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Chapter 1

Introduction

How a super�uid �ow is a�ected, and eventually impeded, by the presence of
a constriction, and more generally by an obstacle, represents a fundamental
question dating back to the early days of investigation of super�uidity and
superconductivity. Very importantly, this issue lays at the heart of the sem-
inal works of Landau [1], Feynman [2, 3] and Anderson [4]. Paradigmatic
examples of phenomena originating from such a scenario are represented
by the Josephson e�ect [5], with the onset of pair breaking e�ects and of
quantized vortices [6, 7] in superconducting junctions, by phase slippage and
vortex nucleation in super�uid Helium 4 [8], and more recently by Josephson
oscillations and macroscopic quantum self-trapping in atomic and polariton
BECs [9, 10, 11, 12, 13, 14]. In this framework, understanding the interplay
between coherent super�uid and dissipative dynamics is still nowadays sub-
ject of an intense, multidisciplinary research activity, also connected with the
development of novel super�uid/superconductor-based sensor devices [15].

In the �eld of ultracold gases, the dynamics of BEC-BCS crossover Fermi
super�uids [16, 17, 18] in the presence of thin optical barrier potentials, have
attracted a lot of attention over the last decade [19, 20, 21, 22]. In fact, such
systems are extremely appealing since they represent a clean and control-
lable environment in which all the major phenomena mentioned above can
in principle be studied in a continuous manner, and with the high degree of
accuracy peculiar of a quantum gas experiment.

On the BEC side of the crossover, where the super�uid Fermi gas is con-
densed in tightly bound bosonic molecules, the system can be regarded as
a strongly interacting Bose liquid. In contrast with usual atomic Bose Ein-
stein condensates, such molecular super�uid turns out being extraordinarily
stable against inelastic decay in the region of strong inter-particle interac-
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CHAPTER 1. INTRODUCTION 2

tion, and it can in principle be employed for the study and the simulation
of quantum phenomena occurring in the dense super�uid phase of liquid 4He.

On the BCS side of the crossover, where super�uidity arises from the
Cooper pairing instability, the macroscopic behavior of an ultracold Fermi
super�uid mimics the one of a conventional superconductor. In particular,
in this limit one can experimentally investigate a variety of e�ects related to
the fermionic, composite nature of the super�uid pairs, and their in�uence
on the system dynamics.

Finally, in the intriguing region around the crossover, where the interpar-
ticle interaction is maximally strong, reaching the ultimate limit allowed by
quantum dynamics, the unitary Fermi gas represents a unique environment
for investigating many-body phenomena peculiar of strongly correlated su-
per�uid systems, such as high-Tc superconducting materials.

In this thesis, I report on the �rst experimental thorough investigation of
the dynamics of a trapped super�uid Fermi gas composed of Lithium6 atom
pairs, in the presence of a thin barrier potential. Inter-particle interactions
are magnetically tuned via the Feshbach resonance phenomenon [23, 24]. The
height of the barrier is set and controlled by adjusting the power of a laser
beam imprinted on the ultracold cloud con�ned in a harmonic trap, and that
is blue-detuned for both Lithium atoms and pairs, hence acting as a repul-
sive potential. Such a potential is shaped in such a way to create a strongly
asymmetric sheet of light, characterized by a long waist greatly exceeding the
ultracold cloud dimensions, and by a micron-sized short waist, which is only
few times larger than the mean inter-particle spacing of the super�uid system.

The main results obtained in this work are the following:

� In the limit of high barriers and small amplitude �ows we could mea-
sure the plasma frequency ωp characterizing super�uid Josephson os-
cillations throughout the BEC-BCS crossover.

� From the experimental determination of ωp, combined with the knowl-
edge of the equation of state of our system [25, 26], we derive the
qualitative behavior of the maximum Josephson current supported by
the super�uid Fermi gas, �nding that it is maximum for unitary lim-
ited interactions, in agreement with recent theoretical investigations
[27, 19].
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� Exiting the small amplitude limit, we access a di�erent dynamical
regime characterized by a �running phase� of the super�uid order pa-
rameter [8, 13], within which the super�uid current is quenched. We
�nd that the entrance into such a regime is accompanied for our sys-
tem by propagation of (solitonic) vortices [28, 29, 26] throughout the
super�uid bulk, induced by phase-slip dynamics [8].

The thesis is organized as it follows: In Chapter 2 I brie�y recall some basic
concepts of scattering theory and their speci�c application to the regime
of ultracold collisions. I introduce the reader to the phenomenon of the
Feshbach resonance, and I also provide an intuitive and qualitative picture
of the BEC-BCS crossover scenario.

Chapter 3 describes the di�erent dynamical regimes expected for a super-
�uid �ow evolving within a double well potential, with special emphasis to
the aspects that are speci�c of our system. In particular, the description of
the super�uid dynamics based on the so-called two-mode approximation [9]
provides a simple and easy-to-handle theoretical frame for understanding the
various regimes occurring on the BEC limit of the crossover. How and under
which circumstances such an approximation is no longer valid and ceases to
hold is then discussed.

In Chapter 4 I report on the details of our experimental setup: in partic-
ular, I describe the parts of the apparatus built up and characterized during
the period of my thesis, namely the optical barrier potential, together with
the experimental protocols employed for the study of the super�uid dynam-
ics. In particular, I describe a simple model that I developed for describing
the transmission of a quantum particle through a barrier potential. This
basic theory approach allowed us to �nd out an e�cient method to focus the
sheet of light on the ultracold trapped sample.

Finally, in Chapter 5 I present the experimental results obtained so far
in the lab. A detailed discussion concerning the acquisition and the analysis
of the data is provided, together with their interpretation based on currently
available theory approaches.



Chapter 2

Ultracold Fermionic Super�uids

A major challenge of contemporary physics is the study of the wealth of phases
occurring in larges ensamble modes of interacting quantum particles. To this
purpose ultracold dilute atomic gases represent a powerful experimental tool,
thanks to the high degree of control over all the relevant parameters that set
both the static and dynamic behaviour of such systems: cooling and trap-
ping techniques allow to control temperature, geometry and dimensionality,
while advanced diagnostic techniques provide a direct monitoring of density
pro�les and momentum distribution, as well as the study of collective and
single excitations out of euilibrium. Above all that, the Feshbach resonance
phenomenon gives experimentalists also the control of interactions between
particles in such systems.
Many reviews provide a detailed description of this phenomenon [30, 23, 31,
32], so in this chapter I will give a syntetic and handle overview of its aspects
that are useful for the comprehension of the experimental work I present in
this thesis.

2.1 Tunable Interactions in Alkali Atoms

In alkali gases the mean interaction between atoms at long distances is de-
scribed by the short-range central potential V (r) due to van der Waals forces
[33]:

V (r) = −
(
C6

r

)6

(2.1)
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Here the constant C6 directly de�ne the van der Waal interaction potential
range R0 through the relation:(

C6

R0

)6

=
~2

mR2
0

⇐⇒ R0 =
4

√
C6m

~2
(2.2)

where m indicates the atom mass.
In the ultracold dilute regime, in which these systems are experimentally
created and kept, both the mean interparicle distance r ∼ n−1/3, where n is
the mean atom density, and the de Broglie wavelength λdB = h√

2πmkBT
, with

T the temperature of the gas, are much longer than the interaction potential
range R0

1.
These conditions greatly simplify the interaction problem: only two-body
collisions matter, and furthermore, at such low energies, atoms never expe-
rience the detailed form of V (r). A "far �eld" approach is then valid, with a
scattering wavefunction given at large distances by

Ψk(r) =
1

(2π)(3/2)

(
eik·r + f(k′,k)

eikr

r

)
(2.3)

where k and k′ are respectively the incoming and outcoming wavevectors
within the center of mass frame [30].

Provided that the potential is central, the scattering amplitude f can be
expressed as a partial wave expansion in terms of wave shifts δl, with l =0,
1, 2... the partial wave angular momentum.
Because of the short range character of the van der Waal potential, in the
limit of low momenta, phase shifts with l > 0 tend to zero [30], and the
scattering is predominantly isotropic, i.e. S-wave. A �rst consequence of this
is that collisions between fermions occupying the same quantum state are
strongly suppressed due to the Pauli exclusion principle. Furthermore, in the
case instead of distinguishable particles or bosons, the scattering amplitude
is reduced to the l = 0 term:

f = − 1

k cot δl=0 + ik
' − 1

a−1 − k2reff/2 + ik
(2.4)

Here cot δl=0 has been expanded to the second order in k, introducing the
scattering length a and the e�ective potential range reff .

It is important to notice that, while a and reff are in general determined
by the microscopic details of the interatomic potential, completely di�erent

1In the case of 6Li R0 is of the order of 10a0 [23], where a0 is the Bohr radius, while
tipical interatomic distances are of the order of 102nm.
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microscopic interactions can lead to the same low energy expansion of the
scattering amplitude (2.4). As a consequence, one can substitute the true
potential with a much simpler e�ective interaction parameterized solely by
the two parameters a and reff , as long as (2.4) is satis�ed.
In the regime with n|reff |3 � 1 and |reff | � |a|, a very convenient choise is
provided by the contact Fermi pseudopotential VF (r) [34, 35, 36], de�ned by:

VF (r)Ψ(r) = gδ3(r)
∂r(rΨ(r))

rΨ(r)
(2.5)

where

g =
4π~2a

m
(2.6)

This choice is equivalent of imposing the Bethe-Peierls boundary condition
at r = 0 [34, 37, 36]

lim
r→0

∂r(rΨ(r))

rΨ(r)
= −1

a
(2.7)

From the pseudopotential 2.5 one derives fF = − 1
a−1+ik

, that is a good ap-
proximation of (2.4) for k|reff | � 1 [34, 37].
In this case, the entire information on the two-body scattering process is
contained solely into one parameter: the S-wave scattering length a.

An important property of the pseudopotential VF (r) is that it supports
one single two-body bound state only if a > 0, with energy given by [37]

Eb = − ~2

µa2
(2.8)

with µ the reduced mass. The wavefunction describing this bound state
results to be Ψb ∝ e−r/(2a)/r.
This case represent a special and simple case of a general feature of δ0, and
consequently of a, namely its intimate relation with the di�erence between
the energy of the two-atom scattering threshold and the one of a nearby
laying bound state supported by the scattering potential. In particular, it is
found that a < 0 if no bound state lies close to the scattering energy, a > 0
if instead a bound state is present. When the bound state becomes perfectly
degenerate with the threshold, the phase shift takes the value δ0 = π/2 and
a undergoes a divergence[30].

From this general result of scattering theory, we can see that if one could
tune the energy di�erence between the scattering channel and a nearby molec-
ular state, then the value of a could be directly controlled, and with it the
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whole low-energy collisional properties of an ultracold gas.

In ultracold alkali gases this is physically possible thanks to magnetic
Feshbach resonances, where the energy of a two-colliding-atoms state (open
channel) can be brought to degeneracy with a bound molecular state (closed
channel). This can be done via Zeeman e�ect by tuning an external magnetic
�eld, provided that the two states are characterized by di�erent magnetic mo-
ments µo 6= µc
In the vicinity of a Feshbach resonance the scattering length exhibits a dis-
persive behaviour as a function of the applied magnetic �eld B, that and can
be generally parameterized as

a(B) = abg

(
1− ∆B

B −B0

)
(2.9)

Here abg is the o�-resonant background scattering length (in absence of cou-
pling to the closed channel), B0 the magnetic �eld value at which the reso-
nance is centered, and ∆B describes the resonance width [38, 18].

In general, associated to a Feshbach resonance is an e�ective rangeR∗ = −2reff ,
given by [39, 40, 37]

R∗ =
~2

Mabg∆B∆µ
(2.10)

where ∆µ is the magnetic moment di�erence between the open and closed
channels. Provided that R∗ . R0, one can neglect reff in (2.4), and the res-
onant scattering can be still described by the pseudopotential (2.5).

6Li, the fermionic isotope of Lithium atoms, represents a powerful system
where the scattering length can be �nely tuned thanks to three Feshbach
resonances characterized by an untypically large magnetic width. The reso-
nances, that occur between each pair of the three internal atomic hyper�ne
states, are shown in �gure 2.1, and their parameters are reported in tabel 2.1
(data from [24]).

Furthermore, thanks to the large width of the Feshbach resonsnces in 6Li,
for this Alkali the condition R∗ . R0 is sati�ed, and it is indeed possible to
neglect the e�ect of a non-zero e�ective range reff on the parametrization of
the pseudopotential and the scattering length [Petrov2004].

The tunability of the collision properties is �rstly relevant for enhancing
the elastic scattering cross section, as given by the optical theorem [30]:

σ =
4π

k
Im{f} (2.11)
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Figure 2.1: Three broad Feshbach resonances among the hyper�ne states |1〉, |2〉
and |3〉 in 6Li (Data from [24], supplementary materials).

