be normalized to the total number of
atoms.

Note that the ground state of (3.33) not always exists: in the case of attractive
interaction, the solution exists only if the number of condensed atoms doesn’t exceed
a critical value ([103]):

Ncrit|a|
aho

= 0.575 (3.34)

aho being the mean oscillator length
√

~
Mω and ω ≡ (ωxωyωz)1/3. If the atom number

exceeds this critical value, within few time, set by the trap frequencies, the system
collapses: essentially due to the mean field potential the system minimizes its energy
if the density at the center of the BEC increases; this causes a dramatic increase of the
three body losses rate, that causes the destruction of the condensate [104].

The solution of (3.33) is particulary simple if the mean field energy is positive and
larger than the kinetic energy (Thomas-Fermi regime):

n(r) = φ2(r) = g−1[µ− Vext(r)] (3.35)

Since the trapping potential is quadratic, the shape of the density profile is an in-
verted parabola. The Thomas-Fermi (TF) approximation is valid only if Na/aho À 1,
thus for large number of atoms and/or large interaction strength. From the nor-
malization on the number of atoms, it is possible to obtain the expression for the
chemical potential µ:

µ =
~ω
2

(
15Na

aho
)2/5 (3.36)

It is also possible to write down the expression for the radius of the condensate in
the TF regime,

Ri = (
2µ

Mω2
i

)1/2 =
ω

ωi
aho(

Na

aho
)1/5 (3.37)

defined as the position along every trap axis i at which the density (3.35) vanishes.
The mean square radius for every direction i in the three dimensional case is given
by √

〈x2
i 〉 = Ri/

√
7 (3.38)
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3.1. Elements of theory of quantum gases

The effect of the interaction is then to increase the size of the condensate with
respect to the noninteracting case and to give a dependence of the radius from the
number of atoms. Furthermore, the value of the density in the center of the trap is
n(0) = µ/g and if we compare it with the one found in the noninteracting regime,
we get:

n(0)
nho

∝ (
Na

aho
)−3/5 (3.39)

i.e. n(0) decreases if N increase: this is another effect due to the repulsive interaction
between the atoms in the BEC.

The mean field interaction causes not only the modification of the shape of the
in trap distribution with respect to the ideal case, but also of the ballistic expansion
of the BEC [103]: after release from the trap, the mean-field energy is transformed
in kinetic energy. Within the Thomas Fermi approximation and for a cigar shaped
potential (frequencies ωr and ωa ≡ λωr ¿ ωr) one finds the following analytic ex-
pansion laws [105] for the axial and radial dimensions of the BEC respectively:

Rr(t) = Rr(0)
√

1 + τ2

Ra(t) = Ra(0)(1 + λ2[τarctanτ − ln
√

1 + τ2]) (3.40)

where τ ≡ ωrt. The velocity of the expansion is determined from the initial confine-
ment of the cloud: the most confined directions expands faster. To understand this,
consider that the interaction is density dependent (U = gn) and in particular, if we
take the gradient of the mean-field potential, (∇U ≈ g∇n), one can see that the mean
field force acting on the atoms when the trapping potential is switched off is larger
in the more confined direction. Note that this causes an evolution of the aspect ratio
from

AR(0) =
Rr(0)
Ra(0)

=
ωa

ωr
= λ

to the asymptotic value
AR(t →∞) =

π

λ

differing from the one relative to thermal, Fermi or ideal Bose gases.

3.1.4 Thermal Bose-Fermi mixtures.

In this subsection I want to point out few characteristics that distinguish a ther-
mal mixture of bosons and fermions from a single component thermal gas: in partic-
ular, I’ll focus on the description of the effects induced by three body processes that
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3. BOSE FERMI MIXTURE WITH TUNABLE INTERACTION

take place within the mixture, since a different behavior with respect to homonu-
clear systems (see section 2.1.5) is expected, and because this may help to better
understand the comparison between a thermal and a degenerate tunable mixture.
In particular, I suppose here that the two atomic species have the same tempera-
ture, but different masses and different trapping frequencies that, if we assume a
harmonic confinement, are related by the relation:

ωi,F =
√

MB

MF
ωi,B (3.41)

Recalling the relation (3.4) derived for the thermal single species gas, one can see
that once the temperature of the components is the same, also their widths will be
the same:

σi =

√
KBT

MBω2
i,B

=

√
KBT

MF ω2
i,F

(3.42)

Along the vertical direction, due to their different masses, the two species have dif-
ferent equilibrium positions within the harmonic trap (different gravitational sags):
the centers of mass of the two atomic clouds are shifted by

z0 = g(
1

ω2
z,B

− 1
ω2

z,F

) (3.43)

In the case of potassium and rubidium, the relative sag is ∼ 13µm for ωz,B = 100
Hz, being potassium cloud placed at a larger height than rubidium. Therefore, gen-
erally the overlap between the two clouds will be only partial, and the lower is the
temperature of the system, the smaller will be the overlap region. As an example, in
Fig. 3.2 is plotted the density distribution along the vertical direction of two clouds
of potassium and rubidium, whose population are in a ratio 1:2, at temperatures of
1000, 500 and 300 nK respectively, with a trapping frequency for rubidium equal to
30 Hz along the vertical direction: the overlap region is only partial, and it is reduced
as the temperature of the samples is lowered.

This causes a peculiar behavior of three body losses: in the homonuclear case, we
have said (see section 2.1.5) that three body recombination always causes a heating of
the sample, since the collisions preferentially take place within the denser part of the
thermal cloud. In the heteronuclear mixtures in general this is not necessarily true:
in fact, due to the presence of a sag, under certain conditions of trapping frequencies
and temperature the three body processes can cause losses of atoms that have an
energy larger than the mean thermal energy; in fact, as the temperature is reduced,
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Figure 3.2: Density distribution along the vertical direction for a thermal sample of
rubidium and potassium atoms confined in a trapping potential of 30 Hz for Rb for
three different values of the common temperature. The populations of Rb (black line)
and K (red line) are in a ratio 2:1, and the relative gravitational sag is approximatively
150 µm. As the temperature is lowered, the overlap region decreases.

the three body processes take place preferentially in the periphery of the two clouds,
i.e. in the warmer parts. This can be seen in the Fermi Bose mixture by evaluating the
mean energy of an atom undergoing a three body collision. As I already discussed in
chapter 2, such processes at low temperatures mainly involve for statistical reasons
two bosons and one fermion (B + B + F → BF + B): therefore the rate equations
for the mixture are given by:

ṅB = −K3n
2
BnF (3.44)

ṅF = ṅB/2 (3.45)

Let’s evaluate the mean potential energy U of a bosonic atom with the weighting
function n2

BnF , being both nB and nF gaussian distributions always with the same
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temperature and displaced along the vertical direction by z0 given by (3.43). The
result is:

〈U〉 =
∫

Un2
BnF dV∫

n2
BnF dV

=
1
2
kBT +

1
18

ω2
B,zz

2
0 ≡

1
2
kBT + kBTS (3.46)

having defined an effective temperature TS that is present because of the different
sags of the two atomic species: note that this extra temperature is TS ∝ ω−2

B,z . The
same mean energy is associated to the fermionic atoms involved in three body pro-
cesses. Therefore, one can see that in the case of Fermi Bose heteronuclear mixture
the energy released from atoms undergoing three body collisions to the remnant
sample is given by

Erel = KB(T − TS) (3.47)

considering that the mean potential energy of an atom in the gas is given by 3/2kBT .
This quantity is usually positive, but as T ≤ TS it can become zero or even negative:
therefore, in this case three body losses do not affect, or even can lower, the sample
temperature. This is a peculiar feature of heteronuclear mixtures that in principle
can be observed in experiments. A simple model can be built up for the evolution
of the atom number and temperature of the mixture: I follow the ideas developed
in [74], assuming an immediate thermalization of the two components, in such a
way that at every time the temperature of the two gases is the same. Integrating
the rate equations (3.44), and considering (3.47), one can obtain the following system
of coupled equations for the atom number and the temperature of the Bose Fermi
mixture:

dNB

dt
= −γ

N2
BNF

T 3
exp(−6TS

T
) (3.48)

dNF

dt
=

1
2

dNB

dt
(3.49)

dT

dt
=

γ

2
T − TS + Th

T 3

N2
BNF

NB + NF
exp(−6TS

T
) (3.50)

where TS has been defined above, Th is a parameter that takes into account the extra
heating due to the presence of a weakly bound state in the vicinity of a Feshbach
resonance (see section 2.1.5 and [74]) and where γ ≡ K3(MBω2/2πkB)3/

√
27. The

three coupled equation can be solved numerically, and in Fig. 3.3 I plot the evolu-
tion of temperature of a sample of 5 · 106 Rb and 3 · 105 K atoms loaded at different
TLOAD in a trap that for Rb has frequencies (100, 100, 30) Hz along (x, y, z): for these
trap parameters TS ∼ 460 nK2; I assume here Th = 0, that is reasonable for the bo-

2Consider that, since TS ∝ ω−2
B,z , in real experiments one can hope to observe this effect only working
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Figure 3.3: Evolution of temperature of a sample of 5 · 106 Rb and 3 · 105 K atoms
loaded at different TLOAD in a trap that for Rb has frequencies (100, 100, 30) Hz
along (x, y, z): for these trap parameters TS ∼ 460 nK. As the loading temperature
is decreased, the heating due to three body collisions decreases, until TLOAD = TS ,
for which the sample does’nt heat up; for even lower initial temperatures the three
body processes cool down the sample, showing a behavior that is not present in the
homonuclear case.

son fermion mixture we are working with, since the molecular binding energy of
the 40K 87Rb Feshbach molecules greatly exceeds the trap depth, even at few hun-
dred mGauss far from the center of the broadest resonances. One can see that as
the loading temperature is decreased, the heating due to three body collisions de-
creases, until TLOAD = TS for which the sample doesn’t heat up; for even lower
initial temperatures the three body processes cool down the sample. The same effect
can be seen considering the main energy released in the system from an atom lost
for a three body process (3.47) normalized to the mean energy 3/2kBT :

Erel =
2
3
(1− TS

T
) (3.51)

with shallow vertical confinement; for example, for a trapping frequency of 100 Hz TS ∼ 40 nK, that is
usually well below the onset of the degenerate regime for both the mixture components.

