


Some people want it to happen, some wish it would happen, and others make it

happen.

Michael Jordan
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Chapter 1

Introduction

Atom interferometry [1] is one of the most common techniques in the scientific community

used to provide precision measurements of the gravitational force. It exploits the wave-like

nature of particles and their sensitivity to the gravitational field. Like in optical interfer-

ometry, matter waves are first splitted in two separated paths and then recombined, in

a sort of double slit experiment. Depending on the difference in the phase accumulated

along the two paths, the interference pattern at the output can provide information about

forces and fields that the wave have experienced during the interrogation time.

Some of the most sensitive and precise measurements of gravity have been performed

with devices that are based on free falling atomic samples [2]. This type of sensors are

exploited for a lot of different applications, such as the precise determination of funda-

mental constants [3, 4], the test of the equivalence principle [5, 6], and the detection of

gravitationl waves.

In these interferometers laser cooled atomic samples are splitted and then recombined

exploiting two-photon transitions. At the end of the sequence, the interferometric phase

scales like φ ∝ ∆k · s, where ∆k is the two photon momentum and s = (F/2m)t2 the

space traveled by the atom due to the external force.

Since the interferometric precision scales linearly with the momentum transfer and quadrat-

ically with the interrogation time, in the last decade a lot of efforts in the scientific com-

munity have been focused in the engineering of new experimental schemes to enhance

these two quantities. In order to increase the interrogation time, atomic fouintains sev-

eral meters high have been exploited [6] and for the future there are some projects that

aim to bring atom interferometry in space [7]. Other experiments have been trying to

enhance the momentum trasfert ∆k using high order Raman transitions [8] or multiple

Bragg diffraction [9].

However, the size of the sensors and the finite interrogation time still pose limitations to

the sensitivity and the spatial resolution. Bose-Einstein condensates trapped in optical

or magnetic trap offer instead the possibility to create very compact platforms. A Bose-

Einstein condensate represents the matter analogue of a coherent laser because it shows

a macroscopic coherence length [10]. In this framework, the goal of our experiments is to
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study Bose-Einstein condensates optically trapped in a double-well potential with tunable

interatomic interactions. The double-well scheme represents the ideal configuration for

the realization of a Mach-Zender interferometry with trapped BECs [11]. The main lim-

itation in experiments that use condensed clouds is the interaction induced decoherence,

that limits the interrogation time up to tens of ms [11]. We have already demonstrated

[12, 13] that the properly tuning of the interaction strength to negligible values by means

of Feshbach resonances can help to overcome this limitation.

For interferometric applications, the small sizes of the system can allow precision mea-

surements of forces on micrometric scales and it can be exploited for fundamental studies

like the investigation of Casimir effects [14] near surfaces or deviations of the gravitational

law at short distances. Moreover, the geometry of the system together with the capability

to tune the inter-atomic interaction provide a versatile platform for the investigation of

many-body phenomena, like the collapse and revival of the coherence between two inter-

acting condensate [15] or the Josephson effect [13, 16, 17, 18] in bosonic systems. Finally,

this system allows the creation and the control of quantum entangled states splitting

adiabatically a condensate in presence of interactions [19]. The production of quantum

entangled states is extremely important in the contest of quantum interferometry for the

operation of interferometric sensors with sub shot noise sensitivity [20, 21, 22].

In previous experiments [13, 18] we create an array of double well potentials, i.e. an

optical superlattice, exploiting two couples of laser beams crossed at a small angle and

forming optical lattices with a large spacing. A large lattice constant is required to load

a macroscopic number of atoms in a single well. However, this configuration was affected

by uncotrollable mechanical noise, that led to a fast loss of coherence. Indeed, smaller is

the angle and larger is the sensitivity of the lattice spacing to its fluctuactions. A more

reliable configuration is the one that exploits retro-reflected beams by a single mirror,

where the position of the minima of the potential depends only on the relative frequency

of the lasers and the vibrational noise of the retro-reflecting mirror. With the current

technologies, it is possible, for example, to stabilize the frequency below the Hz level with

an ultra-stable cavity or a frequency comb and the vibration of the mirror can be reduced

with anti-vibrational platforms. In this configuration the lattice spacing is fixed to λ/2,

with λ the wavelength of the radiation. The insufficient number of laser sources with λ

larger than 1 µm makes really difficult to realize large spacing optical lattices with this

scheme.

In this thesis I report the realization of a large spacing optical lattice making use of an

innovative technique that exploits the beating note between two lattices with slightly dif-

ferent wavelengths. The resulting potential is characterized by two modulations, one fast

and one slow, relative to the sum and the difference of the starting. For not too high

optical intensity, it is the slower one that provides the potential felt by the atoms with a

large periodicity. We refer to this particular geometry of the potential as a “beat-note”

lattice (BL). In the configuration that we have developed we use two wavelengths of 1064

nm and 1013 nm that allow to create a lattice with an effective periodicity of 10 µm, but
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exploiting retro-reflected beams.

In order to prove the complete equivalence between a beat note lattice and a large spacing

single wavelength optical lattice we study the tunneling dynamics between neighbouring

sites in presence of an external force. Starting from a single site, we observe the coherent

evolution of the in-situ populations. The same kind of measurement has already been per-

formed with a single atom in a standard 1/2 µm spacing optical lattice [23]. The observed

dynamics exhibits a coherence up to 1 s that correponds to a sensitivity of the order of

5 · 10−5 g with a spatial resolution of ten microns. We characterized experimentally the

frequency and the amplitude of the oscillations for different values of the force and the

results show a very good agreement with theoretical simulations.

Finally, the interferometric scheme based on Bloch oscillations in a large spacing opti-

cal lattice can be exploited to measure weak force in the same way it has been already

exploited to measure gravity [24, 25] with high precision. The advantage of this scheme

is its simplicity, because only an optical lattice and an external force are present and

splitting and recombination are not needed. With a larger lattice constant, the Bloch

frequency increases under the same force, enhancing the sensitivity of the sensor. The

amplitude of the oscillations instead decreases to few lattice sites, providing an higher

spatial resolution. To our knowledge, the sensitivity acquired in this work is the higher

reported in litterature in the measurement of small forces (<< g) using a trapped atom

interferometer. Currently, the interrogation time is mainly limited by the instability of

the external force.

The thesis is organized as follows.

In Chapter 2 I present a brief overview about atoms in optical lattices, describing the the-

ory of a single particle in a periodic potential. Then I discuss theoretically the problem of

an optical lattice with a constant force that leads to Bloch oscillations. Finally, I explain

our idea to realize a large spacing optical lattice exploiting the beating of two slighlty

different wavelengths, investigating its properties by the help of numerical simulations.

In Chapter 3 I decribe our experimental platform for the realization of Bose-Einstein

condensates with tunable interaction in the beat-note optical lattice. I start with an in-

troduction of the main parts of the experimental setup and then I focus the attention on

the new laser system that I have designed and assembled for the control of the intensity

and the frequency of the lasers. In particular, I focus on the technique that we exploit to

lock the two frequencies at the same optical cavity.