B0 (G) ∆B (G) abg(a0)
|12〉 832.18(8) 262.3(3) -1582(1)
|13〉 689.68(8) 166.6(3) -1770(5)
|23〉 809.76(5) 202.2(5) -1642(5)

Table 2.1: Feshbach resonance parameters for the three lowest hyper�ne states
|1〉, |2〉 and |3〉 in 6Li. Data from [24].

This is very useful for achieving an e�cient evaporation down to degeneracy
temperatures, especially for the present case of Lithium investigated in this
thesis.
More fundamentally, Feshbach resonances are a gift of Nature that allows us
to explore the many-body physics of complex systems as a function of the
interatomic interactions.
In this thesis I have exploited the |13〉, and expecially the |12〉, resonances
occurring in 6Li Fermi gas mixtures, to tune the interspecies scattering length
throughout the crossover connecting the Bose-Enstein condensate (BEC)
regime (where a > 0), the unitary limit (a = ±∞) and the Barden-Cooper-
Schie�er (BCS) regime (a < 0). The following section gives and overview of
these three regimes.
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2.2 The BEC-BCS Crossover

Up to now we only presented the energy (2.8) of the two interacting atoms
in the case in which they are bound in a molecular state, with a > 0. We
have yet no clue about the evolution of the total energy of a gas of N inter-
acting fermions, where the two-body scattering lenght is tuned from positive
to negative values via a Feshbach resonance.
To gain insight in the matter, let's start with a simple model, involving two
fermions con�ned in a spherical box of radius R, interacting with the contact
pseudopotential (2.5). Interestingly, such a simple model qualitatively cap-
tures the behaviour of an interacting many-body system, if we regard at the
box size as embodying the presence of the N-2 remaining fermions: namely,
the hardwall condition at r = R mimicks the e�ect of Pauli blocking in the
limit of low momenta (long wavelenghts) [34].
In this frame, the radius of the box is related to the Fermi wavelength of an
ideal Fermi gas with total (spin up and down) particle density n = n↑ + n↓,
given by kF = (3π2n)1/3, via the de�nition of the zero-interaction energy [34]

E0 =
~2

m

( π
R

)2

(2.12)

thus one has [34]

R =

(
5

3

)1/2
π

kF
(2.13)

This model reduces the scattering problem in r 6= 0 to the solution of the free
Schroedinger equation, with hardwall boundary condition at r = R, plus the
Bethe-Peirls (2.7) boundary condition at r = 0. From this, one can simply
derive the eigenfunctions and eigenenergies of the system, obtaining the en-
ergy spectrum of the total N-fermion system of �g.2.2 [34]. Only the �rst
two branches are plotted, although discrete higher energy levels are present.

The left side of the plot in �g.2.2 corresponds to magnetic �elds below
the resonance in �g.2.1 (i.e. at a > 0), and the right side to �elds above the
resonance (i.e. at a < 0). As one can see, the lowest energy branch smoothly
connects these two limits. Three regimes are de�ned:

� kFa→ 0+ (left side). The two fermions are bound in the state with
negative energy solution of the two-body problem in free space. The
couple �nd itself in a bosonic molecular state.

� kFa→ 0− (right side). This is the case of two weakly attractive fermions
with the energy approaching that of the free particle.
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� Right on top of the resonance, where a diverges and the particles be-
come strongly interacting, the energy of the system depends only on
the box size R. This is the unitary limit, where the features of the
system become independent on the scattering wavelength.

Figure 2.2: Left: sketch of the two-fermions interaction model.
δreg(r) = δ(r)∂r(rΨ(r))/rΨ(r) as in 2.5. Right: total energy E = 1/2Nε -

with ε the �ctitious single particle energy- rescaled to the Fermi energy EF =
~2k2F
2m

as a function of −1/kFa. Only the �rst two branches are plotted. Figure taken
from [34].

The upper branch appearing in the spectrum for the two-fermions in a
box model corresponds instead to two weakly repulsive single fermions. This
is a metastable states of the gas: a three-body collision would lead to the
drop of two fermions into the bound dimer state, with the third fermion
carrying away the leftover energy and momentum, thus ensuring the conser-
vation laws. This mechanism depupulates the upper branch in favour of the
lowest one.

In a more complete treatment for multi-body interaction, the lowest
branch in �gure 2.2 represent the BEC-BCS crossover. Following this branch
by means of a Feshbach resonance at T=0, the gas can be adiabatically tuned
from a condensate of bosonic molecules, namely the BEC limit kFa→ 0+,
to a super�uid of Cooper pairs in the opposite limit, namely the BCS limit
kFa→ 0−, where one has weakly attractive couples of fermions.
Recalling that the scattering wavefunction in the two-body problem with the
contact potential (2.5) takes the form Ψb ∝ e−r/(2a)/r, one �nds that the size
of the couples is set by a. As a consequence, in the BEC limit (a/R� 1)
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the dimer size is very small with respect to the interparticle distance. On
the BCS side, on the contrary, one has a/R� 1, and thus the size results to
be much longer. Close to the resonance, in the unitary limit, the couple size
and the mean interparticle distance are of the same order.

The transition throughout these three regimes is pictorially sketched in
�g.2.3 in the case of the Feshbach resonance |12〉 in 6Li.

Figure 2.3: BEC, unitary and BCS regime throughout the |12〉 Feshbach resonance
at 832G in 6Li. Colors identify fermions with opposite spin

In principle, the exploitation of a Feshabch resonance to tune the inter-
ations would su�er from inelastic scattering: as the gas is cooled down, the
Feshbach molecular state is populated via three-body collisions, where a third
atom is charged with the binding energy in form of kinetic energy. This pro-
cess heats up the cloud, leading to atom losses. However these losses do not
occur in the lucky case of Lithium-6: here the binding energy on the right side
(a > 0) of the broad Feshbach resonances is found out to be small enough,
so that molecules can e�ciently form without severe heating of the cloud.
Moreover, further decay via three-body collision to lower lying bound states
is suppressed by the Pauli exclusion principle, as two of the three involved
fermions are necessarily identical, and they have to approach at r ∼ R0. For
further details I remind to [38] (chapters 2,5) and to [Petrov2004].

To conclude, the broad Feshbach resonances of 6Li allow to explore all
the three regimes introduced in this section. With a single physical system it
is possible to provide a quantum simulator for the investigation of condensed
matter in a widest range of systems -from bosonic super�uids to electrons in
superconductors, up to nuclear matter and quark-gluon plasmas thanks to



CHAPTER 2. ULTRACOLD FERMIONIC SUPERFLUIDS 12

some analogies stimulated in the scienti�c community by the strongly corre-
lated unitary gas- and in particular to provide an experimental method to
study the smooth evolution of one into the other.



Chapter 3

Super�uid Dynamics in a

Double-Well

In this thesis I concentrate on the physics of the lower Feshbach branch of the
Fermi gas. In particular I study the behaviour of such a state when con�ned
within a double well potential, characterized by a tunable splitting barrier.
In this chapter I provide a synthetic but quantitative description of such a
system.

3.0.1 Macroscopically Occupied Coherent States

A macroscopically occupied coherent state, either bosonic -as super�uid 4He,
BECs of exciton-polaritons in semiconductors- or fermionic -as Cooper pairs
in superconductors, super�uid 3He, Fermi atoms interacting via a Feshbach
resonance- can be expressed with a scalar complex order parameter

Ψ(r, t) = Φ(r, t)eiθ(r,t) (3.1)

where the global phase θ(r, t) ensures the phase coherence of the system and
Φ(r, t) =

√
n(r, t) describes its density pro�le.

The limit of large particle number N allows one to use mean-�eld approaches
to describe the static and dynamical features of such a state. In the case of
bosonic particles the mean-�eld treatment is based on the Gross-Pitaevskii
equation (GPE), namely a non linear Schroedinger equation that accounts
for the interactions between particles via an energy term proportional to the
local density n(r, t).
This approach is also suitable in the case of the Lithium system I stud-
ied in this thesis, when brought to the limit kFa� 1, namely, in the limit of
weakely repulsive bosonic dimers on the BEC side of the Feshbach resonance.

13
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With proper extensions that I will explain later on, the GPE approach can
be applied also in the strongly interacting regime -the unitary regime-, and
beyond the resonance, up to the BCS limit, provided that the composite
nature of the bosonic particles is irrelevant.
Let us �rst summarize the results obtained within the framework of the
GPE in the standard situation of the BEC limit: on this side of the Fesh-
bach resonance, each bosonic particle is a molecule composed by two atoms,
and the dimer-dimer scattering is governed by a residual interaction. This
scattering is mainly elastic and in S-wave; few-body calculations reported in
[Petrov2004] show that it is described by a scattering length aDD = 0.6a

3.1 The BEC Limit

In the case of cold dilute Bose gases, the substitution of real interaction
potential with the contact pseudopotential with coupling constant g allows
to obtain [41] the time-dependent GPE for the order parameter

i~
∂

∂t
Ψ(r, t) =

(
−~2∇2

2M
+ Vext(r) + gB|Ψ(r, t)|2

)
Ψ(r, t) (3.2)

In the BEC limit of the Feshbach resonance gB = 4π~2aDD
M

, where aDD = 0.6a
is the dimer-dimer S-wave scattering length and M = 2m the dimer mass.
Vext(r) describes the potential in which the gas is con�ned. Usually, in ul-
tracold experiments Vext is harmonic:

Vext(r) =
M

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (3.3)

The ground state properties, as well as the excitations of the system are
derived from the solution of eq.(3.2), and they are summarized in the followig
section.

3.1.1 Ground State properties

The ground state wavefunction can be chosen of the form Ψ(r, t) = Φ(r)e−iµBt/~,
with a time independent density pro�le n(r) = |Φ(r)|2 and the phase �xed
by the chemical potential µB. Introducing the wavefunction in eq.(3.2) one
obtains the time-independent GPE [41]:(

−~2∇2

M
+ Vext(r) + gB|Φ(r)|2

)
Φ(r) = µBΦ(r) (3.4)
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For non-interacting particles, (3.4) is the ground state of an harmonic os-
cillator. Interactions introduce a deviation from its density pro�le, increasing
or decreasing the dimension of the cloud depending whether the interaction
potential is repulsive or attractive. In the limit of large gBN the kinetic en-
ergy term ∝ ∇2

√
n(r) can be neglected with respect to the interaction term

(Thomas-Fermi approximation). Then the density pro�le n(r) = |Φ(r)|2 of
the gas takes the form of an inverted parabola:

n(r) = g−1
B Max{0, [µB − Vext(r)]} (3.5)

From 3.5, the renormalization condition
∫
|Φ|2dr=N also provides the

explicit form for µB [41]:

µB =
~ωho

2

(
15NaDD
aho

)2/5

(3.6)

where ωho = (ωxωyωz)
1/3 is the averaged oscillation frequency, and aho = (~/Mωho)

1/2

the associated harmonic oscillator length.
Moreover, being µ = ∂E/∂N , from eq.(3.6) one easily derives that the energy
per particle in this regime is given by

E

N
=

5

7
µB (3.7)

The extension of the cloud is given by the Thomas-Fermi radius RTF , that
is derivable in the three directions right after (3.6), imposing the condition
µ = Vext(RTF ) [41]. Generally, one has that the Thomas-Fermi radius is
much longer than the harmonic oscillator length: RTF � aho.

The e�ect of interaction on the cloud extension has consequences on the
critical temperature Tc, i.e. the temperature at which the ground state starts
being macroscopically occupied: the increase of the cloud size due to repulsive
interactions decreases the density, lowering the critical temperature. On the
contrary for attractive interactions the density is increased and so is Tc. This
e�ect would be absent in the case of homogeneous gases. The mean-�eld
theory gives the following expression for Tc [42]:

Tc = T0

(
1− 1.33

aDD
aho

N1/6

)
; T0 = 0.94

~ωho
kB

(N)1/3 (3.8)

where T0 is the critical temperature in the non-interacting limit.
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Another important quantity that characterizes the super�uid system is
the healing length ξ. This parameter represents a typical length scale derived
from the balance between the interaction and the kinetic term in eq.(3.4) [41]:

4π~2a

M
=

~2

2Mξ2
(3.9)

from which one obtains:
ξ = (8πnaDD)−1/2 (3.10)

The physical meaning of ξ is the minimum distance over which the oreder
parameter can heal. This quantity is relevant in super�uid e�ects, as it gives
an estimate of the coherence length of the system.