77



3. BOSE FERMI MIXTURE WITH TUNABLE INTERACTION

250 500 750 1000 1250 1500 1750 2000
-2.1

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0.0

0.3

0.6

TS

R
el

at
iv

e 
re

le
as

ed
 e

ne
rg

y

Loading temperature (nK)

2/3: homonuclear case

Figure 3.4: Behavior of Eq. (3.51) versus the loading temperature assuming ωB,z = 30
Hz: for low temperatures the released energy is negative, i.e. three body processes
cool down the sample. As the temperature exceeds the value TS (that in this case
is 460 nK) the three body collisions cause a heating of the sample, that saturates at
T/TS À 1 to the value 2/3, of the homonuclear case.

as a function of the loading temperature. In Fig. 3.4 is plotted the relation (3.51) for
a trapping frequency ωB,z = 30 Hz, corresponding to TS = 460 nK; it can be seen
that the lower is the temperature, the greater is the "evaporative cooling" effect for
three body losses. In the opposite limit, instead, as T exceeds TS , the relative energy
is positive- therefore three body processes heat up the sample-, and saturates at the
value 2/3 of the homonuclear case for T/TS À 1. Even if in the experiments involv-
ing thermal samples we have never investigated this phenomenon, the behavior of
the mixture with respect to three body losses seems to be somehow intriguing even
in the thermal regime, once T < TS condition is reached, and could be the object of
future investigations.

Note that when the interaction between the atoms is large three body losses can
deeply modify in a short time the initial configuration of the two clouds: however, in
thermal samples neither the relative center of mass position, nor the expansion after
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release from the trap are influenced by the interspecies interaction.
Finally, despite three body recombination can strongly affect the system, at least

at large scattering length values and low temperatures, the behavior of the sample
is somehow symmetric with respect to attractive or repulsive interaction, since as in
homonuclear case the K3 coefficient scales as3 C × a4

BF .

3.1.5 Quantum degenerate Bose-Fermi mixtures

I have shown above that the mean-field interaction plays an important role in the
stability of a BEC, and many of the features of the condensate are strictly related to
this interaction between the atoms. On the contrary, due to the suppression of any
collisional process, the properties of a Fermi gas, composed by identical fermions,
are simply determined by the quantum statistics (Fermi pressure) rather than an
effective interaction between the atoms. I have also described the properties of a
thermal mixture of bosons and fermions of different masses, and I remarked how
the two gases displace one with respect to the other within a standard harmonic
potential: the trap geometry, the sample temperature, the masses of the two species
determine the shape and relative position of the gases in the confining potential.

The situation is quite different when we consider a quantum degenerate mixture
composed by bosons and fermions mutually interacting. Indeed, in this case both
the Gross-Pitaevskii and the Thomas-Fermi equations, describing respectively the
Bose and the Fermi trapped gases, must contain an additional term describing the
interaction between the two species. This additional term is proportional to the in-
terspecies scattering length aBF and its magnitude and sign determine the behavior
of the mixture, modifying - sometimes very deeply - both the in trap behavior and
the expansion of the mixture. The ground state properties of a degenerate system
composed by a Fermi gas interacting with a Bose-Einstein condensate, trapped in a
harmonic potential, is obtained solving the following coupled equations [109]:

nF (r) =

√
2M3

F

3π2
[µF − UF (r)− 4πaBF

MBF
nB(r)]3/2 (3.52)

[− 1
2MB

∇2 + UB(r) +
4πaBF

MBF
nF (r) +

4πaB

MB
φ2(r)]φ(r) = µBφ(r) (3.53)

where φB(r) =
√

nB(r), MBF = 2MF MB/(MB + MF ) is twice the reduced mass of
the pair, and the coupling between bosons is as usual given by the s-wave scattering

3This is not completely true, since a different constant C is expected for positive or negative values of
aBF [81, 112]. However, we have never observed such asymmetry in our experiments, and also a recent
measurement of the K3 coefficient for the mixture [116] didn’t evaluate any significant asymmetry in the
three body processes.
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length aB , that in the following I consider positive, since we are dealing with 87Rb
atoms. Solving simultaneously the coupled Eq. (3.52) and Eq. (3.53), one can obtain
the density profiles of the two species. The solution of the system must be performed
numerically, and no analytical expressions exist to my knowledge for describing the
ground state of the interacting Fermi-Bose mixture, besides in the homogeneous case
[106]. Our theoretical investigation of the system relies on a mean field model at zero
temperature [107] that computes the local interaction energy and uses it as an addi-
tional effective potential for both species to evaluate the distribution of the mixture
in the trap. This procedure is done recursively until the true ground state of the
system in presence of interaction is found.

The term 4πaBF /MBF , describing the interspecies interaction, is the key param-
eter for determining the stability or the instability of this system: in fact, similarly to
what happens in the case of a BEC and the Gross Pitaevskij equation, also in Bose
Fermi mixtures the solution of (3.52) and (3.53) not always exists. If the strength of
the boson-fermion attraction becomes too large, then the mixture collapses towards
high densities. In this case the attractive mean field is not stabilized by the positive
kinetic-energy contribution or the repulsive boson-boson interaction any more, i.e.,
the gas can lower its energy by contracting and increasing the density in the central
region, see [108, 109, 110]. Consequently, three body processes destroy the degener-
ate sample within few time, set by the trapping frequencies, and a thermal sample is
left.

In the other limiting case, where the interaction between the mixture components
is large and repulsive, the bosons and fermions tend to minimize their energy reduc-
ing the overlap region between the two clouds: also in this case, not only the shape
of the samples is modified, but also the equilibrium positions of BEC and Fermi gas
are shifted, due to the presence of the additional mean field effective potential. In
the limit of large interspecies positive interaction the BEC is pushed out of the Fermi
sea, and a phase separation of the two components takes place.

I remark here that mean field interaction modifies also the evolution of the mix-
ture after release from the trap: the two degenerate systems continue to feel each
other and the mean field energy can influence the first part of the expansion: this
has been theoretically investigated [111] using a hydrodynamic description of the
system [113], and also experimentally observed [114].

Let’s now consider the degenerate regime of the mixture from the point of view
of three body processes, as a function of the strength of the interspecies interaction:
clearly these are not taken into account from eq. (3.52) and (3.53). Nevertheless, one
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Figure 3.5: In-trap density profiles of a Fermi Bose degenerate mixture of 1 · 105

Rb (red line) and 7 · 104 K (black line) atoms loaded with different strength of the
interspecies interaction. In Fig. (a) aBF = −350a0 and the two components strongly
attract each other: the Fermi sea is enclosed within the BEC, and the overlap between
the two components is large. Stronger attraction would cause the collapse of the
system. Fig. (b) shows the opposite limit of strong repulsion (aBF = +250a0) of
the two components: the BEC and the Fermi gas tend to reduce their spatial overlap
and to phase separate. In Fig. (c) the two gases lay in the trap without interacting
(aBF = 0); the two clouds are separated by the relative sag, and no modification of
the shape is induced by the mean field interaction.

can use the mean field model [107] for calculating the ground state of the system,
and investigating its behavior with respect of three body collisions, evaluating some
quantities of interest. In particular, remember what I already pointed out for the
thermal case in the previous subsection: three body losses involve two bosonic atoms
and a fermionic one, due to the statistics, and therefore the rate equations for the
system are the (3.44). Consequently, the event rate (intended as the number of events
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of three body processes per unit of time) is expected to depend on nF and nB as:

Γ3 ∼ K3

∫
n2

B(r)nF (r)dV (3.54)

where K3 ∝ a4 in the regime of large scattering lengths.
Let’s consider now, within the degenerate regime, the effect of heating-cooling as-

sociated to three body collisions already treated for thermal mixtures in the previous
subsection. Differently from the thermal case, in degenerate regime the dependence
of the event rate on the scattering length is included also within the integral, and
this makes the behavior of the system not trivial. In Fig. 3.6(a) the event rate (3.54)
is plotted as a function of the scattering length, and in the inset this is compared to a
bare a4 dependence, that is expected for thermal samples. As one can see, the event
rate is lower than in the thermal case, since phase separation occurs and lowers the
overlap between the clouds, therefore reducing the value of the integral in (3.54).
Note that the evaluation of this quantity is limited by the existence of the ground
state for large attractive interaction. Furthermore, I have already shown that three
body losses are expected to cause a heating of the sample, except for the case where
the mixture has a temperature below the "critical value" TS . As previously done in
the thermal case, also in the degenerate regime we can evaluate the mean energy per
lost particle (3.46):

〈El〉 =
∫

U(r)n2
B(r)nF (r)dV∫

n2
B(r)nF (r)dV

(3.55)

where now I consider it with respect to the mean energy associated to a boson within
the BEC. A reduced or increased overlap is expected to affect not only the three-body
loss rate Γ3, but also the ratio between the mean energy of particles in the overlap
region and the mean energy of the whole system, which determines the heating rate.
One can use the mean field model to calculate numerically the evolution of the over-
lap integral, the mean energy per lost particle and the mean energy per particle in
the system, at T=0. In Fig. 3.6(b) is shown the energy released into the condensate
per lost particle, normalized to the mean energy in the BEC:

EB − El

EB

, where: EB =
∫

U(r)nB(r)dr∫
nB(r)dr

. (3.56)

For aFB=0 the model predicts a relative energy gain of about 0.5, close tho the clas-
sical value discussed above of 2/3. The increase of heating on the aFB < 0 side and
the corresponding reduction on the aFB > 0 side are apparent. Actually, this model
indicates that three-body losses should eventually cool down the system as aFB gets
larger than 500a0, where the relative energy gain becomes negative.