In Chapter 4 the main results of this work are reported. I show the characterization of

the novel optical lattice and the observation of Bloch oscillations. Perfroming measure-

ment of the on-site trapping frequencies we manage to calibrate the optical depth of the

BL. After a measurement of the forces acting on the system, we observe the evolution

of the population of each site in presence of an external controlled force. I compare the

frequency and the amplitude of the oscillations with theoretical predictions provided by

numerical simulations. Finally, I discuss some future improvements for our experimental
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apparatus.

In Chapter 5 I conclude with a discussion of the results that we have obtained and the

future perspectives offered by our system.

In the first part of my PhD I have participated to a different project: we have stud-

ied the behaviour of an ultracold mixture of two different internal states of potassium. In

particular regimes of interaction the cloud tends to collapse but, at high density, many-

body effects occur and stabilize the mixture to a fixed volume. In free space it does not

collapse or expand and it behaves like a liquid droplet. Even if almost half of my PhD has

been dedicated to the experimental study of quantum droplets, I have preferred to focus

on the project about the novel type of optical lattice, i.e. the beat-note optical lattice.

Nevertheless, in Chapter 6 I report a summary of our experimental results on quantum

droplets. In particular, I show our experimental characterization of the time evolution

and the equilibrium properties of quantum droplets in free space [26]. Then I describe

the experimental study that we have performed on the collisional dynamics between two

droplets [27] that can provide informations about the excitation spectrum and the energy

scales of this new phase of matter.
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Chapter 2

Theory

In this chapter I present an overview on the main theoretical tools usefull to understand

the physical properties of atoms in optical lattices. First I give a brief description of

the theory of a single particle in a periodic potential, introducing the concepts of energy

bands and energy gaps. I derive the analytic expression of the energy spectrum in the

two different approximations of weak and deap potential. Then I introduce the problem

of an optical lattice with a constant force that leads to a coherent dynamics named Bloch

oscillations. I describe the evolution of the momentum distibution and of the wave packet

in position space, comparing the dynamics in the two coordinates for different initial sizes

of the condensates by the help of numerical simulations.

In the last section I explain our idea to realize a large spacing optical lattice exploiting

the beating of two wavelengths. I investigate numerically the band structure of this

bichromatic lattice calculating the energy gap for different regimes and configurations.

2.1 Optical Lattices

In order to confine an ultracold atomic sample it is possible to expolit the so called AC

Stark effect. When an atom is placed in a light field, the oscillating electric field of the

latter induces an electric dipole moment in the atom ~d = α~E, where α is the complex

polarizability. The real part of α describes the component of ~d oscillating in phase with
~E and it is responsible for the dispersive properties of the interaction. The imaginary

part describes the out-of-phase component of ~d and it is connected with the dissipative

properties.

The real part leads to a dipole potential, defined by the interaction energy of the induced

dipole ~d interacting with the driving electric field, that in the case of a laser with a

frequency ω far from the atomic resonance ω0, can be expressed as [28]:

Vdip(~r) =
1

2ε0c
Re(α)I(~r) =

3πc2

2ω3
0

( Γ

∆

)
I(~r) (2.1)

where the detuning ∆ = ω−ω0, is much larger than the radiative linewidth Γ and I(~r) is

the intensity profile of the beam. The dissipative effects related to the imaginary part of
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2.1. Optical Lattices

α describes the absorption of photons from the incident light beam. The scattering rate

of a photon is defined as:

Γscatt =
1

~ε0c
Im(α)I(~r) =

3πc2

2~ω3
0

( Γ

∆

)2

I(~r) (2.2)

The expr. (2.1) shows that if ω < ω0 the force applied on the atoms points in the direction

of increasing field. Choosing the spatial profile of the beam I(~r) it is therefore possible to

engineer the trapping potential. For example, in order to trap a Bose-Einstein condensate

in a periodic potential, the most common technique is to exploit the interference pattern

created by two or more overlapping laser beams.

Let us consider two plane waves with the same frequency ω superimposed with an angle

θ and where amplitudes of the electric fields are E0 and E1. The total field is:

E(~x, t) = E0e
i( ~k1·~x−ωt) + E1e

i( ~k2·~x−ωt+φ) (2.3)

where the two wave-vectors ~k1,2 have the same modulus and differ only in the direction.

The total intensity is given by the square modulus of the total field. Exploiting trigono-

metric relations and averaging over the terms oscillating at the optical frequency ω, it is

possibile to demonstrate that in the crossing region the intensity along the x direction in

given by:

I(x) =
1

2ε0c
[(E0 − E1)2 + 4E0E1 cos2(kLx)] (2.4)

where the wave vector of the lattice kL = π/d is related to the peridocity of the standing

wave by

d =
λ

2 sin(θ/2)
. (2.5)

Assuming E0 = E1 and exploiting the eq. (2.1), the dipole potential felt by the atoms is

V (x) = V0 cos2(kLx) (2.6)

where the lattice depth V0 is proportional to the optical intensity I0. Typically, the lattice

depth is measured in units of the recoil energy ER = ~2kL/2m, that represents the main

energy scales for the atoms in the optical lattice.
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2.2. Non-interacting particles in a periodic potential

2.2 Non-interacting particles in a periodic potential

Let us consider a gas of non interacting particles in a one-dimensional periodic potential

where its spatial profile is given by the expr. (2.4).

Since the potential is periodic, the Bloch theorem ensures that the eigenfunctions of the

system can be written as the eigenfunctions of the translational operator that have the

form:

ψk,n(x) = eikruk,n(x) (2.7)

where the functions uk,n(x) have the same periodicity of the potential. The parameter

k is the quasi-momentum associated to the Bloch state and the index n refers to the

n-th energy band. We note that, because of the discrete invariance of the Hamiltonian

under translations x = x + nd (with n integer), the quasimomentum is defined modulus

2π/d = 2kL = G, that is the period of the reciprocal lattice. As a matter of fact, the

periodicity for a given quasimomentum of the problem in real space induces a periodic

structure also in momentum space, in which the elementary cells are the so called Brillouin

zones. For each k many different solutions with different energies En(k) exist, as shown

in Fig. (2.1a). These solutions are identified with the band index n.

In order to solve the problem, the wave function of a Bloch state with quasimomentum k

and the potential can be written in a Fourier series:

ψn,k(x) =
∑
G

c
(n)
k−Ge

i(k−G)x

V (x) =
∑
G

UGe
iGx

(2.8)

where the Fourier coefficients UG are related to V (x) by the relation

UG =
1

d

∫ d

0

dxe−iGxV (x) (2.9)

Substituting the expressions (2.8) in the Schrodinger equation we find an equation for the

coefficients ck−G and the eigenvalues ε [29]:(
ε− ~2(k −G)2

2m

)
ck−G =

∑
G′

UG′−Gck−G′ (2.10)

Each Fourier component UG couples states whose wave vector k differs from the other

only by a vector G. Expanding the potential provided in (2.4) one finds V (x) =
V0

2
+

V0

4

(
ei2kLx + e−i2kLx

)
. Therefore, apart from the constant term, an optical lattice couples

states whose wave vector differ by 2kL: physically, this process represents the absorption

of a photon from a lattice beam with a momentun ~kL and the consequent stimulated

emission of a photon with a momentum −~kL in the other beam.
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2.2. Non-interacting particles in a periodic potential

Figure 2.1: The dispersion relation of an atom in a periodic potential shows the different energy bands.