3.1.2 Dynamical properties

When the system is not at equilibrium, super�uid dynamics will occur, de-
scribed by the time dependent GPE (3.2) for the total wavefunction Ψ(r, t).
For small deviations of the wavefunction from its form at equilibrium, given
by (3.4), one can impose solutions of eq.(3.2) in the form of small oscillations
of the order parameter with frequency ω. In a uniform gas, the oscillation
amplitudes are plane waves, and the dispersion relation ω(q) takes the Bo-
goliubov form [41]:

~ω(q) =

√
~2q2

2M

(
~2q2

2M
+ 2gn

)
(3.11)

where q is the wavevector of the collective excitation. The Bogoliubov spec-
trum is linear at low momentum, yelding the phonon dispersion ω = vcq,
being vc =

√
gn/M the sound velocity. At higher momenta the spectrum

evolves into the one of the free particle, ∼ p2/(2M).
In the case of harmonic trapping, the continuous dispersion become descrete
(with q the index of quantization). However, one can show that the disper-
sion is again phononic at low momenta in the limit of large N [41].
Among all the collective oscillations exhibited by trapped gases, particular
attention must be paid to the motion of the center of mass of the system: this
oscillation is decoupled from the internal degrees of freedom, and is solely
characterized in each direction by the frequencies of the harmonic trap. The
motion of the center of mass is referred to as dipole oscillation.
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In addition to phononic vibrations, the dynamics of macroscopic bosonic
systems cooled down to temperature below Tc is characterized by the ap-
pearence of super�uidity. Super�uidity shows up with the absence of viscos-
ity, the reduction of the moment of inertia, and new collective phenomena,
such as the presence of persistent currents, quantized vortices, second sound.
Super�uid motion is described by a velocity �xed by the phase of the order
parameter, following the derivation of the quantum particle current density
J = nvs [41, 8]:

J(r, t) =
~

2iM
(Ψ∗∇Ψ−Ψ∇Ψ∗) =⇒ vs(r, t) =

~
M
∇θ(r, t) (3.12)

Introducing the expression for vs in eq.(3.2) within the Thomas-Fermi ap-
proximation, the equation takes the form of the Euler equation for an ideal ir-
rotational �uid [41]. This interpretation of the absence of viscosity was �rstly
proposed by Landau for super�uid 4He: he described it as a two-component
system, where an inviscid irrotational �uid with velocity vs(r, t) = ~

M
∇θ(r, t)

cohexists with a normal �uid. In this vision the transition from the super�uid
componet to the normal, viscous one is explained with a sharp excitation en-
ergy spectrum as the phononic one in eq.(3.11). The linear behaviour of the
Bogoliubov spectrum at low momenta implies that the relative motion of an
object within the super�uid can exchange energy with it only if its velocity
is v > vc. If instead v < vc the super�uid is not excited, and the relative �ow
is persistent without viscosity.[8]

Higher order excitations in a super�uid may appear as a topological de-
fect in the density pro�le: it can be shown that a zero-density point in the
super�uid is equivalent to the presence of a phase slippage in the order pa-
rameter [8, 19], leading to the appearence a soliton in 1D systems, or of a
super�uid vortex in 2D and 3D. One usually refers to the vortices as quan-
tized vortices, because the circuitation of the super�uid velocity, eq.(3.12),
in a closed path enclosing the topological defect -namely the �lament core of
the vortex- takes quantized values [8]. As we will see later on, solitons and
vortices are responsible of dissipation phenomena in excited super�uids.

To complete this overview on the dynamics of a coherent system, I em-
phasize the point that, even if the transition to a Bose-Einstein condensate
ensures the existence of a scalar order parameter, hence the occurrence of
super�uidity, the super�uid state and the BEC state are not equivalent: in
a super�uid only a percentage of particles is condensed in the ground state.
Penrose and Onsager have derived that in 4He the condensed fraction re-
mains ∼ 8% down to absolute 0 temperature under its own vapour pressure,
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owing to strong interparticle collisions [8].

3.2 Extension of the Mean-Field GPE to the

Unitary Gas and the BCS Limit

The scenario depicted in the previous section is qualitatively and quantita-
tively a�ected by strong interactions when the system is brought towards
and beyond the resonance.

The evolution towards the crossover can be taken into account in the GPE
via proper parametrization of the interaction term in eq.(3.4) and (3.2), thus
through a renormalization of the coupling constant g. Many di�erent ap-
proaches exist in literature, using an expansion in a of the interaction term
derived both for a weakly repulsive BEC [20] or for a weakly actractive Fermi
gas [43] [27].
Such a parametrization procedure can be based either on quantitatively
correct Monte Carlo data [25], or on mean-�eld results on the BEC-BCS
crossover based on the solution of Bogoliubov-de Gennes (BDG) equations
[17].
Here I will only focus on the fact that the resulting GPE, usually referred
to as modi�ed GPE, yields a quantitatively correct description of the static
features of the system throughout the whole BEC-BCS crossover. However,
while moving from the BEC to the BCS limit, it will fail both quantitatively
and qualitatively to describe the super�uid dynamics, beyond a certain value
of the interaction parameter kFa. The failure is due to the progressive reduc-
tion of the binding energy of the atom pairs moving towards the BCS side
of the Feshbach resonance (see again the trend of the lowest branch in the
simple model spectrum in �gure 2.2). Namely, when the pairing gap energy
becomes of the same order of magnitude of the collective excitations of the
Feshbach collective mode, and the pair-breaking e�ect can become notice-
able.
In other words, for 1/(kFa) & 0 and 1/(kFa) < 0, the condensed fraction in
the super�uid is no longer equal to 100% and reduces moving towards the
resonance. This lead to a contamination of the collective mode with the con-
tinuum of single-fermionic excitation. The merging of the branch into the
continuum has been theoretically studied in [44].
It is worth bringing into focus that this has profound e�ect on the critical
velocities in the super�uid: on the BEC side the critical velocity is set by
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the phononic dispersion, while on the BCS side the upper limit is given by
the pair-breaking process.
The modi�ed GPE cannot account for the non-condensed fraction of the su-
per�uid and its e�ect on the complessive dynamics of the system, because it
treats the super�uid pairs as elementary bosonic particles, without account-
ing for the fermionic degrees of freedom, for which more involved theoretical
approaches are needed [17, 44]. I will show in the following how the modi-
�ed GPE quantitatively and qualitatively fails [44, 45, 22] in predicting the
critical velocities in the super�uid as a function of the interaction strength
parameter 1/(kFa).

In the unitary limit and the BCS regime, a qualitatively correct descrip-
tion of the dynamics of the super�uid is provided by the mean-�eld BDG
theory, that is based on a spinorial equation for a two-component dilute
super�uid of fermions [27]: in these equations the diagonal elements of the
hamiltonian matrix correspond to the non-interacting Hamiltonian of a Fermi
gas in a trap potential, while the o�-diagonal terms accounts for the coupling
between the tho spinorial components.
At present there is however no self-consistent theory approach able to de-
scribe the whole crossover, despite recent progresses have been done in this
frame: in [46] a time dipendent spinorial equation has been proposed that in-
cludes additional terms in the diagonal matrix element of the BDG equation.

Due to its conceptual simplicity, I will base on the modi�ed GPE theory
to outline the variuos dynamical regimes expected for the super�uid within
a double well potential.

3.3 Super�uid Dynamics within a Double Well

Potential

In order to capture the qualitative features of a super�uid evolving in a
double well con�guration, as the one employed in our experimental setup,
it is instructive to start considering the dynamics of a BEC of a weakly
interacting dimers in a 3D harmonic trap splitted in two reservoirs by a
Gaussian barrier. Namely, let's consider eq.(3.2) with Vext given by

Vext = Vho + Vbarr =
1

2
M
∑
i

ω2
i x

2
i + V0e

(−2z2

W2
z

)
(3.13)
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where Wz is the 1/e size of the barrier along the trap axial direction z.
Along the trasverse directions the barrier is considered in�nitely extended,
with �xed width.

On general grounds one can discriminate two di�erent dynamical regimes
depending on the heigh of the barrier V0 with respect to the chemical poten-
tial µB given by (3.6): a hydrodynamic regime, when V0 � µ, and a tunneling
regime, for V0 & µ
In the following I will give a syntetic overview of these two dynamical phases.

3.3.1 Hydrodynamic regime

In the hydrodynamic regime one has V0 � µ. In this situation the barrier can
be regarded as a small defect experienced by the BEC while moving within
the harmonic potential. Reference [47] presents a numerical calculation for a
dilute BEC oscillating in a cigar-shaped trap in presence of a single localized
gaussian scatterer with V0/µ = 0.24, for di�erent super�uid velocities: it is
obtained that for velocities much smaller than the critical sound velocity
vc =

√
gn/M derived from (3.11), the defect causes the presence of a stable

dip -namely a soliton in a 1D model- in the density pro�le pinned into the
barrier region, while the motion is a�ected only via phonon excitations. This
results in a renormalization of the dipole oscillation frequency ω0

z in absence
of barrier:

δωz
ω0
z

= −
√
Mπ

3V0ξ

8µ3/2
ω0
z (3.14)

Here ξ is the healing length relative to the central density. The result is
a typical feature of the super�uid, with no energy dissipation and thus no
damping of the dipole oscillation.

By increasing the relative velocity between super�uid and barrier one may
enter a dissipative regime, where the density pro�le is perturbed throughout
the whole condensate and a damping of the oscillation amplitude is observed
in time. This behaviour is associated with a detachment of the topological
defect from the low density region in proximity of the barrier, and the con-
sequent propagation of the defect in the form of solitons in 1D, vortices in
3D-, throughout the super�uid.

The same picture holds in the unitary and BCS regime [48], except for
the qualitative (and quantitative) change in the critical velocity, that beyond
the resonance is set by the pair-breaking e�ect. This change has been the-
oretically studied in the case of V0 � µ in [19, 43, 22], and experimentally
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observed in [45].

3.3.2 Tunneling Regime

This regime occurs when the barrier potential height becomes comparable
or heigher than the chemical potential. In this con�guration the super�uid
particles can oscillate across the barrier only through tunneling processes,
because their energy is too low to classically pass over it. Here, the overall
system can be modelled as two reservoirs, each containing a super�uid sys-
tem, weakly linked via a non-zero coupling through the barrier.
The dynamics of the super�uid exhibits di�erent features depending on the
parameters of the system. In particular one can identify three sub-cases de-
termined by the competition between the interaction and the kinetic terms
in the GPE. Also the size of the barrier plays a role and must be compared
with the healing length of the super�uid.
The three sub-regimes are nicely captured by the so called two-mode approx-
imation [49]. This simple model assumes that the total wavefuntion can be
expressed as a composition of the two overlapping single-well wavefunctions:

Ψ(r, t) = Ψ1(r, t) + Ψ2(r, t) = Φ1(r)φ1(t) + Φ2(r)φ2(t) (3.15)

where Φi(r) are spatial wavefunctions describing the density pro�le of the
two localized states, while φi(t) are time dependent order parameters of the
form

φi(t) =
√
Ni(t)e

iθi(t) (3.16)

It is very important to note that the spatial and the time dependence are
decoupled in (3.15). The physical meaning of the factorization is that the
two-mode approximation assumes that the single-well state is not perturbed
in its shape while the number of atoms Ni in each well evolves in time, to-
gether with the associated phase θi

Inserting (3.15) in the non-modi�ed time-independent GPE (3.4), where
the external potential is now given by (3.13), one obtains the following equa-
tions for the two time-dependent order parameters φi(t) =

√
Ni(t)e

iθi(t) [9]:

i~
∂φ1

∂t
= (E0

1 + U1N1)φ1 −Kφ2 (3.17a)

i~
∂φ2

∂t
= (E0

2 + U2N2)φ2 −Kφ1 (3.17b)
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with the following expression for the parameters [9]:

E0
i =

∫ [
~2

2M
|∇Φi|2 + Φ2

iVext

]
dr (3.18a)

Ui = g

∫
Φ4
idr (3.18b)

K =

∫ [
~2

2M
(∇Φ1∇Φ2) + Φ1Φ2Vext

]
dr (3.18c)

Here E0
i are the zero-point energies for each localized state; Ui are the on-site

interaction energies related again to the single states Φi; K is the coupling
matrix element [9].

In our experimental con�guration the trap potential is chosen symmet-
rical with respect to the barrier. This means that the two localized spatial
wavefunctions are equivalent: Φ1(r) = Φ2(r) = Φ(r).
This also means that E0

1 = E0
2 and that U1 = U2 = U .

Moreover, one can show through a basis transformation (Φ1; Φ2)→ (Φs; Φa)
[50, 27] that K is proportional to the di�erence E− − E+ between the low-
est stationary symmetric and antisymmetric many-body states, solutions for
the double well potential when the number of atoms is equally distributed
(N1 = N2 = N/2).

De�ning the population imbalance z(t) = N1(t)−N2(t)
N

and the phase di�er-
ence θ(t) = θ1(t)− θ2(t) between the two wells, one can linearize eq.(3.18)
and obtain two coupled equations for z(t) and θ(t) [9]:

ż = −
√

1− z2 sin θ (3.19a)

θ̇ = Λz +
z√

1− z2
cos θ (3.19b)

where the time has ben rescaled as 2Kt/~→ t, and Λ = NU/(2K).