82



3.1. Elements of theory of quantum gases

-500 0 500 1000 1500 2000

-0.8

-0.4

0.0

0.4

0.8

96.5

97.0

-500 0 500 1000 1500 2000
0.1
1

10
100

1000

R
el

at
iv

e 
re

le
as

ed
 e

ne
rg

y

Interspecies scattering length (a0)

0
10
20

45

46

47

48
(a)

Ev
en

t r
at

e 
(a

rb
. u

ni
ts

)

(b)

 

 

 

Figure 3.6: Losses and heating in a quantum degenerate mixture. Panel (a) In the
graph the quantity a4

BF

∫
n2

BnF dV is plotted; this is proportional to the loss rate
(3.54) as a function of interaction strength in degenerate regime. As the repulsion
between the bosons and fermions become large, phase separation occurs, and this
lowers the event rate, since it reduces the value of the overlap integral. In the in-
set is shown a comparison between the loss rate behavior in the degenerate regime
and a bare a4 dependence, typical of thermal samples where the overlap integral
is expected to not vary. Panel (b) shows the energy released in the BEC by atoms
undergoing a three body collision, normalized to the mean energy of a boson in the
BEC. As the repulsion exceeds a certain value, the effect of the three body collision
is to remove the most energetic atoms from the outer shells of the atomic clouds.

This clearly shows how in the degenerate case, in addition to the phenomena
already mentioned for thermal mixtures, mean field interaction profoundly affects
the three body processes physics. In the thermal case, for a fixed trap geometry, the
cooling effect is connected to the shapes of the clouds, that for T < TS overlap only
in a region where most energetic particles lay, and it would vanish if the sag would
be reduced. In degenerate samples, instead, this still would be observable, since it
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originates from mean field energy, that does not depend on the relative sag.

3.2 Experiments with a quantum Fermi Bose mixture

3.2.1 The route towards degenerate regime

543 544 545 546 547 548 549 550

-1000

-500

0
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1000

a B
F(
a 0
)

Magnetic field (Gauss)

Figure 3.7: Magnetic field dependence of the interspecies scattering length close to
the broadest resonance of the absolute ground state of the Fermi Bose mixture. Note
that the dispersive behavior of the bare s-wave resonance is slightly modified by the
presence of a narrow (∆ = 0.08 Gauss) s → d spin resonance located at 547.4 Gauss.

We have investigated the behavior of the Bose Fermi mixture of 40K-87Rb employ-
ing the broadest resonance in the absolute ground state of the system (|9/2,−9/2〉
and |1, 1〉 respectively), located around 547 Gauss. In order to achieve quantum de-
generacy, we start from a sample of typically 2 105 K fermions and 5 105 Rb bosons
in their absolute ground state at about 1 µK held in the optical trap, as already de-
scribed in previous chapters. The trap depth for both species is about 5 µK, and
the trap frequencies ω/2π are (120,92,126) Hz for Rb and a factor about

√
(87/40)
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larger for K. A homogeneous magnetic field is raised up, with the timescales already
described, to B∼550 G, in the vicinity of the broadest K-Rb Feshbach resonance for
these states shown in Fig. 3.7; the mixture is further cooled by reducing the depth of
the optical trap in 2.4 s and then re-compressed to the full depth in 150 ms: as already
mentioned, selective evaporation of bosons is achieved by exploiting the lower trap
depth for bosons, due to the larger contribution of gravity in shallow traps. This al-
lows us to produce samples composed of up to 105 atoms per species, at T < 0.2TC

for Rb and T ∼ 0.3TF for K, where TC=230 nK and TF =630 nK. The Bose gas has a
radius of the order of 5−7 µm, and it is completely enclosed in the Fermi gas, whose
dimensions are approximately as twice as large.

3.2.2 Thermal vs degenerate

We have at first performed a fine tuning of the interspecies interaction employing
a cold sample, at temperatures of the order of 200 nK. For the atom numbers we had
in the experiment, the critical temperature for rubidium is ∼ 180 nK, and the Fermi
temperature for potassium is ∼ 490 nK: therefore, the 40K is already degenerate,
while the bosons are still not condensed. This condition is achieved by stopping the
evaporation in the dipole trap just before reaching the fully degenerate regime, and
re-compressing the trap up to the initial depth. During evaporation, the magnetic
field is fixed at a value around 540 Gauss, sufficiently far from the resonance center
to not affect the evaporation in the dipole trap. Once the sample is at the desired
temperature, the magnetic field value is changed within few ms to values around
the resonance, and the sample is held in the trap for 100 ms. Successively, the trap-
ping potential and the magnetic field are switched off, and we let freely expand the
fermionic and bosonic clouds for 8.5 ms and 12.5 ms respectively, after which an ab-
sorbtion image is taken. In Fig. 3.8 I plot the results of the experiment, showing the
temperature of the two clouds4, and the atom numbers of bosons and fermions as
functions of the magnetic field.

As already mentioned in subsection 3.1.4, one expects that three body losses
deeply affect the mixture population and temperature, once the interspecies inter-
action is tuned towards large values: note that for the trap parameters we have
chosen (ωz/2π equal to 126 Hz for Rb, see above) the parameter TS ∼ 30 nK, well

4Concerning bosons, the real temperature is plotted. For fermions, since the mixture is already below
the Fermi temperature, I report the rescaled width of the potassium cloud, fitted as a gaussian function.
However, the mixture components are quite always in thermal equilibrium, except when they are very
close to the resonance center.
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Figure 3.8: Atom numbers and temperatures of the Fermi (red points) Bose (blue
points) mixture as a function of the magnetic field close to the broad interspecies
resonance. The sample is prepared at 540 Gauss, brought to the final value of the
magnetic field, and left there for 100 ms. Three body recombination rate is enhanced
close to the resonance center since the scattering length diverges, and losses and
heating are observed. A simulation based on Eq. (3.48) is also shown.

below both BEC critical temperature of rubidium and Fermi temperature of potas-
sium; therefore, with this measurement, we cannot observe the peculiar behavior of
"evaporative cooling" via three body processes described above. We can see that the
number of three body processes increases as we move towards the resonance, and a
strong heating accompanies the atom losses. The behavior is symmetric with respect
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to the sign of the scattering length (at least, no significative asymmetry is detectable),
both in the losses and the heating. I also show a simulation of the system, obtained
by solving eq. (3.48) for Th = 0, initializing the atom numbers and temperature to
their experimental background values, and assuming a dependence K3 ∝ a4

BF . The
agreement with the experimental data is quite good, except in the strongly inter-
acting region very close to resonance, where potassium and rubidium clouds seem
not to be in thermal equilibrium. This can be explained considering an extra heat-
ing of the bosonic cloud due to the near resonant Feshbach molecule state (Th 6= 0
close to resonance): in fact the magnetic moment of the Feshbach state relative to this
resonance is -3.25 MHz/Gauss and the trap depth is of the order of 1 MHz. Further-
more, also a weak mean field interaction can start to play a role, slightly modifying
the sample behavior, despite the degenerate regime for bosons is never reached.

Let us now consider a strongly interacting Fermi Bose quantum mixture: for in-
vestigating the BEC and Fermi gas mixture behavior versus the interspecies scatter-
ing length aBF , we further evaporate the gas, as explained in the subsection 3.2.1,
leaving the magnetic field few Gauss far from the resonance center. The physical
property of the system that is directly related to aFB is the total interspecies inter-
action energy UFB = 2π~2aFB/µ

∫
nBnF d3x, where µ is the reduced mass of the

system. As I already mentioned, each component is felt by the other one as an at-
tractive (repulsive) potential for negative (positive) aFB . At a Feshbach resonance
UFB is large, and it can substantially modify the distributions nB , nF : this can give
rise to an instability towards the collapse for aFB < 0 or bring the mixture towards
phase separation for aFB > 0, also affecting the behavior of three-body losses. We
expect the resonance center to be a sharp interface between these two opposite sce-
narios. In a first experiment the field is increased in 50 ms from Bi = 543.4 Gauss to a
final field Bf that is varied from 543.4 Gauss to 548 Gauss, in order to investigate the
region of positive and large scattering length: the BEC and Fermi gas are held at the
final value Bf for 10 ms and then released from the trap end let expand for 18 and
14 ms respectively. In order to characterize the behavior of the system in this regime,
where the two components appear to be out of equilibrium, we find convenient to
fit the bosonic and fermionic clouds with a single component gaussian function; the
resulting widths are accurate - even if only qualitative -, markers of the excitations
of the system. In particular, I focus the attention on the bosonic component of the
mixture, since it has a lower chemical potential, and it is therefore more strongly af-
fected by variations in UFB . In Fig. 3.9 the vertical width behavior of the bosonic
component as a function of the magnetic field is reported. When Bf approaches the
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Figure 3.9: Vertical width of the BEC of rubidium interacting with the Fermi gas:
the magnetic field is tuned towards the region of very large repulsive interspecies
interaction, where phase separation is expected. In fact, we observe a strong loss of
atoms from the condensate as we approach the resonance center, but no heating is
observed until the resonance is crossed. Once this happens, the mixture collapses
and a thermal sample is left. In the upper panel absorption images and density
profiles of bosons are shown for some different magnetic field values.

resonance center, we can observe a decrease of the atom number as large as 80%,
but the condensate surprisingly survives. This observation is in contrast with the ex-
pected heating associated to three body atom losses registered in thermal samples,
and agrees with the results coming from mean field model described in subsection
3.1.5: for the large positive aFB expected for B0−B < 1.5 Gauss, the two components
tend to phase separate. The separation takes place preferentially in the z-direction
due to the anisotropy originated by gravity. In this regime the two clouds overlap
only at their boundaries (see for example Fig. 3.5(b)), where the most energetic atoms
reside. Therefore three-body losses remove preferentially the warmest atoms in the
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3.2. Experiments with a quantum Fermi Bose mixture

system and do not give rise to heating.
Once the field is tuned above B0, the UFB suddenly changes sign, and the two

components tend to collapse at the center of the trap because such energy is larger
than the local intraspecies repulsive energy. The sudden increase of the density over-
lap of the two components now promotes the loss of the coldest atoms at the trap
center, with a resulting rapid heating of the system. We observe this collapse as Bf

is tuned above 546.6 Gauss, where the condensate disappears, and one is left with a
thermal gas at T ∼ 600nK. This study therefore indicates that the scattering length
changes sign between 546.6 and 546.7 Gauss. This value of B0 is in good agreement
with the value extracted from the loss feature in a thermal mixture and the from the
fit of all resonances (see Tab. 2.2). A similar behavior, even if less evident, is observed
for the Fermi component of the mixture: no appreciable heating is detectable below
546.6 Gauss, while a thermal cloud is left, suddenly after crossing the resonance cen-
ter.