For V0 6= 0, an energy gap between the first two bands appears and the bands become flatter.

2.2.1 Perturbative approach for weak potentials

In order to solve exaclty the problem (2.10) one needs to solve an infinite set of coupled

equations, that can be achieved only numerically. However the spectrum En(k) can be

calculated in the two limits of weak and strong potentials.

In the case of weak potential, i.e. |V | = V0 << ER. or sL = V0/ER << 1, it is possible

to use a perturbative approach to decouple the equations and solve them analitically [29].

In this approximation we need to consider two different cases, depending on whether the

two states that are coupled by the potential are degenerate or not.

Non degenerate states: a state ck−G̃ with an unpertubed energy E0
k−G̃ =

~2(k − G̃)2

2m
can be considered non-degenerate with all the other levels E0

k−G if the the energy differ-

ence between them is larger than all the fourier components of the potential UG. In this

approximation it possibile to demonstrate that the general solution for the eigenvalues ε

is [29]:

ε = E0
k−G̃ +

∑
G 6=G̃

|UG−G̃|2

E0
k−G̃ − E

0
k−G

(2.11)

The expression shows that for non degenerate states the first correction to the unperturbed

energy is of the order of |UG|2. Since for an optical lattice G = ±2kL and U±2kL = V0/4,

the energy spectrum of the lowest energy band ε(k) can be written as:

ε(k) =
~2k2

2m
−

∑
G=±2kL

V 2
0

64ER(1 + 2k/G)
(2.12)

For particles with k = 0 the energy shift is simply:

ε(k = 0) = − V 2
0

64ER
(2.13)
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2.2. Non-interacting particles in a periodic potential

From expr. (2.12), when k approaches ±kL the denominator diverges and the calculation

is no longer correct: near the edge of the Brilluoin zone the states coupled by the potential

are degenerate and one need to consider the correct perturbation theory.

Degenerate states: if there are two (or more) states such that |Ek−G1 − Ek−G2 | ∼ U

the linear equations for the energy eigenvalues ε are:

(ε− E0
k−G1

)ck−G1 = UG2−G1ck−G2 +
∑
G1,G2

( ∑
G 6=G1,G2

UG−G1UGj−G

ε− E0
k−G

)
ck−Gj

(2.14)

(ε− E0
k−G2

)ck−G2 = UG1−G2ck−G1 +
∑
G1,G2

( ∑
G 6=G1,G2

UG−G1UGj−G

ε− E0
k−G

)
ck−Gj

(2.15)

Differently from the previous case, there are two contributes, one linear in UG and the

other of the order of U2. If we consider only the first one we need to solve a simple linear

system that leads to the solutions:

ε =
(E0

k−G1
+ E0

k−G2
)±

√
(E0

k−G1
− E0

k−G2
)2 + 4|UG1−G2|2

2
(2.16)

that in case of exactly degenerate states are reduced to

ε1,2 = E0
k−G ± |UG1−G2| (2.17)

The coupling with the external potential removes the degenerancy, showing an avoid

crossing behaviour. The condition of exact degenerancy is satisfied for k = kL, therefore

the effect of the potential is the creation of a gap ∆Egap = 2|UG1−G2 | = V0/2 between the

first two bands, as shown in Fig. (2.1b).

2.2.2 The tight binding regime

When the recoil energy becomes much smaller than the depth of the periodic potential, the

energy bands become flat and the Bloch wavefunctions turn out to be strongly modulated

(see Fig. (2.2)). For increasing depth of the potential the energy bands asymptotically

tend to the eigenenergies of the harmonic oscillator obtained with a parabolic approxi-

mation of the single lattice site potential.

In this regime, around each minimum we can make the following harmonic approximation

V (x) = V0cos
2(kLx) ' V0k

2
Lx

2 =
1

2
mω2

Lx
2 (2.18)

that defines an effective trapping frequency

ωL =

√
2V0k2

m
= 2

√
V0ER
~

(2.19)
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2.3. Bloch dynamics in presence of an external force

Figure 2.2: Squared modulus of the lowest band wavefunction with k = 0 for three different depths of

the periodic potential V0 = ER (solid), V0 = 4ER (dotted), V0 = 10ER (dashed). Increasing the lattice

depth, the wavefunction changes from a weakly modulated plane wave to a function that is strongly

localized on the lattice sites.

In this tight binding limit the wavefunction of the system can be more conveniently written

as a superposition of many wavefunctions located at each lattice site xi

wn(x− xj) =

√
d

2π

∫
BZ

dke−ikxiψn,k(x) (2.20)

that are the so-called Wannier functions. For low lattice depths the Wannier functions

spread over the entire lattice. In the tight binding regime the Wannier functions become

strongly localized and, for increasing lattice depth, asymptotically tend to the wavefunc-

tions describing the eigenstates of the single lattice sites.

In this limit the dispersion law of the first band can be calculated analitically as ε(k) =

−2J cos(kd), where the tunneling rate J decays exponentially with the lattice depth sL,

following:
J

ER
=

4√
π

(sL)3/4e−2
√
sL (2.21)

2.3 Bloch dynamics in presence of an external force

In this section I describe the basic concepts about the dynamics of a Bloch wavepacket

in the presence of external constant force, that exhibits a dynamical coherent response

named Bloch oscillations.

Let us consider a superposition of Bloch states with a mean quasimomentum k0 and a

quasimomentum spread σk much smaller than the width of the Brillouin zone. It follows

that the spatial extent of this wavepacket is much larger than the lattice spacing, i.e.

the wavefunction extends on many lattice sites. The temporal evolution of a general

wave packet can be described by decomposing the initial wave function into Bloch states

ψn,k(x) with the corresponding amplitudes αn(k). The subsequent evolution is purely a
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2.3. Bloch dynamics in presence of an external force

(a) (b)

Figure 2.3: Group velocity (a) and effective mass (b) in the first energy band for a particle of mass m in

the optical lattice. The velocities are expressed in natural units vB = ~kL/m and the effective masses in

units of the real mass m.

consequence of the accumulated phase of each Bloch state θn,k(t) = εn(k)t/h and the

wavefunction at time t is [30]:

ψ(x, t) =
∑
n

∫
IBZ

dkαn(k)ψn,k(x) exp(iθn,k(t)) (2.22)

The assumption that only a small range of quasimomenta centered around k0 is involved in

the dynamics, allows to approximate the energy dispersion relation by a Taylor expansion:

ε(k) = E(k0) + (k − k0)
∂ε(k)

∂k
|k=k0 +

(k − k0)2

2

∂2ε(k)

∂k2
|k = k0 (2.23)

where the linear and the quadratic terms lead to the definition of the group velocity :

vg(k0) =
1

~
∂ε(k)

∂k
|k=k0 (2.24)

and the effective mass :

meff (k) = ~2

(
∂2ε(k)

∂k2
|k=k0

)−1

(2.25)

The bloch wave moves with a group velocity vg in analogy of a packet of electromagnetic

waves having a dispersion relation ω(k) and a velocity ∂ω/∂k. The wave packet spreads

with a dispersion relation ε(k) = ~2k2/2meff , where the mass of the atoms inside the

lattice is replaced by the effective mass. In Fig. (2.3) I show the group velocity and the

effective mass for atoms in the first band.