It is clear from equations (3.19) that if initial conditions z0 6= 0 or θ0 6= 0
are set, namely if one initializes the system in an unbalanced con�guration,
where an energy di�erence exists between the total left and right single-well
wavefunctions Ψ1(r, 0) = Φ1(r)φ1(0) and Ψ2(r, 0) = Φ2(r)φ2(0), then an os-
cillatory atom current I = żN/2 is observed throughout the barrier.

z and θ can be interpreted as two canonically coniugated variables [9, 50,
8], satisfying the relations ż = −∂H

∂θ
, θ̇ = ∂H

∂z
with the Hamiltonian

H =
Λ

2
z2 −

√
1− z2 cos θ (3.20)
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In a simple mechanical analogy, H describes a non-rigid pendulum, of tilt
angle θ and angular momentum z.

It is worth noticing that the parameters describing the barrier enter the
equations not only in in a direct way in K, via the external potential Vext,
but also, and more in�uencing, into the shape itself of the two spatial func-
tions Φ1;2(r). Let's stress in fact that the choice of these functions has to
yield from the minimization of the single localized state energy. The result
is that the higher and the thicker is the barrier, the more localized will result
Φ1;2(r). Consequently the coupling between the two super�uids decreases,
and Λ→∞. On the contrary, if the barrier is low and thin, the coupling
increases, and Λ→ 0. In essence, one can identify the three sub-regimes
depending on the balance between the interaction term and the tunneling
term, namely on Λ = NU/(2K). These three regimes are presented in the
following.

Rabi regime

In the limit Λ� 1, i.e. in the case of strong coupling between the two
reservoires, equations (3.19) yield the Rabi oscillation frequency for the atom
current [9]

ωR =
2K

~
(3.21)

It is worth stressing the fact that if one imagines to increase the barrier
height V0, the frequency (3.21) is expected to decrease, as a consequence of
the more localization of the two super�uids within the singe wells.
On the opposite, decreasing the barrier height, this regimes smoothly merges
into the hydrodynamic regime, when the barrier height is lowered down to
V0 < µ. In this limit the frequency tends to match the dipole oscillation fre-
quency as stated by 3.14.

Josephson regime

If Λ ∼ 1, the two variables z and θ result coupled as from (3.19).
If a small initial imbalance z0 � 1 is set, one can approximate eq.(3.19) for
small oscillation amplitudes, yielding the linear equations [9]:

ż ' −θ (3.22a)

θ̇ ' (Λ + 1)z (3.22b)
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These are sinusoidal oscillations with a frequency

ωJ =
1

~
√

2UNK + 4K2 (3.23)

This frequency is usually referred to as plasma frequency.
Again if the height of the barrier is increased, the plasma frequency is ex-
pected to decrease.

In essence, in a system of two super�uids coupled by a link weak enough
to allow a considerable overlap, but still high enough to allow a balance be-
tween the self-interaction term and the tunneling one, a sinusoidal particle
current is observed in absence of external forces. This behaviour is not spe-
ci�c for a super�uid in a double potential well: such oscillations are found in
many other systems, varying from liquid He to superconductors, and the phe-
nomenon is nowadays denoted as Josephson e�ect. A noteworthy example is
that of a superconductor junction, where an applied voltage drop results in
an oscillating current. This e�ect was �rst predicted by Josephson in 1962 [5]
and experimentally observed few months later by Anderson and Rowell [51].
It is worth noticing that in the case of a superconductor junction, the energy
di�erence between the two states introduced by the two-mode approximation
is not due to an initial population imbalance z0, but to the presence of a term
∆E = E0

1 − E0
2 in the equations (3.19), proportional to the applied voltage

drop. In our case this term is zero because of the trap symmetry.
In a very simple picture, the appearence of macroscopic coherent e�ects

in superconductors, as the Josephson e�ect or the presence of persistent non-
dissipative currets itself, is due to the condensation of the Bose-like Cooper
pairs predicted by the BCS theory [38]. I have already introduced the BCS
theory in chapter 2 to describe the state of a Fermi atom gas beyond the
Feschbach resonance. In fact, the BCS theory predicts that coupled elec-
trons remain only weakly attractive, and the theory associates to the Cooper
pairs a dimension that is much bigger than the typical interparticle distance:
from this point of view the limit 1/(kFa)→ −∞ in a Feshbach resonance has
many analogies with the superconductor electron state.

Non-linear and self-trapping regime

Within a certain parameter range, a numerical solution [9] of the full equa-
tions (3.19) might lead to non-sinusoidal oscillations that represent the an-
harmonic generalization of the Josephson regime.
In particular, in the limit of Λ� 1, namely for large non-linear interaction
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e�ects, a novel dynamical regime is predicted from the study of equations
(3.19): a macroscopic quantum self trapping phase [9]. In this case, z(t)
ceases to oscillate around zero, and presents fast oscillations of small ampli-
tude around a mean value 〈z〉 ∼ z0 6= 0.
Figure 3.1 [9] shows solutions for initial values z0 = 0.6, θ0 = 0 and for increas-
ing values of Λ. The anarmonicity e�ect is evident. In the last panel d) of 3.1
the system undergoes a critical transition at Λ = Λc = 10: for higher values
the population imbalance presents small fast oscillations around 〈z(t)〉 6= 0.
In the non-rigid pendulum analogy, this corresponds to an initial angular
momentum z0 su�ciently large to swing the pendulum over the θ = π verti-
cal orientation. The non-zero mean value of the population imbalance -the
momentum- corresponds to a perpetual rotatory motion.
The critical value Λc above which this behaviour is shown, can be derived
from the condition

H(0) =
Λ

2
z(0)2 −

√
1− z(0)2 cos θ(0) > 1 (3.24)

yelding

Λc = 2

(√
1− z(0)2 cos θ(0) + 1

z(0)2

)
(3.25)

From (3.25) emerges that, for �xed interaction and barrier parameter, thus
for �xed values of U,K,Λ, the self trapping regime is reached by increasing
the initial population imbalance z0 (thus reducing Λc).

The full dynamic behaviour of eq.(3.19) is depicted in plot 3.2 [9], that
shows the z − θ trajectories at constant energies. In particular the closed
trajectories desribe the oscillation linear and non-linear Josephson dynam-
ics, while the open trajectories correspond to the self-trapping regime, where
is nearly �xed around 〈z(t)〉 6= 0 and the phase di�erence continues running
from −π to π with a nearly linear trend, as stated by the limit of constant
z = zst for equations (3.19). The result is a sow-tooth curve θ(t), with jumps
back to −π whenever the phase reaches the maximum value π.

Within the two-mode approximation the system dynamics is almost frozen
once entered the self-trapping regime, with open trajectories in the z − θ
plane as in �g.3.2. This is nicely seen in the frame of Bose-Hubbard treatment
in second quantization formalism [50, 52] for a super�uid in a double well
potential: this model derives an energy spectrum of the Hamiltonian (3.20)
with time-constant parameters U,K,Λ, namely assuming the two-mode ap-
proximation. The spectrum presents eigenstates with increasing energy as a
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Figure 3.1: z(t) vs rescaled time, for z0 = 0.6, θ0 = 0 and a) Λ = 1, b) Λ = 8, c)
Λ = 9.9, d) Λ = 10 (dashed line) and Λ = 1 (solid line). Figure taken from[9]..

Figure 3.2: z(t) vs θ(t). Bold lines: z0 = 0.6, θ0 = 0, Λ=1, 8, 10, 11, 20. Other
lines: z0 = 0.6, θ0 = π, Λ=0, 1, 1.2, 1.5, 2. Figure taken from [9].

function of the initial population imbalance. The work [52] derives the oc-
cupation probability of these levels, obtaining that the self-trapping regime
is described by the occupation of doublets of high energy levels with vanish-
ing energy split. A small Franck-Condom overlap between two consecutive
doublets yields the small amplitude oscillation of the population imbalance,
while the energy spacing between the doubltes determines the fast frequency
of the oscillation.
From eq.(3.19(b)), neglecting the second term on the right since Λ� 1,
one can easily see that the sowtooth frequency is νst = zstNU/~, namely
νst ∼ (µ1 − µ2)/~, where I introduced the chemical potential di�erence be-
tween the two localized states in the self-trapping regime [52].
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The self-trapping regime is a tipical feature of atomic super�uid gases and
polariton systems, while it is neither observable in superconductor junctions
nor in super�uid He. For the �rst case, this is due to the fact that the pairing
gap associated to the electron Cooper pairs is very small with respect to
the energies involved in the Josephson dynamics: an increase of the voltage
drop would lead to pair breaking before reaching the self-trapping critical
value. For the case of He systems it is pratically impossible to access the
tunneling regime, and dissipation phenomena prevent the osservation of the
macroscopic quantum self-trapping, as I will explain in the following.

3.3.3 Beyond the Two-Mode Approximation: Dissipa-

tive E�ects

This scenario is further enriched both in multi-mode systems, i.e. when the
energy di�erence δµ can exceed the radial degrees of freedom [28], and in
systems where the quantum �uctuations associated with the two super�uid
wavefunctions Ψ1,2(r, t) are non negligible [10]. In both cases the two-mode
approximation ends to hold. It is in fact no longer possible to assume that
the spatial dependence of the two density pro�les Φ1,2(r) remains constant in
time, irrespective of the evolution of the number of atoms that are oscillating
throughout the barrier.

Within this frame it is very important to remember that a phase dif-
ference θ = π, namely a phase slippage, is equivalent to the formation of a
topological defect in the super�uid density pro�le (a soliton in 1D, a vortex
in 2D and 3D).
The self trapping-regime of a multi-mode system is expected to become unsta-
ble against dissipation of energy induced by the detachment of these topolog-
ical defects from the barrier, and their propagation into the super�uid bulk.
[28, 46, 53].
In simple words, the propagations of excitations within the super�uid allows
the system to dissipate its energy and the condition 3.24 ends to hold. The
system does not enter the self-trapping regime, while its dynamics evolves in
more complex phenomena.
A well known example is that of super�uid Helium, where phase slips have
been observed in many experiments since the �rst of Richards and Anderson
in 1965. In these experiments the weak link between the two super�uid He
reservoires is created by small ori�ces. An applied pressure di�erence mimics
the voltage drop in superconductors, or a non-zero initial imbalance in our



CHAPTER 3. SUPERFLUID DYNAMICS IN A DOUBLE-WELL 28

con�guration. Again an oscillating atom �ow is observed as a consequence
of the applied pressure di�erence. The phase slips manifest as sharp non-
linearities in the response of the oscillation amplitude as a function of the
pressure di�erence[8, 15, 54], and lead to the formation of higher order exci-
tation such as vortices in the two super�uid bulks.

3.3.4 Failure of the Modi�ed GPE

The mathematical derivation for the coherent dynamics within a double well
that I have presented above is yield from the non-modi�ed GPE equation
(3.4), thus it is in principle valid only on the BEC side of the Feschbach
resonance. As already said, an extension of this treatment is obtained by the
modi�ed GPE theory under proper renormalization of the coupling constant.
However, the modi�ed GPE fails in recovering the dynamical feature of the
system connected with contamination of the collective mode with the single
excited fermionic states, as explained in section 3.2.
A better approach would be given by the Bogoliubov-de Gennes theory. Un-
fortunately, a rigourous derivation of the Josephson equations (3.18), (3.19)
from the BdG within a two-mode approximation is not available. Nonethe-
less, the theoretical work [27] shows that the e�ects on the oscillating current
velocities due to the pair breaking can be accounted for via a renormalization
of the parameters U and K, deriving them from the stationary solution of
the BdG equation.

The qualitative failure of the GPE on the crossover and BCS side is ap-
parent in the plot 3.3 [43], that presents a comparison between the maximum
amplitude of the Josephson current in presence of a square barrier at various
barrier heights, derived from the BdG theory (symbols).
The maximum current I0 = NK/~ (derived from (3.19) in usual time units)
is expected to never exceed the upward limit set by the critical velocities in
the super�uid. On the BEC side the critical velocity is given by the sound
velocity vc, that increases as one moves toward the crossover. However on
the BCS side the critical velocity is set by the pair breaking and vpb < vc.
The trend of vpb is shown by the solid line and is derivable from the BdG
theory. The matching point between the two branches occurs at the unitary
limit.
Fig. 3.3 shows that the GPE adequately describes the maximum current to
be always lower than the critical value on the BEC limit (notice that the up-
per dashed line corresponds to a barrier value of V0/Ef = 0.025, that means
that the curve is actually approching the ideal maximum current in the su-
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Figure 3.3: Maximum Josephson current obtained with a modi�ed GPE (dashed
lines) versus y = 1/(kFa) for di�erent values of the barrier heigh: V0/EF=0.025
(dotted), 0.1 (short dashed), 0.2 (dashed), 0.4 (dashed-dotted). The square barrier
size is L = 4/kF . The critical current set by pair breaking is also plotted (solid
line). The results are compared with the maximum Josephon current obtained in
[19] (symbols) from BdG calculations. Graph from [43].

per�uid without barriers); on the BCS side instead the GPE theory leads
to an increasing value of I0, while the pair breaking e�ect whould imply an
opposite decreasing behaviour.
In plot the dashed lines for the GPE are also compared to the theoretical
results obtained by [19] (dotted data), where I0 is obtained from BdG density
pro�les n(r). The results from[19] are in agreement with the presence of an
upper velocity, both in the BEC side and in the BCS side.