The intriguing fact that two samples, individually stable and with an intraspecies
repulsive interaction, when come close to each other can become unstable due to
a too large interspecies attraction, has been a fascinating topic for the cold atomic
physics community. In the year 2002, the LENS group reported the collapse of
a Fermi gas of potassium interacting with a BEC of rubidium [28]. The observa-
tion was performed in zero field conditions, therefore in "background" interaction
strength, and could be explained only with a large and negative background inter-
species scattering length of−410a0: the result was based on the comparison between
the experimental critical point for collapse and the mean field theory predictions. A
similar observation was done few years after in the University of Hamburg in the
same experimental conditions, but for much larger atom numbers [115]: this succes-
sive measurement could be explained in terms of an interspecies scattering length of
−280a0. Both the values of the aBF derived from such experiments, strongly dis-
agree with the one coming from Feshbach spectroscopy [41]: the possibility that
now we have to control the interspecies interaction might shed new light on this
phenomenon, since our quantum collision model now allow us to know precisely
the magnetic field dependence of aBF .

Let’s see now the measurements on the negative side of resonance: we prepare
the degenerate sample at a magnetic field of 551 Gauss, well above the resonance po-
sition, and then tune it adiabatically (50 ms linear sweep) towards values Bf closer
to resonance, corresponding to a growing attraction between the mixture compo-
nents. If we hold the sample at the final Bf for 20 ms, we observe a behavior totally
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Figure 3.10: Vertical width of the BEC of rubidium interacting with the Fermi gas:
the magnetic field is tuned towards the region of very large attractive interspecies
interaction, until collapse of the system takes place. The vertical width of the bosonic
cloud is fitted with a single gaussian function. The highlighted area indicates the
magnetic field region where transition from stable to unstable system is expected.

different from the one shown in Fig. 3.9: the result is summarized in Fig. 3.10.
In fact, for given trap strength and atom numbers, the collapse is expected to take
place if aFB is negative and larger in magnitude than a critical scattering length ac.
In this case, the width of the bosonic component stays constant until Bf > 549.4
Gauss, and then starts to increase, indicating the presence of a rapid heating of the
system as a consequence of collapse. The field Bf = 549.4(2) Gauss corresponds to
ac = −390−365

−430a0, which is in good accordance with the prediction of the static mean
field model of a critical scattering length ac = −397a0 for the nominal atom num-
bers NB = NF = 4 · 104 in this specific experiment 5. Our measurements are also
in good agreement with the one made contemporaneously by the Hamburg group
and described in [78]. However, a quantitative analysis of the collapse is difficult:

5Note that, since the measurement is performed in conditions of atom numbers and trapping frequen-
cies that are comparable with the ones of [28], the mean field analysis gives a comparable critical value
for the scattering length.
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in particular the determination of the critical scattering length for which collapse oc-
curs is not so straightforward. In fact, for every observation time there is a region of
magnetic field in which the system is clearly excited, but not completely collapsed
(highlighted area in Fig. 3.10): the impossibility to have a sharp signal between
collapsed and non collapsed samples makes hard any precise measurement of the
critical parameters (compare for example the extremely sharp interface between the
regions aBF À 0 and aBF ¿ 0 of Fig. 3.9, with the smooth raise of the boson cloud
in Fig. 3.10).

An alternative way to see the asymmetric behavior of the degenerate mixture on
the two sides of the resonance, is to observe the time evolution of the system for
two fixed values of large interaction strength, +ãBF and −ãBF respectively. In Fig.
3.11 I report the evolution of the total bosonic atom number and of the condensed
fraction for two values of strong attractive-repulsive interaction: ãBF = −820+40

−40a0

and ãBF = +740+80
−70a0 respectively. The first set is taken preparing the system at

551 Gauss and then bringing it to 547.6 Gauss; the second set is acquired by prepar-
ing the sample at 539 Gauss and then bringing it to 546.0 Gauss. At the negative
interaction strength of aFB ∼ −800a0, the system is not stable against collapse: the
sample presumably starts a compression phase just after the interaction energy is
switched to a large and negative value. After a quarter of the trap period, i.e. 2.5 ms,
a maximum of three-body loss rate is observed, accompanied by a large heating of
the sample. The condensate is therefore rapidly heated into a thermal cloud, and the
loss rate decreases because of the decreased density of the samples.

In the opposite case, aFB ∼ +800a0, the system is in the phase-separation regime,
and the condensate remains stable for a much longer time interval. At a longer time
in both cases the Bose gas is heated up into a pure thermal cloud. This however
happens already at about 20 ms for negative aFB , and only at about 100 ms for posi-
tive aFB . During the whole time span, the total atom number in the bosonic sample
decreases by about 50% in the case of negative aFB and about 30% for positive aFB .
For the Fermi gas we similarly observe both atom loss and heating, which are larger
for negative aFB .

In conclusion of this section, some comments can be made:

• We have investigated for the first time a quantum degenerate Fermi Bose mix-
ture in which the strength of the interspecies interaction can be tuned over a
wide range of values. We have clear evidence of the effects of the mean field
interaction, both for large repulsion and attraction of the two atomic samples,
and we find a good agreement with the predictions of mean field theory. A
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Figure 3.11: Asymmetric behavior of the mixture in degenerate regime vs sign of the
interaction. (a) Evolution of bosonic component of the mixture for aBF = −820+40

−40a0:
total Rb atom number and condensed fraction are plotted vs time. The collapse
depletes the condensate on a timescale shorter than the trap period, and within 20
ms the sample is completely thermal. (b) Same as in (a) but for aBF = +740+80

−70a0.
The condensate remains stable for longer time and after 80 ms a small condensed
fraction is still observable.

clear asymmetry is observed in the three body processes on the two sides of
the resonance.

• A more quantitative investigation of the phenomenon of the collapse is in prin-
ciple possible, even if this would require more efforts, both experimental and
theoretical. From the experimental point of view, one should be able to distin-
guish the mean field effects from the bare three body losses at large scattering
lengths; furthermore, in the very first few ms of the evolution of the system
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one should have the ability to distinguish the effects due to the sweep in the
magnetic field needed to bring the system within the collapse region, from the
one deriving from the evolution of the system at the final Bf .

In order to analyze the problem from the theoretical point of view, one should
take into account finite temperature effects, including in the model not just
mean field interaction, but also the dynamics connected to three body pro-
cesses. Moreover, the role of the sweep in the interaction strength should also
be taken into account.

• From our measurements it appears evident that any effect of collapse takes
place on timescales of the order of a quarter of the trap period, therefore typi-
cally on the few ms scale. This is important in order to perform future experi-
ments of molecule association via adiabatic sweeps in the magnetic field.

3.3 Molecule formation

An interspecies Feshbach resonance can also be exploited to associate pairs of
atoms into KRb dimers, using the same techniques that has proven successful in the
case of homonuclear systems. The idea is simple: since the resonance takes place
in coincidence with a crossing of an atomic and a molecular state, one can adiabati-
cally convert pairs of atoms into molecules with a magnetic-field sweep. This is the
mechanism at the basis of the experimental detection of Feshbach resonances already
shown in Fig. 2.6.

The magnetic-field dependence of the atomic and molecular state involved in the
broad resonance relative to the absolute ground state are plotted in Fig. 3.12. The
sweep needs to originate in the region B > B0, where Ea < Em, and end on the
other side. A maximum ramp speed can be evaluated with a simple Landau-Zener
model developed for homonuclear gases, which describes the number of molecules
as

Nmol = Nmax(1− e−δLZ ) , where δLZ = αn∆/Ḃ, (3.57)

and α=4.5(4)×104 m2s−1 is an experimentally determined coupling constant [80].
The maximum conversion is reached when δLZ gets larger than one, which in this
case corresponds to ramp speeds smaller than 50 Gauss/ms. We find that already
sweep speed of the order of 10 Gauss/ms are sufficiently slow to reach the maximum
conversion of atoms: slower ramps cause only an increase of three body losses, with-
out giving a better conversion signal, that seems to be already saturated. Note that
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Figure 3.12: Magnetic-field dependence of the atomic (dashed line) and molecular
(continuous line) states involved in the ground-state K-Rb Feshbach resonance, cal-
culated with our quantum collisional model. The atomic state is |9/2,−9/2〉 ⊗ |1, 1〉,
while the molecular state is labeled as FRb=2, `=0, and has mixed singlet-triplet na-
ture. In order to associate molecules one can perform a sweep in the magnetic field
from above (1) to below (2) resonance. A backward sweep (3) → (1) re-dissociates
the dimers.
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our larger achievable speed is actually 10-20 Gauss/ms, since we exploit for gen-
erating them the Feshbach coils: smaller additional fast coils system can allow us
generate faster sweeps, actually experimentally unreachable.

Figure 3.13: Evolution of the atom numbers in the mixture during a downward
magnetic-field sweep at the ground-state Feshbach resonance. The sudden decrease
in atom number for both components when the field crossed the resonance center at
546.6 indicates that atom pairs are associated into KRb dimers.

Fig. 3.13 shows a series of absorption images of the mixture taken at various in-
termediate magnetic fields during a sweep over the Feshbach resonances. The sweep
is originating 4 G above the resonance, and ends after about 5 ms at a variable mag-
netic field across the resonance. The clouds are released from the optical trap right at
the end of the sweep, and the images are taken at zero magnetic field, after ballistic
expansion. Note how the number of atoms in both components drops as the field
is brought below 547 G, that we interpret as the result of molecule formation. The
transition energy of the molecules is indeed no longer resonant with the light used
to image the atoms, and molecules are therefore not detected. It is important to note
that the atoms are not lost because of three-body recombination while sweeping over
the resonance center, where aFB → ±∞. Indeed, in that case one would detect also a
strong heating of the system, which is not apparent in Fig. 3.13. Moreover, repeating
the same sweep from below to above resonance, no effect on the population of the
two species is detectable.