If now we introduce an external force F , the simplest model describing the dynamics of

a Bloch wavepacket is the semiclassical model that can be derived with two important

assumptions: the external force does not modify the energy spectrum, having only the

effect of changing the mean position and the quasimomentum, and it is weak enough
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2.3. Bloch dynamics in presence of an external force

to avoid interband transitions. When the energy gradient between the sites is large

respect to the depth of the lattice, the so called Landau-Zener tunneling [31] occurs.

In prarticular, when the quasimomentum reach the boundary of the Brillouin zone, the

tunneling probability across the gap is given by [30]:

Γ = e−ac/a ac =
V 2

0 d

16~2
(2.26)

depending on the spacing d and the depth of the potential V0.

In the regime of weak force the dynamics of the Bloch packet can be described in a

semiclassical approach by the equations of motion{
~k̇ = F

ẋ = vg
(2.27)

In presence of a constant force, the equation (2.27) leads to a linear time evolution of

the quasi-momentun k(t) = k0 + Ft/m. Since the quasimomentum k is defined modulus

2π/d, the evolution is periodic with a Bloch period τB = h/Fd [32, 33] corresponding

to the time required to scan a full Brillouin zone (see Fig. (2.4)a ). Moreover, since the

group velocity of a wave packet depends on the quasimomentum, also the position of the

wave packet continuously changes. In particular, the group velocity changes sign when

the central quasimomentum reaches the Brillouin zone boundary (Fig. 2.3) and the result

of the force are oscillations instead of an acceleration. The latter are known as Bloch

oscillations in real space [33, 34] (shown in Fig. (2.4b)

For the previous discussion we have considered the case of a Bloch wave as an initial

condition and we have studied the dynamics in the momentum space, writing the wave

functions as a superposition of Bloch states. It is also interesting to study a situation where

only a few wells of the optical potential are populated and the spread of the momentum

ditribution starts to become comparable with the width of the Brillouin zone. In this

case, it is convenient to use a the notion of of the Wannier states (2.20). To simplify the

analysis, we consider a tight binding model and a single-band approximation. The tight

binding hamiltonian has the form [35]:

HTB =
∑
l

(E0 + Fdl) |l〉 〈l|+ J
∑
l

(|l + 1〉 〈l|+ |l − 1〉 〈l|) (2.28)

where J is the hopping matrix element between neighboring sites, i.e. the tunneling

rate, and E0 = ε(k). The Hamiltonian (2.28) leads to a discrete spectrum El = E0 + Fdl

knows as Wannier-Stark ladder [36] and the correspondent eigenfuctions φl(x) are knows as

Wannier-Stark states. The Wannier-Stark states are localized in space with a localization

length lWS that depends on the force applied on the lattice: for Fd > J lWS = 1 (in units

of lattice period) and lWS ∼ J/Fd for Fd < J . The general solution of the Schrodinger

equation can be written as a sum over the Wannier-Stark states

ψ(x, t) =
∑
l

cl exp(iElt/~)φl(x) (2.29)
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2.3. Bloch dynamics in presence of an external force

(a) (b)

Figure 2.4: Dynamics of the atomic momentum distribution P (k) induced by a weak constant force F in

(a) and the corrispondent spatial oscillations of the localized wave-packet in (b). The amplitude of the

oscillations in real space is given by the localization length of the Wannier-Stark states lWS ∼ 1/F .

and the dynamics is represented by an oscillation of the center of mass of the wave-

packet. The localization length lWS defines the maximum distance where the wave-packet

can move to.

2.3.1 On-site vs in far field

In the Bloch dynamics, the width of the momentum distribution depends only on the

initial size of the trapped condensate. Larger is the number of occupied sites and smaller

is the width of the peak respect to the Brillouin zone. In real space, the amplitude

of the oscillations depends on the localization length of the Wannier-Stark functions,

proportional to the tunneling J and to the inverse of the energy difference between sites

Fd. This last statement is not completely true, because the amplitude depends also on

the initial size of the condensate.

In order to clarify this argument, I have performed numerical simulations of the Bloch

dynamics for different values of the initial trapping potential, i.e. the initial size of the

condensate, and different values of the ratio between δ = Fd and J . This analysis can

be usefull to understand which quantities allow to have the largest resolution observing

the oscillations. The results are reported in Fig. (2.5). On the x-axis there is the initial

width of the condensate espressed in terms of the lattice spacing, in the y-axis the ratio

δ/J . In the case of Bloch-oscillations in far field, with the color map I report the width

and the amplitude of the oscillations of the momentum distribution. In the case of the

in situ dynamics, I report the amplitude of the oscillations of both the center of mass

position and the width of the wave packet.

As expected, when the size of the initial condensate is smaller or comparable with d, the

width of the momentum distribution is of the same order of the entire Brillouin zone. The

dynamics in the momentum space disappears and this behaviour is indipendent on the
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2.3. Bloch dynamics in presence of an external force

(a)

(b)

Figure 2.5: (Above) I report the amplitude of the oscillations of the quasi-momentum and of the width of

the momentum distribution as a function of the ratio δ/J and the initial size of the condensate σ0. The

results show that decreasing the initial size, i.e. the number of occupied sites, the amplitude becomes

smaller and the distrubution spreads over the Brillouin zone. The values don’t depend on the ratio δ/J ,

i.e. on the appied force. (Below) Amplitude of the oscillations of the center of mass and of the width

of the wave-packet in real space as a function of the same parameters. The results show that, if a small

number of lattice sites is occupied, the center of mass stops to move but the coherent dynamics can be

observed in the time evolution of the size.

value δ/J . At the same time, also the amplitude of the real space oscillations decreases

monotonically with the decreasing inizial width. However, despite all the dynamics is

frozen, it is still possible to observe coherent oscillations: the good observables is not the

center of mass of the cloud but the width of the wave packet. The atoms are more confined

and the large kinetic energy leads to a spread of the clouds in the neighbouring sites. The

atom remains localized to a small volume and undergoes a periodic breathing motion

in position space [34]. Such type of dynamics has already been observed experimentally

in [23, 37, 38]. Increasing δ/J , the dynamics of both the center of mass and the width

become smaller and smaller because of the reduction of the localization length of the

Wannier-Stark function. In conclusion, this results show that in an optical lattice it is

possible to observe a coherent dynamics even if the starting condensate occupies only one
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2.4. An optical lattice made by a beat-note

site. This is relevant since our goal is to measure forces exploiting lattices that have a

spacing of the order of ten microns, larger than the usual size of an optically trapped

condensate.