Chapter 4

Experimental Setup and

Procedure

In this chapter I will give an overview of the experimental setup and proce-
dures necessary to create a BEC-BCS crossover super�uid in a double well
potential, and that allowed me to perform the �rst characterization of such
systems in the Lithium lab.

In particular I will focus on the new parts of the apparatus which were
developed with my direct engagement during the period of this thesis: a thin
optical barrier focalization on the atom cloud and its characterization.

A detailed description of the other pre-existing fundamental parts of the
apparatus, can be found in the Master thesis [55] and [56].

The protocols employed for preparing the super�uid sample are well es-
tablished thanks to the previous works [57][58]. Section 4.1 of this chapter is
dedicated to the summariration of these protocols.

4.1 Preparation of a Super�uid Fermi Gas

I summarize here the main steps that build up the preparation procedure of
the degenerate gas at the desired Feshbach �eld in the vacuum chamber. The
procedure comprehends a �rst cooling by means of interaction of atoms with
D2 and D1 light, exploiting the transitions shown in �gure 4.1, the transfer
of atoms in the optical dipole trap, and a second evaporative cooling within
the trap.

Laser cooling stage

The experimental sequence starts with loading the MOT operating on the
transition D2 (2S1/2 → 2P3/2). The MOT light con�guration consists of three

30
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Figure 4.1: D2 and D1 transition in 6Li. Figure from [57].

Parameters experimentally optimized values
I 7× IS = 7× 2.54 mW/cm2
IR
IC

2:3

δC −9Γ
δR −6Γ
Tf 2.5 mK

Table 4.1: Optimized parameter for the D2 laser cooling stage.

retro-re�exed beams -with radius of about 1.5 cm- containing both cooling
and repumping light. Parameters have been experimentally optimized to
maximize the number of trapped atoms. Where IS is the saturation inten-
sity of the D2 transition, the label C and R refer respectively to the cooling
and repumper beam.Tf indicates the reached temperature.
A second step is carried out by reducing in modulus the detunig of both cool-
ing and repumper light and simultaneously reducing their intensity to about
∼ %1 of the original value, in order to compensate the increase of photon
scattering rate, that would lead to atoms loss: We end up with a total num-
ber of collected atoms N0 ∼ 1.6× 109 at 500 µK. This temperature is signif-
icantly higher than the Doppler limited one (∼ 150 µK) due to unresolving
of the hyper�ne levels in the D2 line. To overcome this limitation a further
laser cooling technique on the D1 line (2S1/2 → 2P1/2) has been succesfully
developed in this lab [57, 58]. Thanks to a combination of Sisyphus cooling
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Parameters experimentally optimized values
I 7

100
× IS = 7× 2.54 mW/cm2

IR
IC

2:3

δC −3Γ
δR −3Γ
T1 500 µK

Table 4.2: Optimized parameter for the D2 laser cooling stage.

Parameters experimentally optimized values
I 2.7× IS = 2.7× 2.54 mW/cm2
IC
IR

0.2

δ −0.2Γ
δC 5.4Γ
δR 5.2Γ
Tf ∼ 135 µK

Table 4.3: Optimal parameters for D1 cooling.

and velocity selective coherent population trapping, the D1 cooling technique
allows to reduce the temperature of the cloud down to ∼ 40 µK with no sig-
ni�cant atom losses and a factor of 20 gain in the phase-space density. In
table 4.3 the optimized experimental parameters for D1 cooling are reported.

Thanks to intensity imbalance between repumper and cooling light, a sig-
ni�cant fraction of atoms (∼ 85%) is already found in the F = 1/2 manyfold,
which is the one exploited for evaporative cooling.

ODT loading

The optical dipole trap (ODT) is ramped up over 5 ms during the D2 cooling
stage and it is fully on by the time the D1 phase is applied; it is constitued
by two crossed laser beams, in order to assure 3D con�nement.
The �rst laser beam is generated by a 200 W multimode ytterbium �ber laser
(IPG LASER) with a central wavelength of 1073 nm and with almost a 3 nm
broadening, whose initial power is set at 120 W.
The beam in out of the laser is collimated with waist ∼ 1 mm onto an AOM
and afterwards brought to the science chamber and focused onto the atoms
with a waist of 45 µm both in the x and y direction.
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The power stabilization of IPG is achieved by means of the AOM, con-
trolled by a a PID circuit, which recieves the feedback signal from a pick-up
beam shined onto a linear photodiode.

At full power the ODT has a depth of about 3 mK, su�cient to trap atoms
from the laser cooling stage. To optimize the transfer from into the ODT,
we increase the trapping volume of the ODT by appling a fast sinusoidal
modulation to both the central frequency and the amplitude of the IPG's
AOM. The frequency modulation (FM) changes the frequency of oscillation
of the AOM piezoelectric (pzt) trasducer; this results in a displacement of
the position of the focused beam in the science chamber. The frequency of
this modulation is 600 kHz, much greater than the trapping frequencies, and
atoms experience a time-averaged dipole potential with an e�ective waist
larger than the one without modulation (∼ 100µm).
The pro�le of the time-averaged potential is non-Gaussian: the distorsion is
corrected by the amplitude modulation (AM), with frequency twice the FM
frequency and a relative phase of π/2.

In addition to the IPG beam, a second optical trap beam, crossing the
IGP with an angle of ∼ 14◦ is shined onto the atoms.
This second beam is produced by a monolithic Nd:YAG NPRO (Non-Planar
Ring Oscillator) laser (Mephisto) with central line at 1064 nm. The output of
the laser is coupled in a polarization maintaining �ber to bring it in proximity
of the vacuum chamber and afterwards focalized onto it. The waist of the
beam is cilindrically symmetric, with a value of 45 µm in the trap focus.
The initial power of the Mephisto beam is set at 2 W. The Mephisto beam
provides additional trapping con�nement once the IPG light is signi�cantly
reduced during evaporation.

The total number of atoms transferred into the ODT is ∼ 2× 107, that
is actually of two order of magnitude less than the initial collected atoms in
the MOT. As already reported in the previous paragraph, the temperature
of the sample is T & 100 µK.

After optimization of the mode matching of laser cooling stages and op-
tical trapping, we end up with around 2 × 107 atoms at a temperature of
∼ 80 µK.

Hyper�ne pumping to the F=1/2 manifold is carried out by turning o�
the D1 repumper light 25 µs before the cooling light. The pumping slightly
heats up the sample by a 10% of the temperature.
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Evaporative cooling

The next step consists in an evaporative cooling process. It is done by ramp-
ing down in following steps the intensity of both IPG and Mephisto beams
indipendently, and results with the main con�nement of atoms done by the
Mephisto light.
Multiple radio-frequency sweeps resonant with the ((1/2;−1/2)↔ (1/2; +1/2))
transition are needed to create the favourable incoherent balanced spin mix-
ture that allows momentum redistribution among atoms thanks to collisions,
suppressed by Pauli bloking in presence of a unique populated quantum state.

During this stage the Feshbach magnetic �eld is ramped on1 in about
30ms up to 840 G, close to the resonance.

The evaporation is carried forward via consecutive decreasing ramps of
the beams intensity. Times, target intensity and decreasing trend of each
ramp are experimentally chosen by minimizing the resulting temperature.
The average lasting time of each ramp is of hundreds of ms.

Main features of the obtained sample in the three Feshbach regimes

As already said, the �rst ramp is done at 840 G. Here atoms are strongly in-
teracting, thus allowing to reach high e�ciencies for the evaporative proces.
The following evaporation ramps are carried on at di�erent Feshbach �elds,
depending on which regime has to be investigated: BEC, unitary gas, BCS.
To realize a BEC of tightly bounded molecules, the Feshbach �eld is ramped
towards lower values, �rst down to 800 G, where the S-wave scattering length
between the two species (Fm = ±1/2) is of the order of 11000 a0, thus heigh
enough to e�ciently lead to three-body recombination processes as soon as
the temperature becomes comparable with the molecular binding energy. A
second sweep adiabatically brings the Feshbach magnetic �eld to the target
value of 690 G.
Similar procedure is used to create unitary gases or BCS-gases, by sweeping
the magnetic �eld from 840 G up to the decided target value.

The �nal trap con�guration is within a very good approximation har-
monic with the following typical values of dipole oscillation frequencies in

1The Feshbach �eld introduces an additional con�ning e�ect in the x-z plane (transver-
sal to gravity) for the high-�eld seeker states [33]. For example, at 834 G this con�nement
corresponds to a frequency ωB = 2π × 8 Hz. This residual curvature is due to the fact that
the two Feshbach coils are placed at a distance smaller than the Helmoltz con�guration.
According to the Maxwell's equations, along the y-direction is instead produced an anti-
con�ning magnetic curvature (anticurvature), that is added to the e�ect of gravity.
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ω0
x Hz ω0

y Hz ω0
z Hz

150(3) 180(5) 14.0(0.2)

Table 4.4: Typical values of dipole oscillation frequencies of the cloud within
the gas

the three directions:
These values are actually slightly di�erent in the three Feshbach regimes,

owing to the dependence of the cloud size on the the interaction parameter
1/(kFa). A typical value for the Thomas-Fermi radius in the BEC regime is
RTF ∼ 140 µm, while at the crossover the cloud is larger withRTF ∼ 260 µm,
and the expansion increases with the magnetic �eld, up to the BCS limit
where one �nds RTF ∼ 300 µm.

The �nal temperature of the cloud T . 100 µK is low enought to assure a
high level of degeneracy throughout the whole crossover, with T/TS ∼ 10−2,
where TS( 1

kF a
) is the super�uid transition temperature [38].

The total number of atoms per spin generally obtained in the ODT at the
end of the preparation procedure is of the order of ×105. In �gure 4.2 I
show an example of imaged cloud in the BEC limit at 690 G. In the �gure
it is evident the e�ect of the repulsive green-light sheet, extending in the x-y
plane, parallel to the line of sight of the observer.

Figure 4.2: Molecular BEC imaged in situ at 690 G. The relative density pro�le
is also shown.
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4.2 Splitting of the Sample in two Reservoires:

Creation of a Thin Optical Barrier Poten-

tial

The optical barrier potential is created by focalizing onto the atom cloud a
sheet of light perpendicularly to the elongated direction of the sygar-shaped
trap (see �g.4.2). The light has wavelength 532 nm, blue-detuned with re-
spect to the (22S ↔ 22P ) transition around 671 nm. The light therefore
repels the atoms, splitting the cloud in two reservoires.

The height of the barrier potential V0 felt by the atoms is tuned via ana-
log control of the laser beam intensity.
The power of the beam is ramped up to the target value during the evap-
oration procedure, in order to complete the condensation of the gas in the
�nal double-well potential trap arrangement. The raising ramp lasts 100ms,
a time that is longer than the oscillation period along the trap direction
∆T ∼ 1

14
s ' 71 ms, thus su�ciently slow to avoid spurious excitation of the

sample.

In this section I present the experimental setup used to create and focalize
the barrier onto the atom cloud. The system is sketched in �gure 4.3 and
4.4.
The light beam is derived from a Verdi V8 laser, controlled in amplitude
via an AOM and afterwards coupled into an optical �ber to send it to the
focalization system.
The amplitude stabilization is assured by a Stanford PID (SIM 960), which
compares the signal from a pick-up beam with the value set via the control
program. The pick-up beam is re�exed by a thin glass (G) and recorded by
a fast Thorlabs photodiod DET 36 A/M (biased Si detector, 350-1100 nm)2.
The PD has resulted to perfecly stabilize the amplitude up to 10 kHz rumor
signals; afterwards, some distorsions are observed. This upper threshold is
adequate to our system, namely it is very high with respect to the typical
oscillations frequencies of the atom cloud within the trap potential (see table
in section 4.1).

In output from the �ber a λ/2 plus a polarizing beam slpitter stabilize
the beam polarization. The beam is afterwards collimated by the two lenses
L1
barr (AC-508-100A, achromat 2" lens) and L2

barr (LA-1384-A), with focal
respectively of 100 mm and 125 mm.

2PD DET 36 A/M has got a rise time of 14 ns and an active area of 3.6x3.6 mm2. It
is a battery charged PD. I refer to ref. [59] for further speci�cations.
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Figure 4.3: Top view of the system used to create the potential barrier and stabilize
it.
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Figure 4.4: Sketch of the high resolution optical system used to imprint the barrier
onto the atom cluod and to image it. The dichroic mirror allows to overlap the
barrier light with the imaging one.
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After the collimator system a 2" cylindrical lens LC (LJ-1267L1) assures a
strong anisotropy in the waist of the beam in the two transversal directions,
withWz � Wx. The axis labels are consistent with their resulting projection
onto the atom cloud. From now on, I will always refer to z as the direction
in which the sygar-shaped atom cloud is elongated, and to x and y as the
transversal directions, where y identi�es the gravity direction. The strong
anisotropy of the transversal pro�le due to LC results in a sheet-like con�g-
uration of the beam perpendicular to the z direction.
A mirror and a second 2" dichroic mirror bring the beam onto a system
composed in sequens by a 2" wire grid polarizer (WGP), a 2" λ/4 and a 2"
plano-convex aspheric lens AL4532 (LA) with focal f = 32 mm. The aspheric
lens focalizes the green light beam onto the atom cloud.