We can obtain some qualitative information on the process of molecule formation
in this system through simple measurements. The maximum conversion efficiency
we are able to observe is about 30-40%, that is not obtained at the lowest temper-
atures achievable in the experiment, but at temperatures around the condensation
temperature of bosons Tc. This can be qualitatively understood in terms of the sim-
ple model and of the experiments on homonuclear systems presented in [80]. One

95



3. BOSE FERMI MIXTURE WITH TUNABLE INTERACTION

expects to reach the maximum conversion efficiency when the phase space overlap
of the two components is maximum. This is reached for T=0 in the homonuclear
Fermi or Bose cases, but not for a Fermi-Bose system, where the spatial overlap of
the two samples starts to decrease rapidly as soon as T gets smaller than Tc. Instead,
we find convenient to work at temperatures below Tf : below this, and until T ≥ Tc

the efficiency recorded is almost temperature independent.
A crucial information about such molecules is obviously the stability of the molec-

ular sample. In particular, if the sample is not purified by non transferred remnant
atoms, one expects that the main mechanism of loss is due to atom-dimer colli-
sion with respect to dimer-dimer collisions, due to the fact that the molecules are
fermionic particles. Moreover, one can also infer that the more probable events
are boson (B)- dimer (BF) collisions: in fact, very close to resonance, the Feshbach
molecules are weakly bound pairs of atoms (∼ B+F), and the quantum statistic sup-
presses F+F+B collisions [81]. We have investigated this by reconverting the molecules
into atoms via a backward sweep across the resonance. At the very first stage of
our experiment, we performed backward sweeps with speeds of the order of few
ms/gauss, after ∼ 1 ms the molecules had been created: these tests never gave a
good signal of back conversion. This clearly showed us that the timescales on which
the dimers are lost and atom-dimer collisions take place is of the order of hundreds
of µs, or even less.

Therefore we have tried to reach an experimental condition where the samples
are at T ∈ [Tc, TF ], in order to have a good conversion efficiency, and with many
more fermions than bosons, in order to convert most of the bosons into molecules
and therefore limiting the events of boson-dimer collisions.

In Fig. 3.14 I report our clearest signal of molecule formation, obtained exploit-
ing the Feshbach resonance located around 598 Gauss between the |9/2,−7/2〉 and
|1, 1〉 states of the mixture. At the beginning, the number of fermions is approxi-
matively twice that of bosons, at a temperature well below Tf , with rubidium only
partially degenerate. The forward sweep is performed from Bi = 604 Gauss down
to Bf = 596 Gauss, within ∼ 500µs (sweep speed ∼ 14 Gauss/ms). The signal of
molecule association is taken by switching off the magnetic field immediately after
the field has reached Bf . The signal of molecule re-dissociation is instead taken after
(a forward and) backward sweep, from Bf to Bi, with the same speed, started after
∼ 200µ s that Bf has been reached. As one can see, after the first sweep most of
rubidium atoms disappear, passing from 30000 to 5000. The potassium population
passes from 75000 to 55000. The temperature of the sample remains almost constant
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Figure 3.14: Association and re-dissociation of Feshbach molecules in the Fermi Bose
mixture. I report the behavior of the atom number of the two species for: the initial
condition (1); after the forward sweep where the molecules are associated (2); after
both the forward and backward sweeps, where the molecules are re-dissociated into
atoms (3). The imbalance between (large) fermionic and (small) bosonic population
allows us to observe a good re-conversion signal, indicating a small loss of dimers
via atom-dimer collisions.

after the first phase: around 20000 are associated. After the second sweep, molecules
are back converted into atoms and we see that the final atom numbers approxima-
tively recover the background initial value, indicating that only few dimers were lost
between the association and the re-dissociation. Repeating the experiment with the
population of bosons comparable with or larger than the one of fermions, the signal
of associated molecules remains clear, but the one of re-converted atoms decreases
rapidly. Since our capability of performing magnetic field sweeps is limited to few
hundreds µ s, a timescale of the same order of the lifetime of the molecules in pres-
ence of remnant atoms, we can’t investigate in a more quantitative way the lifetime
of the Feshbach dimers. However, this preliminary investigation indicates that the
main decay channel of the molecular sample is inelastic collisions with free bosonic
atoms. Our qualitative observations have been confirmed by a recent experiment
performed at JILA in the group of D. S. Jin, where an accurate study of atom-dimer
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rate coefficient has been performed [116]: in fact, it results that for large and pos-
itive scattering lengths, of the order of 103 and more, the loss coefficient for BF+B
collisions increases and is almost a factor 100 larger than the one relative to BF+F
collisions. We have also investigated the possibility of revealing the molecular sam-
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Figure 3.15: Density profiles integrated along the vertical direction both of a back-
ground image and of an image taken after the association of molecules, the appli-
cation of a Stern Gerlach field that separates the dimers from the non transferred
atoms, and the re-dissociation of the molecules via backward sweep.

ple by means of a Stern-Gerlach field gradient, that spatially separates the molecules
from the remaining atoms [117]: the molecular and the atomic clouds are split in
the momentum space, and therefore also in real space after time of flight. We asso-
ciate the molecules by means of the forward magnetic field sweep, that starts at 607
Gauss and it reaches the final value 598.2 Gauss within ∼500 µs: note that this is just
200 mGauss far from the resonance center. Once the final field value is reached, we
switch off the optical potential and contemporary we turn on the QUIC field. The
rise of the gradient along the vertical direction causes two consequences: the first
one is that the atoms and the weakly bound dimers are separated, since they have
different magnetic moments. The second one is that during the fall the molecules
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are automatically re-dissociated, since they are brought towards higher field values:
therefore they cross the resonance center and are back converted into atom pairs;
we let expand the two separated clouds and take an absorption image. In Fig. 3.15 I
plot the density profiles integrated along the vertical direction for both a background
image and an image taken after the molecules have been created and the Stern Ger-
lach field has been applied. As one can see, in the second case an additional small
cloud, laying below the non transferred atoms is present. Note that due to the lim-
ited speed of the coils system actually available on the apparatus, we cannot clearly
separate them, before the molecules are lost via atom-dimer collisions.

In conclusion, the investigation we have performed so far about molecule forma-
tion, even if only qualitative, demonstrated our capability of creating KRb dimers
via magnetic field sweeps across an interspecies Feshbach resonance. We have dis-
covered that atom dimer collisions take place on the timescale of a hundred µs, but
already with sweep speeds of the order of ∼ 15 Gauss/ms, the conversion efficiency
is relatively high. Furthermore, by repeating the experiment of molecule formation
with imbalanced population of bosons and fermions, we have indication of the fact
that the main channel of inelastic decay of dimers is molecule-boson collision.
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Chapter 4
39K Bose Einstein condensate
with tunable interaction

I have shown in previous chapter how the interactions play a major role in the
properties of Bose-Einstein condensates (BECs) made of ultracold atoms: in particu-
lar they determine the stability of the system and modify its shape and dynamical be-
havior, moving it away from the ideal non interacting case, see 3.1.3. Atomic species
with naturally large repulsive interactions, such as 87Rb or 23Na, have collision prop-
erties favorable for the preparation process: their large and positive scattering length
assures the efficiency of the cooling process towards the degenerate regime, and sta-
bilizes the sample against collapse. Moreover, the fact that atoms within the BEC
interact and therefore that the system is not trivial, makes the Bose Eistein conden-
sate a unique and peculiar subject of study. The possibility to control actively the
interaction strength between the atoms enriches further the system: in fact, there is
growing interest in studying Bose-Einstein condensates where the interactions can
be precisely tuned, magnetic Feshbach resonances being the key tool in this respect.

One of the main motivations in this direction is the formation of an almost ideal
condensate: despite interactions make the BEC system so interesting, the availability
of a weakly interacting Bose gas is essential for studying phenomena where even a
weak interaction can hide the underlying physics of interest. A noticeable example
is in the field of disordered systems, where experiments performed with ideal quan-
tum gases can shed new light on the interdisciplinary phenomenon of Anderson
localization [18, 118]. An ideal BEC is also the most appropriate source for matter-
wave interferometry, combining maximal brightness with the absence of collisional
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decoherence [119]. The possibility of dynamically tuning the interactions in a BEC
could also open new directions towards Heisenberg-limited interferometry [120].

Feshbach resonances have been already observed in several bosonic gases that is
possible to bring to degeneracy, but only few of them allow a fine tuning of the inter-
actions to small values around zero. This can be performed for example in lithium,
a possibility already exploited to realize bright solitons in a weakly attractive BEC
[13]. Cesium also presents an experimentally accessible region of nearly vanishing
scattering lengths at which the small internal energy of a weakly interacting cesium
BEC has been investigated [16]. In general, the zero crossing region is characterized
by the fact that magnetic tuning allows one to lower down to vanishing values the
phase shift associated to the s-wave component of the scattering amplitude during
the collision process: the larger is the magnetic field region where this phase shift
is small, the better is the experimental control available within the weakly interact-
ing regime. The reason for which not all the atomic species offer the possibility of a
fine tuning of the interaction strength, can be easily understood if we consider the
dispersive behavior of the scattering length close to a Feshbach resonance (2.34):

a(B) = abg(1− ∆
B −B0

) (4.1)

that within the region close to the zero crossing point can be approximated as:

a(B) ∼ abg

∆
(B −BZC) (4.2)

For a fine tuning of the interaction within the region of vanishing interaction, the
most appropriate systems will be those exhibiting broad resonances and small back-
ground scattering lengths: the smaller is the slope abg/∆, the better can be the exper-
imental control of the scattering length achievable by means of the magnetic tuning.

In this chapter I report the realization of Bose-Einstein condensation of 39K. Com-
bination of broad Feshbach resonances and a small background scattering length
aK = −33a0 (see section 2.3) makes this system very promising for the study of
weakly interacting condensates. I have mentioned in Chapter 1 that sympathetic
cooling with 87Rb works for 39K as efficiently as for the other potassium isotopes,
but condensation is prevented by the negative value of aK . 39K can be brought to
quantum degeneracy by a combination of sympathetic cooling with 87Rb and direct
evaporative cooling, exploiting the resonant tuning of both inter- and intra-species
interactions at Feshbach resonances.