2.4 An optical lattice made by a beat-note

If we consider now the superposition of two optical lattices at two different wavelengths

λ1,2, the resultant potential felt by the atoms is:

V (x) = V1 cos2 (k1x) + V2 cos2 (k2x) (2.30)

where k1,2 = 2π/λ1,2 are the two wavevectors. Using some algebra and assuming V1 = V2

the expression (2.30) can be written in the form

V (x) = V0[1 + cos((k1 + k2)x) cos((k2 − k1)x)] (2.31)

The resulting potential is therefore formed by two modulations, one fast and one slow,

correspondent to the sum and the difference of the starting. In particular, if the two

wavelengths fulfill the relation (n + 1)λ2 = nλ1 (alternatively (n + 1)k1 = nk2), after n

oscillations the two lattices recover the same phase difference and the period of the slow

modulation is d = nλ1/2. Fig. (2.6) shows the potential in the case of λ1 ∼ 1 µm and

n = 20. In this work I refer to this potential as a beat-note lattice (BL).

In order to understand the effect on the atoms, a simple energetic picture can be examined.

Let us consider the expr. (2.31) and assume that k1 ∼ k2, such that k1 +k2 ≈ 2k1. We can

schematize the potential as a lattice V (x) = V0(x) cos(2k1x) with a low frequency space-

depending amplitude given by V0(x) = V0 cos((k2 − k1)x). As shown in section (2.2), in

the perturbative regime the energy shift ∆ε for an atom with k = 0 is described by the

expression (2.13). If we extimate the spatially varying ∆ε(x), that depends on the local

depth of the lattice potential (centered around V0), we get:

∆ε(x) = − V 2
0

8ER
cos2((k2 − k1)x) (2.32)

where I assume ER =
~2k21
2m
∼ ~2k22

2m
. The energy shift depends on the position, indicating

that the beating of two lattices can be schematize as an effective potential Veff (x) =

∆ε(x). In the regions where the amplitude of the modulation is higher, the energy of the

state at k = 0 is smaller. As a consequence, the density of the ground state increases

(Fig. 2.6) in these regions.

In the limit of small depth the energy gap between the first two bands is equal to half

the depth, and therefore in the case of the BL it can be written as:

∆E(BL)
gap =

V 2
0

16ER
(2.33)
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2.4. An optical lattice made by a beat-note

Figure 2.6: Spatial profile of the beat-note lattice potential (above) and of the density of atoms in the

ground state (below). The red line represents the effective potential Veff (x)

(a)

(b)

Figure 2.7: a) Schematic representation of the process that creates the additional gap inside the first

band of the beat-note lattice. The first one is extactly at k1/2n = kBL. b) Comparison between the

numerical values of the gap and the analytic result given by the expr. (2.35). The perturbative approach

starts to fail when sL > 0.3 because the bands become flat.
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2.4. An optical lattice made by a beat-note

2.4.1 Exact calculation of the band structure in the momentum

space

It can be interesting to derive the exact magnitude of the energy gap repeting the same

calculations performed in the momentum space discuessed in section (2.2). Since the

potential is periodic, the Bloch’s theorem can ensure again to write the wave-function in

the form (2.7) and one can exploit the same formalism. The effective periodicity of the

reciprocal lattice is k2 − k1 = k1/n = 2kBL and it defines the first Brillouin zone. If we

remain in the perturbative regime where V1, V2 < ER, the energy gap between the states

at the edge of the Brillouin zone is provided by the expressions (2.14) and (2.15). The

linear term in UG does not provide any contribution because it can only couple states

whose momenta differ by 2k1 or 2k2. The second order term can instead contain two

different fourier components, that can belong to the two different lattices. The first one

(for example UG2−G) connects the initial state with another state such that the difference

is ∆k = 2k2 = 2(n+ 1)kBL. The other one (UG−G1) provides a transition in the opposite

direction and leads to ∆k′ = −2k1 = −2nkBL. The total momentum transfer is 2kBL
(for better explanation see Fig. 2.7a). Such process, that represents the absorption of

two photons from a lattice and the stimulated emission of other two photons in the other

lattice, is responsible to the creation of the additional gaps inside the first band (see Fig.

2.7 a).

The magnitude of the two components |UG−G1,2 | are V1,2/4 and the detuning between the

initial state and the intermediate state can be calculated as:

∆E =
~2

2m
(k2 − k1)2 − ~2

2m
(2k2 − (k2 − k1))2 =

~2

2m
(k2 − k1)2 − ~2

2m
(k2 + k1)2 =

= − ~2

2m
(4k1k2) = −4

~2k2
1

2m

n+ 1

n
= −4ER

n+ 1

n

(2.34)

Colletting all the terms and considering that the processes with ∆k = 2kBL and ∆k′ =

−2kBL lead to the same result, giving an additional factor 2, the energy gap at the edge

of the first Brillouin zone of a beat-note lattice in the perturbative regime is:

∆E(BL)
gap =

V0V1

16ER
n+ 1

n

(2.35)

The result in (2.35) is in agreement with the relation (2.33) based on the picture of the

effective potential in the limit of n >> 1, i.e. in the limit of infinite oscillations in a single

well.

In Fig. (2.7b) I report the comparison between the analitical result in (2.35) and numerical

simulations of the energy gap as a function of the lattice depth, assuming V1 = V2. For

values of sL up to 0.3 they show a good agreement. For larger depth, the system starts

to enter in a tight binding regime where the bands are flat. It is possible to recover an

analitic expression assuming that the picture of the effective potential is stil correct. If

the atoms start to localize in the minimum of the effective potential, we can approximate
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2.4. An optical lattice made by a beat-note

Figure 2.8: a) Comparison between the band structure of the BL and a single wavelength optical lattice

with the same periodicty. In order to obtain the same structure the BL needs a larger V0. b) Energy gap

of the beat-note lattice as a function of the lattice depth for different values of the wavelengths of the

primary lattice.

it as harmonic and use the expr. (2.19), that leads to:

∆E(BL)
gap =

√
V 2

0

m4ER
(k2 − k1)2 ∝ V0 (2.36)

2.4.2 Deep potential regime

I have shown that it is possibile to obtain an arbitrary large spacing lattice exploiting the

beating of two short wavelengths. In particular, in Fig. (2.8a) I report the comparison

between the energy bands of a single wavelength lattice and a BL with the same effective

periodicity. In particular the comparison shows that the only requirement in order to

obtain the same band structure is a larger lattice depth, i.e., a larger optical intensity.