The focalization optical system for the green light is the same used to rec-
ollect the 670 nm imaging light from the cloud, as indicated by the arrows in
�gure. The dichroic (D) allows to separate the two beam paths by re�ecting
dawnwards the green light onto the aspheric lens and transmitting upwards
the imaging light towards the imaging system. The numerical aperture of LA
is NA= 0.612 thus yelding a high theoretical resolution R = 0.6λ/NA ∼ λ,
where λ is the incident light wavelength, thus approaching the di�raction
limit.

To the green light beam and imaging beam is also superimposed the
upward path of the vertical MOT light in the vacuum chamber. The WGP
and the λ/4 act as a retrore�ecting mirror for the MOT beam while transmit
both the barrier light and the imaging light. This is done thanks to the
perpendicular polarization of the MOT beam with respect to the polarization
of both the green light and the imaging light. The maximization of the
transmittance of the green beam through the WGP is obtained by adjusting
the λ/2 placed between the two collimimating lenses L1

barr and L2
barr. A

compact cilindrical holder keeps the system composed by WGP, λ/4 and
aspheric lens in the correct position and is integrated within the vacuum
cell. The focalization and imaging light collecting system is shown in detail
in �gure 4.5. A transversal image of the green light beam in out of LC taken
with a CCD camera is also reported.

The focalization of the green light onto the atom cloud is optimized by
adjusting the position of the lens L1

barr, which is collocated on a traslator
stage. Moreover, the cylindrical lens LC is mounted on a rotating frame that
allows to eventully change the orientation of the sheet of light with respect
to the atom cloud in the x-y plane.

Finally, the high resolution imaging system is composed by a f = 250
mm lens Limm, a two lens magni�cation system (L1

M + L2
M) (of focal 150

mm and 250 mm respectively) and a EMCCD iXon3 Andor camera. The
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Figure 4.5: (a) Focalization and imaging light collecting system. The superimosed
paths of green light, imaging light and MOT beam are indicated with arrows. (b)
transversal image of the green light beam in out of LC taken with a CCD camera
is also reported.

magni�cation of the whole imaging system is M = 12.

4.3 Characterization of the Thin Optical Bar-

rier

A �rst test of the actual shape of the resulting sheet-like laser beam has been
done in the Master thesis [56]. I present here a detailed characterization of the
beam carried out outside from the vacuum cell. I also report the experimental
procedure I used to focus the barrier in situ onto the atom coud within the
vacuum cell.

4.3.1 Characterization of the optical barrier out of the

vacuum cell

To directly characterize the barrier beam I deviated the light path right after-
wards the cylindrical lens LC and reproduced on the breadboard a specular
con�guration to that used to focalize the barrier onto the cloud, namely I
have measured the distance between the cylindrical lens LC and the aspheric
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lens LA collocated in the rigid cylindric holder of �gure 4.53, and then plac-
ing on the breadboard a second aspheric lens identical to LA at the same
distance from the cylindric lens. The distance is ∼47 cm. In the focus of the
aspheric lens a CCD images the beam pro�les.

Determination of Wz in the focus

First af all I determined the waist Wz placing the CCD in the z-direction
focus of the aspheric lens, that means in the same position as that of the
atom cloud.
To do so, I monitored the variation of the quantity as a function of the
CCD position within a range of ∼ 600 µm around the focus. A micrometric
translator has allowed sampling intervalls of ∼ 20 µm. The experimental
results are plotted in �gure 4.6. In the inset are also reported the respective
mesured values for Wx. The beams results on the CCD to be Gaussian in

Figure 4.6: Variation of the thin waist Wz as a function of the CCD position
around the focus of the aspheric lens. In the inset is also reported the variation of
Wx.

both direction, thus one can �t the data with the following function

Wz(y − yoff ) = W 0
z

√
1 +

(
y − yoff
yR

)2

(4.1)

3The holder is partially inserted into the vacuum cell. However its dimensions are
known as well as the position of the aspheric lens in it. Thus it has been possible to
calculate the overall path of the laser beam.
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where yR = πW 2
0 /λ is the Rayleigh range, with λ = 532 nm the wavelength

and W 0
z the value of the waist in the focus.

The �t yelds a value of 1.56(1) µm for the z direction. From the graph in inset
one can also derive that the value of the x-direction waist changes around
a value of ∼ 840 µm of approximately 12% in the region of interest around
the focus in the z-direction. The atom cloud dimension in the transversal
directions are of the order of ∼ 10 µm, namely up to two order of magnitude
less than the Wx waist. Thus such a variation is actually not in�uencing the
geometry of the system. The disagreement of the �t with the experimental
data at the minimum of the trend is due to the maximum resolution of the
CCD camera, namely the pixel dimension, thus larger than the expected
beam waist.

Determination of Wx

I repeated the above procedure for the detemination of Wz at di�erent dis-
tances of the aspheric lens from the cylindrical lens. For each value of Wz

I have also recorded the Wx value in the minimum position for Wz. The
obtained results are plotted in graphs 5 and 4.8.
I have �tted both the curves with the hyperbolic function:

Figure 4.7: Minimum waist Wz as a function of the aspheric lens distance from
LC lens. Errors are yeld from �t.
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Figure 4.8: Wx as a function of the aspheric lens distance from LC lens.

W (d) =
Ad

B + d
(4.2)

where A and B are �tting parameters and d identify the distance between
the two lenses.

From the parameters obtained for Wx and assuming a distance between
the aspheric and cylindrical lenses to be 47.0(5) cm, one obtains an estimate
of the x-direction waist in the atom cloud position of Wx = 846(27) µm.
A check forWz via the same procedure can also be done, yeldingWx = 1.34(8) µm.
The result is in qualitative good agreement with the direct mesurement of
the waist explained in the previous section, thus con�rming the adequate
accuracy for the detection of the waist in the x-direction.

4.3.2 Characterization of the Barrier within the Vac-

uum Chamber

The characterization procedure reported in the previous section cannot ac-
count for possible distorsions introduced by the entrance window of the vac-
uum cell. To overcome this issue, I also extrapolated the beam size by
imaging the in-situ density pro�le of a molecule BEC in the presence of
the barrier potential. According with the local density approximation, the
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density depletion of the Bose Einstein condensate is directly connected with
the barrier pro�le. However, the di�usion of atoms during the imaging pulse
over micrometer scale is expected to distort and eventually broaden the bar-
rier pro�le carved within the super�uid density. To overcome this issue, we
acquired in situ images of the barrier imprinted on the cloud for di�erent
imaging pulse durations, and we extracted via a Gaussian �t of the depleted
region the size of the barrier potential. The results are presented in Fig. 4.9.
By extrapolating the beam waist of the green sheet of light down to zero
pulse duration, we could infer the real size of the repulsive beam inside the
vacuum cell, that results to be Wx = 2.0(2) µm. Hence, the e�ect associated
with the propagation of the beam through the re-entrant window is found to
be on the order of 30%.

Figure 4.9: Wx deteremined from a Gaussian �t of the density depletion of a
molecular BEC, as a function of the imaging pulse duration. The extrapolation of
the waist to zero pulse time, gives a value Wx = 2.0(2) µm.

4.3.3 Focusing of the optical barrier in situ

To �nely tune the optical focusing system of the barrier onto the atoms I stud-
ied the transmission mechanism of atoms throughout the two reservoires.
With the same procedure explained in more details in section 4.4.1, I accu-
mulated a sourplus of atoms in one reservoir with respect to the other by
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raising the barrier in a displaced position with respect to the ODT center
while the gas is cooling down, and afterwards shifting the ODT center to
coincide with the barrier position (see �g. 4.11). After the displacement,
the system is let evolve for a time ∆t = T0/2, where T0 is the period of the
dipole oscillation (in absence of barrier) within the trap in the z-direction.
After that time system is imaged and one can record the number of atoms
remained in the overloaded reservoir.
I repeated the procedure adjusting the L1

barr collimating lens in a ∼ 2 mm
space interval and recording for each position the remained atom number.
The experimental reslut, obtained for a gas of molecules in the BEC regime,
is reported in graph 4.10 for two values of barrier power (4.75 mW and 10
mW). I assumed that the minimum transfer of atoms from the overloaded

Figure 4.10:

well to the other one correspond to the maximization of the focusing of the
barrier. That means in graph 4.10 the maximum of the curve corresponds to
the optimal lens position.
To test the validity of this assumption I theoretically tested the variation
of tunneling probability as a function of the barrier waist Wz within a very
simple model. The main assumptions of the model are listed in the following:
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� 1D

� non interacting bosons (single particle approximation);

� homogeneous gas;

� tunneling across a square barrier of size b and height V0.

The size b is related to the collimation lens position p through the real barrier

waist Wz(p) = W 0
z

√
1 +

(
p/13
zR

)
, where W 0

z is the minimum waist, zR the

Rayleigh range, and p the lens position. The factor 1/13 is introduced to
take into account the fact that that a displacement of ∆p of the collimating
lens corresponds to a ∆p/13 displacement of the focalizing aspheric lens.
Given an initial energy ε of the particle freely moving on a side of the barrier,
I have assumed that the e�ective size of the square barrier felt by the particle
is the size of the gaussian barrier relative to ε, namely b = Wz(p)

√
2
√

ln(V0/ε)
where V0 is the barrier potential.
Also the maximum barrier height felt by the atoms depends on the focusing
of the waist through the relation:

V0 = C
0.51P0

Wz(p)Wx

(4.3)

where P0 is the power of the green laser beam set by analogic command,
and the constant C depends on the interaction properties of 6Li with the
radiation. The factor 0.51 accounts for the power fraction absorbed by the
optics included in the beam path and for the conversion factor between the
set power via analog command and the real power measured in out of the
laser. In the model the waist on the x-directin Wx is assumed constant.

With these assumptions, the transmission probability T ≡ |Ψ1(b/2)|2
|Ψ2(−b/2)|2 is:

T (P0, p, ε) =
1

1 + Wz

2
√

2

(√
ε
V0

+
√

V0−ε
ε

)2

sinh2
(√

2M
~2 (V0 − ε)

)√
ln(V0

ε
)

(4.4)
Within this model, the number of atoms that remain in the overloaded

reservoir is proportional to the quantity R = [1− T ]. In order to test the
goodness of the focusing method I presented above, I plot in �gure 4.10
R(P0, p) as a function of the position of the collimating lens p, equating the
energy ε to that of the energy per particle in a weakly interacting bose gas,
namely ε = 5

7
µB (see eq.(3.6)). The minimum waist has been setW 0

z = 2 µm.
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The central lines correspond to the nominal power P0, to which an uncer-
tanty of 5% has been associated.

Despite its simplicity, one observes that the model is in qualitative agree-
ment witht he experimental results. The minimum transmission of atoms is

found for p = 0, that, having Wz(p) = W 0
z

√
1 +

(
p/13
zR

)
, corresponds to the

maximum focusing of the barrier onto the cloud.

4.4 Experiments with a Double Well: Diagnos-

tics

4.4.1 Barrier Displacement and Dynamics Initialization

To initialize a dynamics we �rst set a non-zero initial imbalance z0 = N1−N2

N

(with N1 and N2 the atom numbers in the two reservoires) ramping the bar-
rier at a shifted position with respect to the ODT center. The displacement
between the barrier position and the ODT center is obtained by adjusting
the ODT position -and not the barrier- by means of an analog control on the
AOM frequency in out of the IGP laser beam.

It is very important to note that whatever displacement has been chosen,
the total system of the two splitted reservoires is found in a state of equi-
librium, with the internal energy characterizing the left reservoire equal to
that of the right reservoire. In order to set o� the dynamics, as it has been
described in chapter 3, an energy di�erence has to be set. This is done by
re-aligning the ODT center to the barrier position via the frequency AOM
analog control, as sketched in �gure 4.11.

Figure 4.11: The imbalanced arrangement of the two super�uids within the
double-well potential is obtained by shifting in the z-direction the ODT center
position back to the symmetric con�guration. Due to the di�erent atom number
between the left and right reservoires, an energy di�erence is set.
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The shift to the �nal symmetric con�guration with imbalanced atom num-
ber can be done both non-adiabatically, by istantaneously displacing the
ODT towards the barrier position, or adiabatically, by displacing the trap in
a time that is long (150 ms) with respect to the dipole oscillation period (∼72
ms) of the cloud in the trap. In the second case we �rst rise the barrier at
a high value to suppress the tunneling, and after the ODT displacement we
lower it down in 2-5 ms to the target value. With this second procedure, no
motion of the center of mass is excited. The relative experimental sequence
is sketched in �gure 4.12.
We experimentally observed the same results with the two procedures.
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Figure 4.12: Displacement experimental procedure without excitation of
dipole mode.