Presence of one broad homonuclear Feshbach resonance allows us to tune aK in
the condensate from large positive values to small negative values. The possibility
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of precisely adjusting aK around zero is demonstrated by studying the condensate
expansion and its stability.

4.1 Achievement of a 39K BEC
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Figure 4.1: Sympathetic cooling efficiency versus the applied bias magnetic field,
after the first stage of evaporation into the optical trap. As the interspecies scattering
length is increased going close to the interspecies Feshbach resonance, the increased
elastic cross section makes the cooling process more efficient. The large temperature
values reported around 325 Gauss correspond to the presence of the resonance zero
crossing.

The starting point is a mixture of typically 106 rubidium and 6×105 potassium
atoms at 800-1000 µK in their absolute ground state, held in an optical potential. Re-
member that the interspecies scattering length is aKRb = 28a0, and this makes the
efficiency of sympathetic cooling relatively low, considering also that as the trapping
beam intensity is lowered the overlap between the mixture components is reduced
(see Fig. 3.2). To overcome this problem, we exploit the possibility of tuning the
interspecies scattering length, by means of a Feshbach resonance located at ∼ 318
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Figure 4.2: Scheme of both inter- and intra-species resonance features within the 300-
400 Gauss region. The first part of evaporation is performed close to the heteronu-
clear resonance (red line), in order to increase the efficiency of sympathetic cooling.
Once a temperature of ∼ 200 nK is approached, we move close to the homonuclear
resonance (black line), where we stabilize the potassium against collapse by tuning
the scattering length to positive values, and perform the last 1 s evaporation ramp.
The hatched area shows the magnetic field stability region of the BEC of 39K.

Gauss: before starting lowering the trap depth, we switch on the magnetic field and
fix it in the vicinity of the heteronuclear feature. A larger scattering length causes an
increase of the sympathetic cooling efficiency, since the elastic cross section scales as
a2

KRb. We then lower the trap beams intensity with exponential ramps of 2.4 seconds
and with time constant of 450 ms, at the end of which we record the temperature of
the rubidium and potassium clouds by taking an absorption image. We have per-
formed a previous characterization of this first stage of the evaporation, plotting the
temperature of the gases versus the magnetic field, i.e. versus the interspecies in-
teraction strength, see Fig. 4.1. As one can see, the sample temperature strongly
decreases as aKRb is increased towards values of the order of ≥ 100a0. Obviously,
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the interaction strength cannot exceed too large values, otherwise three body recom-
bination can start to affect the sample: a competition between a better efficiency and
a detrimental increase of three body losses sets the best strength at which it’s conve-
nient to perform the evaporation. Experimentally we find that sympathetic cooling
is optimized at a field of 316 Gauss, where aKRb ∼ 150a0. At this magnetic field the
homonuclear 39K cross-section is still small, aK ∼ −33a0. Note that also the zero
crossing position relative to the interspecies resonance is clearly visible around 325
Gauss, evidenced by a large increase of the temperature, similarly to what I showed
in Fig. 2.9.
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Figure 4.3: Phase transition to a 39K BEC. The three images are taken at different
times during the final stage of forced evaporation in the optical potential, after re-
lease from the trap and 15 ms of ballistic expansion. The profiles are obtained by
vertically integrating the column density.

When both gases are close to quantum degeneracy (T ∼ 150 nK) potassium is
not stabilized against collapse, unless aK is turned to positive values. We do this by
shifting the magnetic field in proximity of the 52 Gauss-wide 39K resonance, centered
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at 402.4 Gauss, and we continue the evaporation for 1 s, see Fig. 4.2.
Due to the different trap depths for the two species, Rb is soon completely evapo-

rated and further cooling of K relies just on intra-species collisions. Since the last part
of the cooling process cannot rely on sympathetic cooling, it is convenient to have
a scattering length not only positive, but also large. We find for this phase an opti-
mal scattering length aK ∼ 180a0 obtained for B=395.2 Gauss. At this field the two
species are only weakly coupled, since aKRb ∼ 28a0. Fig. 4.3 shows the phase tran-
sition of the K cloud to a Bose-Einstein condensate, detected via absorption imaging
after a ballistic expansion. The critical temperature we measure is around 150 nK,
and the condensates we can produce contain up to 105 atoms. The frequencies of
the optical trap at the end of the evaporation are ω/2π = (65, 74, 92) Hz in the (x,y,z)
directions respectively.

4.2 The expansion of the BEC

Once the condensate is produced, aK can be further tuned, in order to explore
the magnetic-field region below the homonuclear Feshbach resonance in which the
condensate is stable. The starting point is a pure BEC created at B0=395.2 Gauss. We
then adiabatically bring the field to a final field Bf in 30 ms. After 5 ms, the optical
trap is switched off and the cloud expands for 31.5 ms before absorption imaging is
performed with a resonant beam propagating along the y direction. The magnetic
field is switched off just 5 ms before imaging, to ensure that aK does not change
during the relevant phases of the expansion, modifying the mean field energy during
the time of flight. Examples of absorption images are shown in Fig. 4.4. In Fig. 4.5 I
plot the measured atom number and the mean width σ = (〈x2〉 + 〈z2〉)1/2, together
with the magnetic-field dependence of aK as calculated using our quantum collision
model (see section 2.3). The stability region of the BEC of 39K is evident: on the
left, between 350.2 Gauss and 350.0 Gauss, the sudden drop of the atom number can
be attributed to a collapse of the BEC for too large negative aK . In this regime the
sample is no more in equilibrium and the presence of strong excitations is evident,
see the leftmost images in Fig. 4.4. On the other extreme, instead, the field can be
brought in proximity of the resonance center: here the BEC is depleted by three-body
recombination, whose rate is enhanced as we get close to resonance (see section 2.1.5
and [74]). For example, the lifetime of the BEC in the optical trap, which is typically
around 3 s, is shortened to about 200 ms when the field is set to 399.2 Gauss, where
aK=440(40) a0.
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Figure 4.4: Tuning of the interaction strength in a 39K BEC. Once the condensate is
prepared at B0=395.2 Gauss we adiabatically bring the field to a final field Bf in 30
ms. After 5 ms, the optical trap is switched off, the cloud expands for 31.5 ms in the
magnetic field that is switched off just 5 ms before imaging. The theoretical position
of the zero crossing, at 350.2(3) Gauss, is also schematically reported.

As the magnetic field is brought from values close to the resonance center down
to the zero-crossing region, the width of the condensate after the expansion features
a decrease by almost a factor three (see Fig. 4.5 b) and 4.4): this is due to the variation
of the interaction strength in the condensate, since at the long expansion time of this
experiment σ ∝ √

Erel, where Erel is the release energy of the condensate. The latter
quantity is expected to decrease as a

2/5
K in the Thomas-Fermi limit, i.e. for large

positive aK . Its value equals the kinetic energy of the harmonic oscillator ground
state for aK=0, and becomes even smaller for aK < 0. As the system is no more
stable against collapse, we observe also the presence of excitations into the atomic
sample.

We have now the experimental points as a function of the external applied field,
and the quantum collision model that allows us to "translate" magnetic fields into
scattering length values: combining these with a numerical solution of the Gross
Pitaevskii equation for variable strengths of the interaction, we can compare theoret-
ical and experimental data, see Fig. 4.6. Here I plot σ as a function of aK calculating
the abscissa values for the experimental data using the theoretical aK(B). Note that
the horizontal error bar is dominated by the uncertainty in the model for aK(B),
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Figure 4.5: Tuning the interaction in a 39K condensate. a) atom number; b) width of
the cloud after 31.5 ms of ballistic expansion; c) theory prediction for the scattering
length. The two dashed lines indicate the expected position of the zero-crossing and
resonance center. Condensates are either fitted with a Thomas-Fermi profile (circles)
in the region of large interactions or a gaussian profile (dots) in the region of weak
interactions. Atom number and width of uncondensed clouds are directly extracted
from the raw images (triangles).

which amounts to about 0.27 a0 in the zero-crossing region.
The decrease in σ with decreasing aK is the result of two general effects: i) a re-

duction of the condensate width in the trap, due to the reduced effect of the total
mean field energy; ii) a reduction of the interaction energy released during the first
phases of the expansion. Note in Fig. 4.6 a) the good agreement between theory
and experiment in the broad range of values of aK in which the condensate is stable.
The slow decrease of σ for moderately large and positive aK is followed by a faster
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Figure 4.6: a) Scattering-length dependence of measured (dots) and calculated (lines)
mean width σ. The two dashed lines indicate the range of variation of σ due to a
30% systematic uncertainty on atom numbers. b) Zoom into the zero-crossing re-
gion. Both condensed samples (dots) and collapsed samples (triangles) are shown.
The horizontal error bars are determined by the uncertainty on aK(B). The hatched
region indicates the critical aK for collapse as predicted by the numerical calculation,
including its variation due to the uncertainty in the atom number.

decrease in the region of the zero-crossing. Note also that the data points, both in
the ideal Bose gas and Thomas Fermi regimes, are excellently fitted by means of the
analytic descriptions that in these limiting cases are available. In Fig. 4.6 b) theory
and experiment are compared on a much smaller region around the zero-crossing,
including also the experimental data points corresponding to a collapsed cloud. The
hatched region indicates the critical scattering length for collapse ac=-0.57(20) a0 pre-
dicted by the theory for the nominal atom number we had in this experiment, N=3.5
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104. The width of the cloud keeps on decreasing as aK gets negative and increases
again at collapse. In this experiment, collapse is apparently happening at a slightly
subcritical scattering length aK=-0.2(3) a0. We speculate that this is due to the fact
that the magnetic field ramp is not more adiabatic in this region of negative aK . In
fact, although the ramp duration is much longer than the trap period, it might still
excite the monopole collective mode of the condensate which has a vanishing fre-
quency as aK approaches ac [113].