Such requirement depends on the wavelength λ of the radiation, i.e. on the spacing of

the primary lattice (Fig. (2.8b)). In the limit of deep potential, the behaviour of the en-

ergy gap is no longer monotonic as a function of the lattice depth but it has a maximum

achievable value. Note that, in a standard optical lattice we find instead an asimptotic

scaling with
√
V0

In Fig. (2.9) I compare the calculated wavefunction of the ground state of the first band

and the lowest energy state of the second band for different values of sL = V0/ER. I

restrict the calculation within one site. For small values of V0, the tunneling between the

wells of the primary lattice with d = λ1/2 is high and the wavefuctions are spread all over

the sites. Increasing V0 the tunneling becomes smaller and smaller, the particles start to

localize inside the primary lattice and they stop to feel the BL as an effetive potential with

d = π/(k2−k1). The tunneling amplitude of the primary lattice represents a limitation of

the maximum gap achievable by the BL. As shown in Fig. (2.10) we observe two different

behaviours. The gap of the BL increases with V0 with the scaling discussed before. The

tunneling amplitude instead decreases with V0, first linearly and then exponentially.
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(a) (b)

(c)

Figure 2.9: Calculated wave-functions of the ground state of the first band ψ0,0 and of the lowest energy

state of the second band ψ1,0. The lattice depth is sL = 0.5 (a), sL = 2 (b), sL = 10.

Figure 2.10: Calculated energy gap (blu-dotted line) at kBL = k1/n as a function of the lattice depth.

Initially, in the perturbative regimes, the energy gap (red squares) increases quadratically with the lattice

depth. For larger depth, the width of the first band of the primary lattice (dashed-dotted) with kL = k1,

i.e, the tunneling between neighbouring sites, decreases. The competition of these two trends creates a

maximum value of the gap for the BL around V0/ER ≈ 3.
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2.4. An optical lattice made by a beat-note

The competition between this two trends leads to the appearance of a maximum. For

large V0 the energy gap and the tunneling amplitude approach each other and the gap of

the BL decreases exponentially.

In conclusion, numerical simulations show that is possible to realize an effective large spac-

ing opical lattice exploiting the beating between two short wavelengths. However, there

are some limitations: the maximum achievable energy gap, usefull to avoid inter-band

transitions, depends on the periodicity of the primary lattice. Shorter is the wavelength

and larger is the maximum achievable gap. However, in order to obtain the same value,

a larger wavelength is preferable in terms of optical intensity required.
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Chapter 3

Experimental setup

In this chapter I describe our experimental platform for the realization of Bose-Einstein

condensates with tunable interaction trapped in a beat-note optical lattice. In the first

section I describe briefly the main parts of the experimental setup. Then I focus the

attention on the new laser system used to produce and control the optical lattices. After

a brief introduction to the theory of the Pound-Drevel-Hall method, I describe in more

details the characteristic of the optical cavity and the electronic system that I have as-

sembled in order to lock more than one frequency to the same reference. Finally, I show

the measured frequency noise spectra and I use them to extimate the linewidth of the

lasers when they are locked to the cavity.

3.1 Our experimental platform

Our experimental platform consists in three different chambers where different vacuum

levels are achieved and different cooling stages are performed, as explain in [39, 40]. Once

the 39K sample are slowed down with a 2D+ MOT (Magnetic Optical Trap) configuration

and cooled down to sub-doppler temperatures in the 3D MOT cell, the atoms are moved in

the final chamber where the Bose-Einstein condensation is achieved employing evaporative

cooling in a dipole optical trap. With this sysem we manage to produce with this system

ensembles of up to 105 atoms almost purely condensed.

In particular, once the atoms reach the science chamber, they are loaded in a crossed

dipole trap provided by two tightly focused red detuned infra-red beams with a wavelength

around 1060 nm (“IPG” and “radial beam” in the sketch (3.1)). After the evaporative

cooling the IPG is swicthed off while the radial beam remains on during all the experiments

in order to provide the confinement in the radial direction. Moving the position of the

crossed dipole trap respect to the lattice it is possible to decide which lattice sites are

populated.

The two laser beams at 1064 nm and 1013 nm that produce the lattices come out from the

same fiber, sharing the same spatial profile and the same optical path. The polarization

is well defined by a Glan Taylor polarized placed at the output of the fiber. After they
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Figure 3.1: Sketch of the laser beams in the science chamber (from above). The radial beam and the

lattice beams have different polarizations and they are mixed on a BS cube. After the fiber a part of

the lattice beam is sent to a diffration grating in order to separate the two wavelengths and measure the

intensity of each beam on two photodiodes.

have passed through the cell, they are reflected by a beam splitter-cube where they are

superimposed with the radial beam, that has an opposite polarization. Finally, they are

simply retro-reflected with an HRR mirror and sent back into the fiber.

At the output of the fiber, a fraction of the light is sent to a diffration grating in order

to separate the two wavelengths and measure the intensity of each beam separately on

two photodiodes. The two signals are sent to different PID controllers to monitor and

stabilize the intensity.

Magnetic coils close to the chamber are used to tune the interaction strength among the

atoms exploiting magnetic Feshbach resonances [41, 42]. Another couple of magnetic coils

provide a magnetic gradient that can compensate the gravitational force.

3.1.1 Tunable interactions

One of the most important tools in our experiment is the possibility to control the in-

teratomic scattering length via a magnetic Feshbach resonance. The two-body scattering

length depends on the magnitude of the magnetic field by the relation:

as = abg

(
1− ∆B

B −B0

)
(3.1)
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Figure 3.2: Value of the two-body scattering length in Bohr radia versus the magnitude of magnetic field

in Gauss for the state F = 1,MF = +1 near the resonance at 400G

In paticular, in the case of 39K, there is a broad resonance for the state F=1,MF=+1 near

a value of B0=400 G, as shown in Fig. (3.2). The width of this resonance is ∆B=50 G

and the zero crossing point is at 350 G. Around this point the slope is 0.6a0/G, so it is

possible to change the value of the scattering length very precisly.

3.1.2 Imaging technique

In order to measure the distribution of the atoms in the optical lattice potential we use

an absorption imaging technique, performed shining on the atoms a laser at a resonant

wavelength and an intensity Iin. A first image is taken recording the intensity Iout after

the beam has crossed the cloud; a second image is taken without the atoms measuring

the incident intensity.

The density of the atomic sample can be extracted integrating the Beer-Lambert law in

the direction of the beam (y direction in Fig. (3.1)). The column density of the cloud

can be obtained from:

n(x, z) = − 1

σ0

ln

(
Iout
Iin

)
(3.2)

where n(x, z) is the density of the atoms, Isat is the saturation intensity of the atomic

transition and σ0 is the absorption cross section that can be expressed as:

σ0 =
3λ2

2π

1

1 +
I

Isat
+

4δ2

Γ2

(3.3)
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Figure 3.3: a) Optical transitions of the D1 and D2 lines of 39K. b) An example of the images of the

atoms in the lattice and the relative integrated density profile.

where Γ is the natural width of the atomic transition and δ = ω − ω0 is the detuning

between the frequency of the laser and the frequency of the transition. In the case of

the D2 line of the potassium (see Fig. (3.3)a) Γ/2π ' 6 MHz. The imaging procedure is

performed with negligible magnetic field and using a light resonant with the transition F=2

→ F’=3 (named cooling light in Fig. (3.3)a) with a polarization σ+. The experiments

are performed with atoms in the state F=1, MF=1 and they aren’t in resonance with

the imaging light. For this reason a pulse with the repumper light (resonant with the

transition F=1 → F ′ = 2) is first shined in order to allow a decay in the state F=2. We

need this repumping laser on during the whole imaging procedure, because the difference

in frequency between the two states F ′ = 3 and F ′ = 2 is only 3.6 Γ. There is a high

probability that the imaging light induces the transition F=2 → F ′ = 2 with consequent

losses of atoms from the F ′ = 2 to the F = 1 state .