4.4.2 Experimental Protocols for the Dynamics Char-

acterization

The aim of the experimental observations is that of characterizing the time
evolution of the two weakly interacting super�uids system at variuos Fesh-
bach regimes in presence of a tunable barrier, after that the dynamics is set
o� as descrived in the previous paragraph.
As already exlained in chapter 3, two quantities completely describe the co-
herent oscillations across the weak link: the population imbalance z(t) = N1(t)−N2(t)

N

and the relative phase θ(t) = θ1(t)− θ2(t).
In the regime in which Λ > λc, as discussed in 3, the two-mode approxi-
mation ends to correctly describe the system, and other phenomena, as the
appearance of vortices, are observed.
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To quantitativly describe the dynamics in all the possible situations, three
main experimental observation procedures have been carried out:

� record of the evolution of z(t);

� record of the evolution of θ(t) by means of observation of interference
pattern in time of �ight;

� observation of vortices in time of �ight.

In this section I describe the three experimental procedures and the relative
analysis I accomplished onto the data.

Evolution of z(t)

The time t0 at which the ODT is shifted to the symmetic-geometry and the
dynamics is set o�, is taken as the time-reference point: t0 = 0.
I reconstructed the subsequent evolution of z(t− t0 = t) progressively shift-
ing the delay time at which the atoms cloud is imaged. In �gure 4.13(a)
I report an example of z(t) oscillation in the Josephson regime. For each
imaging time a statistics of ∼ 4 data has been taken, leading to standard
deviation errors as reported in graph.

(a) (b)

Figure 4.13: (a) Time evolution of the population imbalance (x-axis units:
ms). BEC regime (B=690G). Barrier power: 5mW. Initial population imbalance
z0 ∼ 0.035. These conditions correspond to the Josephson regime. (b) Time evo-
lution of the total atoms number (x-axis units: ms).

I also report in �g.4.13 the evolution of the total atoms number N : the
investigation of the dynamics results limited to a time window of 300ms,
owing to the �nite life time of atoms in the trap.
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Oscillations have been �tted with a sinusoidal function:

z(t) = off + z0 × e−
t
τ × sin (2πν(t) + Φ) (4.5)

The �t takes into account a possible damping e�ect described by the time
costant τ . This e�ect is the consequence of a spread in the frequency domain
around the carrier frequency ν that I attribute to the �nite temperature.
The phase-o�set Φ has been set to π/2, having displaced the ODT so that
the surplus of atoms is initially found in the left-well.
In the Josephson regime the o�set in 4.5 is expected to be identically zero
as it follows from relations (3.19). Nevertheless this term is also introduced
as a variable in the �tting, to take into account possible systematic errors
due to imaging disomogeneities, as well as the evolution to a non-zero o�set
value when moving towards the self-trapping regime at higher barriers.

For each set of data as in 4.13(a) the parameters in the following table
have been extracted. In table are reported the numerical values related to
the example of �gure 4.13(a)4.

parameter value from �t
ν 14.03(16)Hz
z0 0.019(2)
τ �
off 0.006(2)

As a conclusion to this paragraph we point out that an analogous proce-
dure has been used to determine the trap frequencies along the three direc-
tions, namely the oscillation frequency of the atoms cloud in absence of the
barrier.

evolution of θ(t)

The phase di�erence between the two super�uids is revealed by interference
patterns as that reported in �gure 4.14

The patterns are obtained in time of �ight (TOF), namely both the barrier
light and the ODT beams are swithced o� letting the two super�uid expand
and spatially overlap. The appearence of a de�ned interference pattern is
the ultimate proof of the coherence of the two single-well states, or, in other
words, that they are indeed described by an order parameter of the form (3.1)
with a well de�ned macroscopic phase. The �rst experimental observation of

4In this example the �t does not reveal damping.
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Figure 4.14: Example of imaging of the interference pattern. The corresponding
density pro�le in arbitrary units is also shown. Unitary limit.

interference fringes was carried out by Ketterle et al., 1997 for two colliding
BECs [60].

The TOF expansion lasts 6 ms. In principle one would need a longer time
to assure a complete overlap between the two super�uid. Unfortunatly this is
not possible in our experimental con�guration, because while expanding the
cloud moves downwards under gravity, namely getting out from the imaging
focus. I remind here in fact that the same aspheric lens is used both to focus
the barrier onto the cloud and to imagine it. If one would move the lens to
follow the cloud with the focus, one would also defocus the barrier in situ,
actually decreasing the reproducibility of our experiment.

The visibility of the interference fringes in TOF has been experimentally
investigated in the previous work [61]. The work prooves that the visibility
of interference fringes in crossover super�uids is strongly reduced when en-
tering the strong interaction regime, due to collision-induced dephasing. To
overcome this issue and gain accuracy in the derivation of the density pro�le,
5-10 ms before the ODT and barrier lights are turned o� the magnetic �eld
is swept back to 690 G. The experimental sequence is reported in �gure 4.15.
With this procedure the interaction reduction occurs both in-trap for few ms
and during the TOF. This method is similar to that used in the works [60]
and [26] for the observations of vortices.

A disavantage of the procedure is that it introduces mechanical noise if
the jump from the experimental Feshbach �eld down to 690 G is huge, hence
the noise mainly a�ects measurements on the BCS side. The noise is sup-
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Figure 4.15: Experimental sequence used to acquire TOF phase interference pat-
terns.

pressed by simply increasing the statistics of acquired images. Moreover the
ramp to the BEC �eld introduces a �xed o�set in the phase di�erence accu-
mulated during the ramping time, but the dynamics evolution of the phase
results to be not a�ected.

The interference patterns are �tted with a Gaussian pro�le modulated
with a cos (kz + θ) where θ is the phase di�erence. In alternative, a 1D
fourier transformation of the pro�le has been used.

Observation of vortices in time of �ight

As explained in chapter 3, in our multi-mode system the presence of the
barrier may lead to the creation of vortices in the two super�uid bulks via
the phenomenon of phase slippage. To investigate the occurrence of vortices,
whose size is of the order of the healing length (namely ∼ 1/kF ), I used a
similar procedure used for the phase di�erence determination.
The main issue is to expand the cloud in TOF so that the vortices become
visible while avoiding interference between the two reservoires. This is done
by turning down in 30 ms the barrier height after the desired dynamics
time, then holding the system in the crossed ODT for about 10 ms, to make
sure that the depletion in the cloud carved by the barrier is estinguished,
and �nally turning o� the ODT light with the gas exanding in TOF. For
the same visibility issue the expansion and imaging of the cloud is done in
the BEC limit. The experimental sequence is reported in �gure 4.16. The
presence of a vortex is determined by eye. An example of an imaged vortex
is reported in �gure 4.17.
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Figure 4.16: Experimental protocol for the observation of vortices in TOF.

Figure 4.17: Obsevation of a vortex in the super�uid. Unitary limit.



Chapter 5

Experimental Results

In this chapter I present the experimental results I obtained by investigating
the dynamics of a 6Li crossover super�uid within a double well potential with
tunable barrier height.

By controlling both the barrier height and the interaction strength between
the super�uid particles, and by monitoring the system evolution exploiting
the various protocols presented in the previous chapter, I could identify the
boundaries between a coherent regime, where the system undergoes super�uid
Josephson oscillations, and a dissipative regime, where the super�uid �ow is
quenched due to nucleation and propagation of topological defects within the
bulk system.

5.1 Study of z(t)Oscillation Frequency as a Func-

tion of the Barrier Height

A major characterization of the super�uid dynamics is based on the study
of the time evolution of z(t) by following the protocol described in section
4.4.2. Prior to the measurement, I determined both atom and molecule
number, and the trap frequencies of the 3D harmonic potential in the ab-
sence of the thin barrier. This allows us to calculate the Fermi energy (and
eventually the chemical potential) of the associated non interacting system
(EF = (6N)1/3~ωho) and the corresponding Fermi wavevector kF . This com-
bined with the magnetic �eld dependence of a(B) [24] gives the interaction
strength parameter kFa.

In �gure 5.1 I report the time evolution of the population imbalance
z(t) at various barrier heights V0 for a �xed interaction in the BEC regime
(−1/(kFa) = 4.25(18)). One observes that the population imbalance oscil-

53
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lates sinusoidally, with a frequency that progressively decreases as the barrier
is set to higher values. The oscillations are clearly detectable up to a certain
value of V0. Above this critical value, no clear oscillations are observed, and
z(t) decreases from the initial value z0 down to zero over a time of the order
of the bare oscillation period.

Figure 5.1: Time evolution of the population imbalance z(t) at 1/(kFa) = 4.25, for
di�erent values of V0/ε (from top to bottom: 0, 0.35, 1.15, 2.5). Initial population
imbalance set at z0 ∼ 0.04 on a statistics of some tens of runs.

Renormalizing the extracted frequencies to the bare trap axial frequency
ω0, one can plot the ratio ω/ω0, as a function of the barrier height V0. In this
regime, one can conveniently renormalize V0 to ε = 5

7
µB, namely the mean

energy per particle for a BEC (see eq.(3.6)). The result is reported in �g.5.2.
From graph 5.2 one can determine three regimes:

� for V0 < ε the system can be considered in the hydrodynamic regime
introduced in section 3.3.1. Here, the dipole oscillation frequency is
only slightly modi�ed by the presence of the barrier. In this regime the
barrier potential V0 is lower than ε, hence of the chemical potential of
the system.
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Figure 5.2: Trend of the renormalized oscillation frequency ω/ω0 along the x-
direction of the population imbalance as a function of the barrier potential height
V0 renormalized to the energy per particle in a BEC.

� For ε < V0 < Vc a more pronounced bending of the oscillation frequency
is observed. The system has entered the tunneling regime, in which
the �ow of a classical �uid would be impeded. In this case we expect
that the super�uid dynamics is describable by the Josephson equations
(3.22) in the limit of small oscillation amplitudes, being the intial im-
balance z0 always set well below 1, namely z0 . 0.06. The two-mode
model states that the frequency is given by the plasma frequency, that
for sake of clarity I report here [9]:

ωp =
1

~
√

2UNK + 4K2 (5.1)

As theoretically predicted by eq.(5.1), the plasma frequency diminishes
with increasing barrier height, since the coupling term K decreases ex-
ponentially with V0/ε.

� For V0 > Vc: clear sinusoidal oscillations are no longer observable. Within
the two-mode model this regime corresponds to the condition Λ > ΛC

(self-trapping regime), where 〈z(t)〉 ∼ z0 at all evolution times. In our
system however this regime is not characterized by a self-locked imbal-
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ance, as shown in the last panel of �gure 5.1. In this regime the two-
mode approximation does not capture, even at the qualitative level,
the observed trend, which in turn suggests that the system reduces its
interaction energy via some dissipation processes, as I will show in the
following.

It is important to compare the trend discussed above and presented in �gure
5.1 with the dynamics of an ideal Fermi gas. This has been prepared follow-
ing procedures described in [57], at the zero-crossing of the 832 G Feshbach
resonance, at which the interaction between |1〉 and |2〉 atoms is zeroed. In
sharp contrast with the super�uid system, the normal Fermi gas presents the
following trend: by progressively increasing V0, the z(t) is characterized by
an increasing damping of the oscillation, while the frequency is always �xed
to the bare trap value ω0. Importantly, as soon as V0 > ε, in this case no
coherent oscillations are observed. This behaviour can be ascribed to the
presence of many single particle states of the double well potential. As soon
as no particles occupy states above V0, each fermion will evolve incoherently,
leading to an overall damped z(t) dynamics.

How the change of the interaction strength characterizing the super�uid
a�ects the ω/ω0 versus V0 is shown in 5.3. Roughly, the data sets have
been acquired with a constant atom number, trap frequencies and initial
imbalance.
From these data, one can see that for each regime of the interaction, also
encompassing the strongly interacting region, and up to the BCS side of
the crossover, the trend is qualitatively similar to the one observed for the
BEC limit, already presented in 5.2: After a slight decrease of ω/ω0, a more
pronounced bending of the curves is observed for increasing barrier heights.
As for the weakly interacting BEC data, all curves cease at some critical V0,
for which the system enters in the regime of overdamped dynamics of z(t).

Furthermore, one can notice that as one moves from the BEC limit to-
wards resonance, the curves initially shift towards higher values of V0/~ω0.
Qualitatively this trend can be understood if one considers that the super-
�uid becomes progressively more strongly interacting, hence more energetic,
as the unitary limit of interactions is approached [25]. In fact, when renor-
malizing V0 to the mean energy per particle at each interaction strength, all
curves recorded on the BEC side of the Feshbach resonance would roughly
collapse one on the other.

Interestingly, however, as the unitary point is crossed and one moves to
the BCS side of the crossover, this trend ceases to hold, compare e.g. the
curves relative to 1/kFa = 0 and 1/kFa = −0.5, respectively. Simply based
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on energetic arguments, this behavior of the curves on the fermionic side of
the resonance is somewhat unexpected, since the energy of the super�uid
system keeps increasing monotonically also from the unitary regime up to
the BCS limit [25].