4.3 Detection of zero crossing via interferometric mea-
surements

I have shown in the previous section that the scattering length in 39K can be pre-
cisely tuned over a large range, and adjusted around zero. As I already mentioned,
this atomic species is particularly advantageous in producing a weakly interacting
condensate, since it combines a broad Feshbach resonance with a small back ground
scattering length. For the resonance we have been exploiting the theoretical model
predicts a sensitivity daK/dB ∼ 0.6a0/Gauss around 350 Gauss. Therefore, in prin-
ciple, a magnetic field stability of the order of 0.1 Gauss can allow us to tune the scat-
tering length to zero to better than 0.1 a0. This degree of control is superior to that
achievable in every other species which feature either narrower resonances and/or
larger background scattering lengths, the only exception being 7Li [13]. However,
the measurements presented above are not appropriate to verify the effective sen-
sitivity in the tuning of the scattering length experimentally available with this sys-
tem. The most precise determination of the zero crossing position, and of our current
resolution in tuning the scattering length within the weakly interacting regime, has
been performed in a recent experiment in which we exploited atom interferometry
techniques [121].

The experiment employs a tunable Bose Einstein condensate of 39K that is adia-
batically loaded from the optical trap into a vertical optical lattice V (z) = V0 sin2(2πz/λ).
The atomic system, if gravity is not counterbalanced by an external force (in our case
generated by a magnetic field gradient added to the optical potential of the crossed
trap), undergoes the well known phenomenon of Bloch oscillations [122]. I will not
enter here into the details of the experiment, and I’ll only recall the essential features
of a BEC undergoing Bloch oscillations, necessary to understand the interferometric
determination of the zero crossing position. The macroscopic wave function of the
condensate into the lattice and in presence of the gravity can be written as a coherent
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superposition of the eigenfunctions of the system, i.e. of the Wannier Stark states
ϕj (see leftmost part in upper panel of Fig. 4.7), parameterized with the lattice site
index j [123]:

ψ =
∑

j

ϕj
√

%j exp(iϑjt) (4.3)

In the absence of interaction the phase of each state evolves according to the en-
ergy shift induced by the external potential, i.e. ϑj = Mgλj/(2h). By releasing the
condensate from the lattice, a periodic pattern with period TBloch = h/(Mgλ/2) is
obtained, resulting from a macroscopic interference between different Wannier Stark
states, see rightmost part of the lower panel of Fig. 4.7. I just remark here that a mea-
surement of the frequency of such (Bloch) oscillations allows a direct measurement
of the external force. However, in real situation atoms interact, and this affects sig-
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Figure 4.7: Upper panel: scheme of the decomposition of the BEC wavefunction
in terms of Wannier Stark states. The evolution in presence of gravity induces an
oscillatory behavior of the system. This is measurable in time of flight images, i.e. in
momentum space. Lower panel: if the BEC does not interact, the interference pattern
visible in momentum space does not change after some oscillation periods. If atom
atom interaction are present, this interference pattern is destroyed after some time,
due to phase diffusion. The interference peaks in momentum space are broadened
during the time evolution, moving away from the initial distribution.

nificantly the time evolution of the system. In fact, since the occupation number
associated to different sites is not the same (Nj 6= Nk), also the mean field energy as-
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sociated to them is in general different (EMF,j ∝ aKNj 6= EMF,k ∝ aKNk), and this
must be taken into account. Since the relative occupation number is incoherently dis-
tributed, interaction causes a dephasing between the different Wannier Stark compo-
nents. Consequently, phase diffusion [124] takes place, destroying the interference
pattern, see lower panel in Fig. 4.7: the larger is aK , the faster is the decoherence
of Bloch oscillations. Generally atom atom interactions can be taken into account
introducing a complex system of non linear equations for %j and ϑj . However, in
the weakly interacting limit, %j don’t change significantly, and the extra phase terms
have a linear dependence on time, so that interaction modify only ϑj that becomes
ϑj = Mgλj/(2h) + (4π~2aK/hM)%jγj ; the coefficient γj is a term that takes into ac-
count for the site-to-site interaction. As an example, I report in Fig. 4.8 the first two
cycles of oscillations in two limiting regimes of interaction strength: aK= 100 a0 and
1 a0, respectively. As it is clearly visible, the interatomic interaction causes a signifi-
cant modification of the interference pattern in the case of strong interacting system
after just two cycles of the oscillation, while it does not have such detrimental effect
in the limit of vanishing scattering lengths. A study of the temporal evolution of the

2
h
k

b)

a)

Figure 4.8: Bloch oscillations from 0 to 4 ms, in steps of 0.4 ms, for a condensate with
a) 100 a0 and b) 1 a0 scattering length. The picture shows absorption images of the
cloud after release from the lattice. The expansion lasts 12.5 ms and the scattering
length is changed to the background value of -33 a0 only 3 ms before the images ac-
quisition. The arrow shows the momentum separation 2~k between the interference
peaks, where k = 2π/λ, λ being the lattice wavelength.
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central peak width of the interference pattern can give an estimate of the effect of the
interaction strength on the oscillating system. In particular, after sufficiently long ob-
servation times, if an interaction is still present, the central peak width will saturate
at the value corresponding to the first Brillouin zone: the initial narrow wavepacket
associated to the BEC will be spread over the whole first band of the system. We con-
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Figure 4.9: Interferometric detection of the zero crossing. Interference peak width as
a function of the magnetic field after 180 ms of Bloch oscillations. The condensate is
prepared for two different values of the scattering length, 3 a0 (red circles) and 1 a0

(black circles), and within the first 2 ms of oscillation the magnetic field is brought
to the final value. The abscissa values on the top represent the theoretical scattering
length corresponding to the applied magnetic field, calculated using our quantum
collisional model. The theoretical uncertainty on the zero crossing position is ±0.4
Gauss. The lines represent a gaussian fit to the data.
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centrate the attention on the weakly interacting regime, and perform a measurement
of the width of the peak as a function of the applied magnetic field strength. This
is done by adiabatically loading the condensate from the optical trap (characterized
by frequencies (νx, νy, νz)= (43,44,76)(Hz)) at an initial scattering length ak = 3a0

into the lattice; this has a height of s ∼ 6ER and ER = h2/2Mλ2 is the recoil energy
from absorption of a lattice photon (λ = 1032nm). The the dipole trap is switched off
and contemporarily the magnetic field is brought within 2 ms at a final value in the
region around the theoretical zero crossing position. This procedure allows to load
the cloud in the lattice with always the same initial density, that is sufficiently low
to completely exclude the effect of three body losses (see below) and to prevent the
condensate from immediately collapsing on the negative side of the zero crossing.
The system starts oscillating with a certain interatomic interaction, and after 180 ms
we switch off the lattice, and let expand the cloud that is revealed after 12 ms via
absorption imaging. The expansion is performed at a magnetic field value of 350.3
Gauss, that is reasonably close to the zero crossing position, in order to cancel the
effect due to a residual interaction during the time of flight.

In Fig. 4.9 the interference peak width as a function of the magnetic field is shown
(black dots). This reveals a minimum of the decoherence at 350.0 Gauss, that co-
incides with the position of the zero crossing (350.4 ±0.4) Gauss predicted by our
model for 39K. The parabolic trend of the data confirms that the decoherence de-
pends on the magnitude and not on the sign of the scattering length. Note that a
gaussian fit of the data points would determine the position of the minimum to be
(350.027±0.038) Gauss, i.e. with a relative uncertainty of ∼ 10−4. This indicates also
the ability we have to appreciate a difference in the interaction strength of ∼0.06
a0, corresponding to the experimental step of 100 mGauss. Moreover, note that the
system at such low interaction is influenced by a detrimental laser noise that is an ad-
ditional source of decoherence for the system: a better optical lattice (and eventually
a greater stability of the magnetic field) can allow us to perform the experiment at
longer interrogation times (and smaller field steps), further increasing the precision
of the measurement [125].

If we repeat the same investigation at higher densities, by following the same
procedure but preparing the condensate at an initial ai = 1a0, we observe a slightly
different behavior (black). In particular, a larger width of the peak on the minimum
confirms that tuning of the scattering length at the 0.06 a0 level is not enough to
completely cancel the decoherence effects induced by the residual interaction.

The slight disagreement between the experimental minimum of decoherence and
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the theoretical position of the zero crossing could also be due to the presence of a
residual dipole dipole interaction, responsible for a non vanishing d-wave contri-
bution to the total cross section. In fact, this interaction cannot be zeroed by ex-
ploiting the Feshbach resonance and therefore the total cross section cannot vanish
completely. Furthermore, the presence of dipolar interaction (that for the geometry
of this experiment has a repulsive character) could affect the effective minimum of
the interaction, moving it towards values of the magnetic field where the bare s-wave
scattering length is already negative.

4.4 Three body losses in a non interacting BEC

I have shown in previous section that 39K system, with our current magnetic
field stability of 100 mGauss, allows us to appreciate differences in the interaction
strength of ∼0.06 a0. This makes this atomic species an appealing candidate for
the achievement of a nearly ideal Bose gas, that can find interesting applications
in the field of atom interferometry with trapped degenerate gases. One of the main
advantages of such a system, is that the high degree of tunability allows us to achieve
extremely low decoherence rates, that can result in extremely long observation times;
furthermore, since the tuning of the scattering length leads also to the possibility of
controlling the size of the condensate, down to 1 µm size, one can employ the 39K
BEC for precise measurements of weak forces at the micron scale [126].

In fact, once the BEC reaches the dimensions of the harmonic oscillator for a trap
of frequencies of the order of 100 Hz (aho ∼ 1.5, µm), the peak density exceeds
1015 atoms/cm3, and in principle three body processes can seriously limit the life-
time of the system.

We have investigated this problem, evaluating the K3 coefficient for the 39K BEC
within the region of the zero crossing. In order to do this, we have taken a measure-
ment of the atom number and temperature versus time for the condensate loaded
into three different trapping geometries. The mean frequency of the harmonic trap
in the three cases is ν̄ = (48(2), 73.5(2), 96.0(2)) (Hz), respectively. Once the BEC is
produced within the way previously described, we adiabatically change the power
of one of the beams of the dipole trap, and after some tens of ms we lower the mag-
netic field from the initial value down to the zero crossing point; we then take ab-
sorption images after 31.5 ms of expansion, and record the atom number and the
dimensions of the atomic cloud. A condensate with vanishing interaction occupies
the ground state of the harmonic trap, and therefore it has a gaussian profile; we
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analyze the atomic cloud by fitting it with a double gaussian function, in order to
distinguish the condensed fraction from the thermal component.