An example of an image of the atoms in the lattice taken with our high resolution imaging

(of the order of 1 µm) is shown in Fig. (3.3b)

3.1.3 Laser setup for the optical lattices

Fig. (3.4) shows the laser setup for the production and the control of the frequency and

intensity of the two lasers at 1064 nm and 1013 nm.

The light at 1064 nm is provided by a high power Mephisto MOPA (MM) infrared laser

and the light at 1013 nm is provided by a Toptica TA PRO diode laser with a maximum

power of 2 W. After optical isolators a fraction of light of both beams is sent to electro-

optical modulators (EOMs) and then they are combined with a beam splitter in a fiber

that brings the light to an optical cavity. I’ll describe in details the characteristics of the
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Figure 3.4: Scheme of the laser setup to produce and control the two lights at 1064 nm and 1013 nm. In

the inset above I show the retardance as a function of the wavelength of the multi-order waveplate used

to obtain the same polarization at the entrance of the fiber.

EOMs, the cavity and the electronic setup in section (3.2). The rest of the light is sent

to acusto-optical modulators (AOMs) that, togheter with the photodiodes in Fig. (3.1)

and PID controllers, allow to stabilize the intensity. For one of the two beams we use a

double passage AOM in order to have the possibility to tune dinamically the frequency

of the laser in a wider range of about 200 MHz. As I’ll show in section (4.1), it is useful

to tune the phase of the lattice during the experiment.

After the AOMs the two laser beams are mixed on a PBS and sent togheter in the same

fiber that brings the light to the atoms. Before this fiber they are superimposed on a

BS cube. Since the two beams have different polarizations, on the GT polarizer at the

exit of the fiber it is not possible to have all the power transmitted for both the beams

at the same time. In order to avoid power losses, we have decided to use a multi-order

half-lambda waveplate by Thorlabs, whose retardance as a function of the wavelength is

shown in the inset of Fig. (3.4). The waveplate has exactly a retardance 0.5λ for light at

1064 nm and about λ for light at 1013 nm. It means that the polarization of the first is

rotated while the polarization of the second is left unchanged. In this way we can send

the two beams inside the fiber with the same polarization and have all the power avaiable

for both the beams.
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3.2 Experimental setup for the laser frequency sta-

bilization

The relative phase of the two lattices determines the position of the maxima and the

minima of the beat note-lattice. In order to increase the stability in relative frequency

fluctuactions and to narrow the linewidth of the diode laser (that has a nominal free

running line width of 300 kHz) I have realized an experimental setup to lock all the

frequencies to an external high finesse Fabry Perot cavity, exploiting a Pound-Drevel-Hall

technique.

3.2.1 The optical cavity

The optical cavity that we currently use has been lend us by an other experiment that

used light at 1064 nm (Fig. (3.5)a). It is made of INVAR (a material with a small

thermal expansion coefficient) and the mirror are in a hemispherical configuration where

the input mirror is nearly flat and other one is concave. Since we didn’t know all the

optical properties of the cavity, we have performed some tests in order to measure them

directly.

Scanning the piezo that is placed behind the first mirror or scanning the frequency of the

laser it is possibile to measure the optical proprieties of the cavity. The resultant spectra,

measured by a photodiode that is placed behind the cavity, are shown in Fig. ((3.5 (b)

and (c)). The modes of a Fabry-Perot cavity is given by the equation:

ν/ν0 = (q + 1) +
m+ n+ 1

π
+ arccos

((
1− d

R1

)(
1− d

R2

))
(3.4)

where the frequency seperation between neighbouring fundamental modes, called Free

Spectral Range (FSR), is ν0 = c
2d

, with d the distance between the two mirrors. When

the cavity is well aligned we observe very sharp peaks that correpond to the fundamental

modes. The measured FSR of the cavity is:

ν0 ' 1090 MHz (3.5)

that correponds to d ' 13.7 cm.

In order to measure the radius of curvature of the backside mirror, we misallign slightly

the cavity and the tranverse modes appears clearly (Fig (3.5)b). Since the input mirror

is flat, i.e. R1 = +∞, measuring the distance between two trasnverse modes it is possible

to extimate R2 from the expression (3.4). Substituting d and ν0 we find R2 ' 31.4 cm.

The last quantity that defines an optical cavity is the finesse F , defined as:

F =
FSR

∆νFWHM

(3.6)

where ∆νFWHM is the full width at half maximum of a cavity mode. As shown in Fig

(3.5d) the FWHM of the measured modes is 230 kHz that corresponds to F ' 4800.
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3.2. Experimental setup for the laser frequency stabilization

(a) (b)

(c) (d)

Figure 3.5: a) Picture of the cavity in the vacuum setup. b) A well aligned cavity shows very sharp

fundamental modes. b) Higher order (tranversal) modes appear when it is slightly misalligned. c) Zoom

of the fundamental transmission peak

3.2.2 Pound-Drevel-Hall locking scheme

If the laser frequency drifts out of resonance with the cavity, you cant tell just by looking

at the reflected intensity whether the frequency needs to be increased or decreased to bring

it back onto resonance. The derivative of the reflected intensity, however, is antisymmetric

about resonance. If we manage to measure this derivative, we would have an error signal

that we can use to lock the laser. A good way to generate this signal is to examine the

light reflected from the cavity, whose spectrum is the product of the incoming spectrum

and the complex amplitude reflection coefficient of the cavity F (ω), where ω = 2πν. The

amplitude of F (ω) goes to zero at the resonance frequencies and approaches unity between

them. The width of the resonance is characterized by the finesse of the cavity. It is the

phase of F (ω) that contains the information about whether the light frequency is above

or below the resonance, since it has different sign in the two sides of the resonance. A

measurement of the phase shift experienced by the reflected light can be used to generate

an error signal for locking the laser to the cavity resonance.