Figure 5.3: Trend of the renormalized oscillation frequency ω/ω0 as a function
of the barrier potential heigh V0, renormalized to the energy ~ω0. This choice for
the x-axis accounts for the e�ect of the variation of the dipole oscillation frequency
with the Feshbach �eld.

5.2 E�ect of the Pair Breaking on The BCS

Side

In order to get a better insight into the trend occurring on the BCS side of
the resonance discussed above, and also in order to get rid of spurious e�ects
related to atom and frequency variation from one data set to the other, it is
useful to re-analyze the data shown in �g.5.3 as presented in �g.5.4 Here, the
experimental data are shown in a contour plot within the 1/kFa-ω/ω0 plane:
the di�erent colors refer to di�erent V0/EF values.
As anticipated in the previous discussion, a clear bending near the crossover
region is apparent from �g.5.4 Interestingly, this behavior closely resembles
the theoretical predictions for the maximum Josephson current I0 of Refs.
[19, 27, 21]. Such downward bending is ascribed in this case to pair breaking
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e�ects, associated with the fermionic nature of the bosons composing the
super�uid, and explicitely accounted in the theory.
At present, a direct comparison between our data and these theoretical pre-
diction for I0 is not possible, due to the lack of knowledge of the on-site
interaction energy U entering the expression for the plasma frequency, given
by:

ω ' 1

~
√

2UNK (5.2)

as reported in [27]

Figure 5.4: Data for ω/ω0 plotted in the plane (1/(kFa);ω/ω0): at �xed values of
V0 the oscillation frequency shows a trend inversion right on top of the crossover
(1/kFa = 0). V0 is renormalized to the Fermi energy EF to ease the comparison
with graph 3.3.

Here, K is the coupling energy term, which in turn is related to the
maximum Josephson current I0 = NK/~ supported by the system, for a given
value V0. Nevertheless, based on the available Quantum Montecarlo and
mean �eld theory data for the mean energy per particle [25, 17], we expect
U to monotonically increase when passing from the BEC to the BCS side
of the crossover. Hence, the bending down of ω detected in the experiment
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signals a decrease of I0, as the fermionic excitations of the BCS super�uid
start a�ecting the collective mode branch [44]. It is important to stress the
fact that our experiment detects the fermionic nature of the bosonic pairs
via the study of coherent Josephson oscillations, i.e. without destroying the
super�uid state.

5.3 Study of θ(t) Oscillation Frequency in the

Running-Phase Regime

As discussed in chapter 3, the various dynamical regimes of a super�uid
evolving within a double well potential arise from the profound relation be-
tween number imbalance z(t) and phase θ(t). By employing the protocol
described in 4.4.2, we have also investigated the time evolution of θ(t), in the
regime of coherent oscillations and in the one where overdamped dynamics
of z(t) is observed.
In the Josephson regime the frequency shows sinusoidal oscillations with an
o�set of π/2 with respect to z(t), as predicted by the Josephson equations
(3.22) in the limit of small amplitude. An example on the BEC side is re-
ported in graph 5.5, confronted with the z(t): one observes that the �ts yeld
consistet values for the two fequencies.
When entering the overdamped regime, the leakage of z(t) can be in princi-

Figure 5.5: Time evolution of the phase di�erence θ(t) and z(t) at 1/(kFa) = 4.25.
V0 ↔ 4 mW (Josephson regime). Dots: experimental data; solid lines: �t results.
The two frequecy values yeld by the �t are consistent.

ple ascribed to some incoherent relaxation of the super�uid, associated with
the onset of dissipation mechanisms. In order to get further information into
this dynamical phase, we performed also the study of the phase evolution.
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In the two mode approximation, and for Λ > ΛC , the phase is expected to
evolve according with the law

θ̇ ' 2K

~
Λz (5.3)

Namely, the phase increases linearly in time, i.e. modulus 2π, it exhibits
a sawtooth evolution, with periodicity set by the di�erence in the chemical
potential between the two wells.
Within the dynamical overdamped regime, the phase is found to evolve pre-
cisely following this trend. In �gure 5.6 examples of data of the time evolution
of the phase at the unitarity point 1/kFa = 0 are shown for three di�erent
values of the barrier height V0. One can see that the higher the V0, the faster
the frequency of the sawtooth. In particular, in correspondence of the high-
est barrier height, the frequency of the oscillation is found to perfectly match
the estimated chemical potential di�erence δµ initially set between the two
reservoires. I remember that the phase patterns are imaged at 690 G, on
the BEC limit. It is worth noting that at the crossover the observed phase
at high barrieres runs with a frequency that is in agreement with the δµ at
resonance. This means that the ramp of the Feshbach �eld to the BEC side
to increase the visibility of the interference fringes (see section 4.4.2) does
not a�ect the frequency at which the phase evolves.

5.4 Observation of Vortices in the Running-Phase

Regime

As anticipated in section 3.3.3, a running-phase regime may be accompained
by dissipation mechanisms. This is a feature of multimode systems, where the
topological defect curved by the barrier potential via phase slippage mecha-
nism has non-zero probability to detach from the barrier and propagate into
the bulk.

This phenomenon is expected to appear in our system, where the typi-
cal chemical potential energy scales exceed by about an order of magnitude
the transverse dipole oscillation energies ~ω0

x;y. This implies that even for
the small imbalances z0, the double well (axial) dynamics can induce exci-
tations along the transverse directions. In order to check whether and how
such topological defects enter in the super�uid bulk, we performed a detailed
study of the system dynamics by exploiting the protocol of section 4.4.2.
From this investigation, we interestingly found out a one-to-one correspon-
dence between the occurrence of topological defects in the bulk and the en-
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Figure 5.6: Time evolution of the phase di�erence θ(t) at di�erent values of the
barrier heigh V0 at the unitary limit. V0 is renormalized to the Fermi energy EF .
Dots: experimental data; solid lines: �t results.

trance in the running phase, overdamped regime signalled by the absence
of z(t) oscillations. This close connection is presented in 5.7: here, the oc-
currence of topological defects is contrasted with the behavior of ω/ω0 as a
function of the increasing barrier height. From this comparison, it is clear
that a non-zero occurrence of defects in the super�uid bulk is present only
when the overdamped, running phase is reached.

In principle, the nature of such defects could be various. In order to bet-
ter identify them, we have characterized their oscillation frequency within
the cloud. To do so, we initially created the defect by setting the barrier
at a height where we previously observed a high occurrence of the defect in
the bulk. We then switched o� the barrier, and varied the time in which the
system is held in the ODT without barrier, while the defect propagates in
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Figure 5.7: Confront of the occurrence of vorties with the oscillation frequecy of
z(t) as functions of the barrier heigh at 1/(kFa) = 0. Again V0 is renormalized to
the Fermi energy. Data taken for an average initial imbalance z0 ∼ 0.06 (standard
deviation errors reported). The average number of vortices is obtained over a
statistics of 20-30 images (standard deviation errors reported).

the super�uid. After this variable time, the ODT was switched o�, the cloud
was expanded in TOF and �nally imaged.
By recording the position of the defect with respect to the center of mass
position of the expanded cloud, we obtained an oscillatory motion along the
axial direction of the trap. We repeated this measurement at di�erent inter-
action strengths, and the results are shown in �g.5.8.

Our data show a strong dependence of the oscillation frequency of the
defect on the value of the interaction strength, and it is found in excellent
agreement with the experimental results in Ref. [26, 29], that identi�ed those
defects as being solitonic vortices.

In order to get further insights in the occurrence of solitonic vortices
within the super�uid as a function of the system parameters, I present in
�g.5.9 experimental data that show how the onset of defects in the bulk de-
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Figure 5.8: Time trajectories in the z-direction of the topological defect observed
at −1/(kFa)=-4.25; -1 and 0, as indicated in the inset.

pends on (a) the initial imbalance and (b) on the barrier height.
From this characterization, one can see that the data in �g.5.9 are in qualita-
tive agreement with the expectation derived from the two-mode approxima-
tion, which predicts the onset of the running phase regime to be determined
by the relation

(a) (b)

Figure 5.9: (a) Study of the occurrence of vortices in the bulk as a function
of the barrier ligh power P0, for z0 = 0.06, 0.13. (b) Study of the occurrence
of vortices as a function of z0 for three values of P0: 10, 13 and 17 mW. Data
taken at 1/(kFa) = 0
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Λc = 2

(√
1− z(0)2 cos θ(0) + 1

z(0)2

)
(5.4)

Indeed, an increased z0 decreases the critical V0 for which the critical point
is reached. Analogously, an increased barrier height, hence a decreased K,
lowers the initial z0 at which the system enters the running phase regime.

Finally, we repeated the procedure followed for the acquisition of the data
presented in Fig. 1.8 for di�erent interaction strengths. The result of this
thorough characterization is presented in Figure 1.10 as a contour plot within
the 1/kFa-V0 plane. Di�erent colors correspond to di�erent probability foe
the occurrence of vortices in one image, averages over a data set of about
20-30 images per point. In order to speed up the aquisition of the data, we
set an initial imbalance z0 = 0.12(2).

Very interestingly, the overall behavior associated with the occurrence of
vortices in the bulk througout the BEC-BCS crossover perfectly mirrors the
trend of the oscilation frequency derived from the study of the time evolution
of z(t) (see �g.5.10).

Figure 5.10: Occurrence of vortices in the super�uid bulk as a function of V0/EF
and 1/(kFa). The initial imbalance z0 was set for this characterization to 0.12(2).



Chapter 6

Conclusions and Outlook

In my thesis, I performed the �rst experimental study of the dynamics of a
BEC-BCS crossover Fermi super�uid evolving within a double well potential.
The results obtained in this work allow us to identify two distinct dynamical
regimes within the interaction strength-barrier height plane: In a �rst region,
we observe coherent dynamics characterized by Josephson oscillations of the
super�uid. Here, a one-to-one correspondence between time evolution of the
number imbalance z(t) and of the super�uid phase di�erence θ(t) across the
barrier is found, in good agreement with theoretical expectations nowadays
available. Very importantly, the characterization presented in this thesis pro-
vides the �rst experimental evidence for pair breaking e�ects a�ecting the
coherent dynamics of a super�uid Fermi gas.

In the regime of high barriers, the experimental results I obtained in this
work disclose a second dynamical regime of the many-body system. This sec-
ond parameter region, within which no coherent dynamics of z(t) could be
observed, is characterized by the super�uid phase di�erence linearly increas-
ing in time. I also �nd that throughout the interaction-barrier plane, the
running phase regime is accompanied by vortex nucleation and proliferation
in the super�uid bulk. This observation is interpreted in terms of the phase
slippage mechanism, together with the multimode structure of our system.

The various experimental protocols developed in this thesis allowed me
to precisely characterize the boundary between those two dynamical regimes.
It will be interesting in the near future to compare our experimental �ndings
with theoretical prediction speci�cally developed for our peculiar super�uid
system.

Future interesting studies that one can perform with the current experi-
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mental setup are various, and I brie�y mention a few of them in the following.

An experimental investigation that could directly follow the work pre-
sented in Chapter 5 of my thesis is the characterization of the super�uid
dynamics in the regime of large initial imbalance z0, and arbitrarily low
barrier heights. This study would be especially appealing in the context of
measuring the critical velocity of the super�uid throughout the BEC-BCS
crossover [45, 22].

Another interesting extension of my thesis work could be the investiga-
tion of the system dynamics in the presence of a time-dependent modulation,
either of the height or of the position of the barrier relative to the trap. This
experiment could be regarded as the analog of the Shapiro e�ect in super-
conductor junctions [62].

Finally, another very appealing study that can be in principle performed
on the experimental setup developed in this thesis, regards the investigation
of the physics of the so-called upper branch of the Fermi gas (see Chap-
ter 2). In this regime, unpaired ↑ and ↓ fermionic atoms interact with a
positive scattering length: Interestingly, for su�ciently strong inter-particle
repulsion, a phase transition to a ferromagnetic state is expected to occur
in such a system [63, 37], leading to a macroscopic spatial separation of the
↑ and ↓ Fermi gas components in the trap. When starting with a homoge-
neous mixed sample, however, the investigation of such a phase transition is
unfortunately hindered by strong recombination processes that rapidly de-
populate the upper branch via decay onto lower-lying molecular states [64].
An alternative experimental strategy, that possibly allows to overcome such
an instability issue, would be to arti�cially prepare the system in a ferro-
magnetic phase. Namely, one could initially create the ↑ and ↓ Fermi gases
in two distinct potential wells, separated by a high barrier potential that im-
pedes particle tunneling. From here, one could then study the dynamics of
the system after partial or complete lowering of the barrier, as a function of
the interspecies interaction. If a ferromagnetic phase would be energetically
allowed, it should be unveiled by an extremely long time, during which the
two components remain spatially separated, without penetrating into each
other. The advantage of such an experimental con�guration, is that initially
at least the two components would touch only at the boundary set by the
barrier, hence strongly reducing the e�ect of inelastic decay.
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