In fact, we have found for all the three cases that the three body losses take place,
but no distinguishable heating is associated to them: the cloud is always well fitted
with a single component whose width remains constant in time. The reason for this
can be understood if we consider that the atoms of the ideal Bose gas are occupying
the ground state of the harmonic trap: while the dimensions of an interacting BEC
depend on the atom number composing the system, in the limiting case of vanishing
interactions this doesn’t happen. Furthermore, all the condensed atoms occupy the
ground state of the system, and every particle has the same energy, independently
from the atomic density: therefore, every particle expelled from the trap will not
cause any heating to the remnant sample.

This is already a very positive fact: eventually the interferometer will lose atoms,
and therefore the contrast will be lowered, but three body collisions do not introduce
any detrimental heating of the system, and the remnant particles are still condensed1.

Since the width of the cloud of remnant atoms doesn’t change as a function of
time, an extremely simple treatment can be built up for evaluating the K3 coefficient
relative to a non interacting Bose Einstein condensate: following what suggested in
[74], we integrate the rate equation (2.35), considering that the profile of the conden-
sate along every direction is always the ground state of the trap, whose dimensions
are fixed by the trapping frequencies, and constant in time. We obtain the following
rate equation:

∂N

∂t
= −AN3 − αN (4.4)

where A ≡ K3/(
√

27π3ω̄6) and α takes into account for background losses. The
solution of this equation is trivial, and defining N0 the initial atom number, we have
the following evolution of the BEC population:

N(t) =
N0
√

α√
(α + AN2

0 ) exp(2αt)−AN2
0

(4.5)

If the effects of the background losses are negligible, the (4.5) reduces to:

N(t) =
N0√

1 + 2AN2
0 t

(4.6)

We have analyzed the experimental data with both fitting functions, living A and α

as only free parameters; we can conclude that the effects of background collisions are
1Note that this is another exception, as well as the thermal heteronuclear mixture below TS (see sec-

tion3.1.4) to the standard behavior associated to three body recombination.
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Figure 4.10: Number of atoms of the non interacting BEC versus time spent in trap
for three different confinement conditions. Three body losses take place and lower
the population of the sample, but no heating is associated to them, so that the con-
densate is not destroyed. The lines are a fit according to the model described in the
text, where the only free parameter is A, from which we derive the K3 coefficient.

negligible compared to the one of three body recombination, as it can be expected
from the extremely high densities of the sample.

The results of the measurement and the best fit functions are reported in Fig. 4.10:
as one can see, the model well describes the temporal evolution of the condensate,
and from this analysis we can derive the K3 coefficient, given the fit values of the A
parameter. The measurements performed at different densities produce values for
K3 that all coincide within a standard deviation: we assume the mean of these three
measurement to be our most accurate determination of K3. This results to be:

K3 = 1.30(25) · 10−29 cm6/s (4.7)
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This result is a very good new, since it is comparable with the K3 of a 87Rb conden-
sate in its background condition [127]. Note that the above result is not in principle
obvious for every system: in fact, even if the resonance is broad, and we are within
the region of the zero crossing, the molecular state below threshold could however
influence the three body recombination coefficient. Fortunately, in our case the bind-
ing energy associated to the molecular level in correspondence of the zero crossing
is already of ∼ 100MHz× h.
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Outlook

In conclusion of this report, I would like to spend some words about the possible
future available directions. As I have shown in the previous chapters, during the
three year I spent in the laboratory of Prof. Giovanni Modugno and Prof. Massimo
Inguscio at LENS of Florence, several experiments we did allowed us to gain a de-
tailed knowledge of the ultracold atomic systems we have been working with from
the collisional point of view. In particular, the capability to control both homonu-
clear an heteronuclear interactions of the potassium rubidium systems we have been
working with, offers the possibility of several interesting future investigations. From
the point of view of molecular physics, many words have been spent in this the-
sis and in literature concerning the interest in achieving a degenerate gas of polar
molecules. From this point of view, our apparatus can be exploited to associate KRb
heteronuclear molecules, as first measurements previously described clearly indi-
cate. In order to bring them into the ground state, where they exhibit a large electric
dipole moment, some further important steps must be done, also considering the
recent promising results obtained on this mixture at Hamburg University [32] and at
JILA [116].

A system of laser lights is necessary to purify the molecular sample from the
untransferred atoms, once the dimers have been associated: this is already available
for Rb atoms (the most crucial collision partners for Feshbach molecules), and it has
already been successfully tested, allowing us to blast away the atoms close to the
Feshbach resonance in the absolute ground state of the Fermi Bose mixture within
few µs.

First attempts to associate the KRb molecules have revealed an extremely fast
decay of the dimers by means of atom-molecule collisions: this requires that the
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Figure 4.11: Absorption images of the Bose Bose mixture as a function of time during
the evaporation in the optical trap: the trap depth is lowered within three seconds.
The starting point is the same of the experiments previously discussed, while the
final part of the evaporation ramp is modified in such a way that condensation of
potassium can take place at a trap depth sufficiently high to trap also rubidium. The
first second of evaporation is performed at 316.2 Gauss, where aKRb ∼ 100a0, and
sympathetic cooling is highly efficient. The last two seconds of evaporation take
place at a magnetic field of 396.2 Gauss, where the interspecies scattering length is
approximatively 26 a0, while aK ∼ 150a0, and the potassium BEC is stable against
collapse. The density profiles of the two species are also shown, indicating the phase
transition for both the samples. Note that rubidium exhibits the onset of condensa-
tion before potassium, and this is due to the larger Rb atom number.
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stage of association must be performed extremely fast. In order to do this, if one
purposes to associate the Feshbach molecules performing a magnetic field sweep
across the resonance, a fast coils system is necessary.

Concerning the possibility of separating the atomic pairs into a deep three dimen-
sional optical lattice in order to reduce the fast decay of the dimers, we are planning
to upgrade the apparatus also in this direction, also in view of future experiments
with polar molecules. It has been demonstrated that this system works fine [32], even
if it reduces the association efficiency when one works with the degenerate Fermi
Bose mixture, due to the only partial overlap between the mixture components.

This scheme can be extremely interesting if one works with a Bose Bose mix-
ture of potassium and rubidium to produce bosonic dimers. The production of a
double BEC of 41K and 87Rb has been already demonstrated [128], and we recently
achieved a double BEC of 39K and 87Rb, see Fig. 4.4: both are interesting alternatives
to the Fermi Bose mixture, in the field of Feshbach molecules, since both the mixtures
present broad resonances. The bosonic character of the Feshbach molecules does not
prevent vibrational quenching induced by dimer-dimer collisions, and therefore the
lattice would be crucial in order to increase the lifetime of the molecular sample.

Let’s consider here the case of 39K and 87Rb already available on our apparatus: if
one takes into account the magnetic field dependence of aK and aKRb shown in Fig.
4.2, one could produce the degenerate Bose Bose mixture around 390 Gauss, where
the potassium component is stable; at such magnetic field aRb ∼ aK , and therefore
the two condensates have almost the same density distribution. At the same time,
the interspecies scattering length is small: aKRb ∼ 26a0. Therefore, reducing the
relative sag, e.g. by means of a magnetic gradient or an appropriate optical beam,
one can expect to have a very good overlap between the two components, not avail-
able in the case of Fermi Bose mixtures; playing with the trap parameters one can
reach the most convenient densities in order to load the samples into a deep lattice,
assuring a good number of sites occupied by only one potassium and one rubidium
atom. Since the potassium atoms into the lattice are stabilized against collapse, one
can decrease the magnetic field down to the heteronucear resonance and associate
the dimers. Note that, until the optical potential is on, the dimers cannot collide, and
therefore one can hopefully perform the transfer to the ground state. With respect to
this, we have also been working to prepare the light sources and the phase lock sys-
tem needed to perform a STIRAP pulse (stimulated Raman adiabatic passage) [129],
in order to transfer the molecules from the weakly bound Feshbach level onto the
ground state.
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The possibility of exploiting the Bose Einstein condensate of 39K for interfero-
metric measurements has been recently successfully investigated [121], and we have
been working now to employ a weakly interacting BEC in the field of disordered
systems and Anderson localization.

Very appealing seems to be also the direction of studying this new system with
respect of dipolar interaction: in fact, even if exploiting the Feshbach resonance we
are able to tune to almost zero the s-wave scattering length, still a weak residual
dipolar interaction [130] is expected to be present. This could allow us to study a
system with anisotropic interaction and to observe in an alkali atom similar behavior
to that recently investigated in Chromium [131].

Finally, the presence of broad resonances can make both the mixtures and the
bosonic potassium interesting candidates for studies in the field of Efimov physics
[14, 15]. Concerning the Fermi Bose mixture, we have already made preliminary
studies in this direction, investigating the behavior of three body losses in the sys-
tem close to some of the broadest resonances available. This research allowed us
to discover extremely weak spin resonances located few hundreds mGauss far from
the center of some of the main features, but didn’t give us any evidence of Efimov
states. Also the recent study presented in [116] concerning the broadest resonance
in the absolute ground state of the Fermi Bose mixture reports a negative response.
Consequently, if the possibility of having Efimov states within a heteronuclear sys-
tem makes this research extremely appealing, at least the Fermi Bose mixture does
not seem to be promising for the observation of such kind of features. Moreover,
recent theoretical studies show that the K Rb Fermi Bose mixture should exhibit
Efimov states for values of the scattering length periodically separated by a factor
eπ/s0 >100 [81], therefore limiting the observation to one Efimov feature at the most.

From this point of view, the 39K system seems to be more promising (homonu-
clear systems have all the periodicity factor eπ/s0 equal to 22.7). In particular, the
presence of resonances broader than 50 Gauss, combined with a small background
scattering length, can in principle allow to precisely scan both the left and right sides
of a resonance, and the observation of more than one Efimov feature could be achiev-
able [98].
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