One standard technique to create such error signal is the Pound-Drever-Hall [43, 44]
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Figure 3.6: a) Schematic representation of PDH locking loop. Solid red line represents the optical paths

and the black arrows represent the path of the electronic signals. b) Error signal after the mixer in the

standard PDH configuration and c) in the dual sidebands configuration: in the latter, the same shape of

the error signal is reproduced around ωc ± Ω1

scheme. Fig. (3.6a) shows the basic setup of the locking loop. The light incident on the

cavity is first phase-modulated, usually by an EOM, so that the electric field is of the

form

E = E0 exp(i(ωct+ β sin(Ωt))), (3.7)

where E0 is the amplitude of the incident field on the modulator, ωc is the angular

frequency of the incoming light, β is the modulation depth, and Ω is the angular frequency

of the modulation. If the depth β is small, the effect of phase modulation is to split the

beam into three distinct frequency components: a carrier at ω = ωc and two sidebands

at ω = ωc ± Ω. For sufficiently large Ω, the sidebands are completely reflected when the

carrier is near resonance. If the carrier is not perfectly in resonance, a portion of it will

reflect and generate an intensity modulation by interfering with the reflected sidebands

at a frequency Ω. When the carrier is near resonance the refelcted intensity Pref,Ω is

proportinal to the frequency difference between the carrier and the cavity resonance.

Therefore, an error signal suitable for locking to the cavity resonance can be generated

by measuring Pref,Ω using a fast photodetector and demodulating the output signal by

a mixer, in order to recover the components at ±Ω. The DC signal coming out from
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3.2. Experimental setup for the laser frequency stabilization

the mixer is sent to a servo amplifier and then into the tuning port on the laser driver,

locking the laser to the cavity. The shape of the error signal (Shown in Fig (3.6)b) can

be adjusted introducing a phase shift between the local oscillator and the signal from

the photodetector. Finally, there is an optimal modulation depth β that increases the

slope of the error signal. This slope is a measure of the sensitivity of the error signal

to fluctuations in the laser frequency or cavity length and it depends on the sidebands

power. In particular, it is possible to demonstrate that the optimal power in the sidebands

relative to the power in the carrier is [44]:

PS
PC
' 0.4 (3.8)

Offset sideband locking

The standard PDH scheme shown before allows to lock the frequency of the laser to the

reference cavity. We use this method to lock the light provided by the Mephisto. Since

the double passage AOM provides a tunability of the frequency smaller than 200 MHz,

for the other laser we use a slightly different technique, in order to have the possibility to

tune the laser frequency with respect to the cavity resonance inside the whole FSR. The

frequency of the carrier is then adjusted by changing the frequency used to generate the

sidebands. This technique is called offset sideband locking [45, 46]. In particular we use

a dual-sideband configuration (DSB), modulating the beam at two distinct frequencies,

one of which is adjustable. The electric field that is phase-modulated with two sinusoidal

signals of depth βi and frequency Ωi (i = 1, 2) is given by

EDSB = E0 exp(i(ωct+ β1 sin(Ω1t) + β2 sin(Ω2t))) (3.9)

Expanding again to first order in β1,2 the result of the phase modulation is a carrier with

angular frequency ωc, sidebands with angular frequencies ωc±Ω1, sidebands with angular

frequencies ωc±Ω2, and sub-sidebands at ωc+Ω1±Ω2 and ωc−Ω1±Ω2. The error signal

is shown in Fig. (3.6c) assuming Ω1 > Ω2 and β1 > β2. Note that the spectral structure

centered around ωc + Ω1 with sidebands offset by Ω2 is analogous to the standard PDH

modulation spectrum in Fig. (3.6a). In DSB locking, this structure allows to place one

of the ωc ± Ω1 sidebands on resonance and demodulate the reflected power with Ω2. In

this way it is possible to tune the frequency of the laser changing Ω1.
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3.2. Experimental setup for the laser frequency stabilization

(a) (b)

(c)

Figure 3.7: a) Picture of the external inductor to create a resonant circuit with the EOM b) Fractional

reflected power a s a function of the frequency sent to the EOM: the resonance is at 10.8 MHz. c) The

signal on the photodiode after the cavity shows the two sidebands at ωc ± Ω

3.2.3 Electro-optical modulators

In order to phase modulate the light that enters the cavity we use two different Electro-

optical modulators. For the light at 1064 nm we use a free-space EOM by Thorlabs that

has an RF bandwidth of 50 MHz. The voltage required to drive this type of EOMs in

order to achieve a good modulation depth is very high, of the order of 100 V. This value

can be achieved only by high voltage amplifiers that usually are expensive and noisy.

However, the non linear-cristal inside acts as a capacitor. Therefoer, I have assembled

an external inductor and I have placed it at the RF input connection, as shown in Fig.

(3.7a). This configuration corresponds to a resonant LC circuit whose resonance has ben

measured with a Vector-Network-Analyzer. In Fig. (3.7b) I report the measured ratio

between the reflected power and the input power as a function of the frequency. It shows

a nice resonance around 10.8 MHz where the gain that we have measured is larger than

20. Sending an RF signal at this frequency with an RF generator and amplifying the

signal up to 1 V we manage to generate two clear sidebands with a modulation depth

near the optimal value expressed in (3.8). The signal recorder by the photodiode after

the cavity is shown in Fig. (3.7c).

Usually, if the polarization of the light that enter in the EOM is not very clean and parallel
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Figure 3.8: a) Picture of fiber-integrated EOM. b) Schematic representation of the RF line to produce

the sidebands at Ωc ±Ω1 and Ωc ±Ω1 + Ω2, where Ω1 is tunable. c) The signal on the photodiode after

the cavity shows the sidebands and the sub-sidebands.

to the axis of the crystal, not only the phase but also the polarization is modulated. This

modulation is translated to an intensity modulation by the cube after the fiber. Since

the frequency is the same as the phase modulation, the effect is the appearence of a

floor in the signal after the mixer that does not depend on the frequency of the laser but

that is proportional to the intensity of the laser. This effect is called residual amplitude

modulation (RAM) and it can cause an uncontrolled spread of the laser linewidth due to

intensity fluctuactions. In order to minimize this effect we place a Glan Taylor polarizer

before the EOM in order to clean very well the polarization.

For the frequency locking of the light at 1013 nm we use a more complicated scheme.

First, we use a fiber-integrated EOM by IXblue (NIR-MPX-LN-02) (Fig. (3.8a)) that

has a very large RF bandwidth, of the order of 2 GHz. It requires a low RF power to

obtain a good modulation depth, indipendently on the frequency. Moreover, it is possible

to drive it with more than one RF frequency and it is suitable for the offset dual-sideband

locking scheme that I presented before. A sketch of the setup that we use to generate

the RF signal is shown in Fig. (3.8b). The two frequencies Ω1 and Ω2 are generated by

two different RF generators, where the first one is tunable up to 2 GHz and the second

one is fixed at 30 MHz. The two signals are sent into a mixer in order to generate high

order harmonics. In particular the highest components are at ω = Ω1 ± Ω2, the ones
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Figure 3.9: Sketch of the electronic circuit to exract the two error signals from the fast photodetector that

measured the retroreflected light from the cavity. Each signal is sent to the correpondent PID controller

and laser driver.

which we are interested in. The output of the mixer is then amplified to the desidered

power and sent to the EOM. The resultant spectrum on the monitor photodiode shows

the complicated spectrum of sidebands and sub-sidebands that we expected (Fig. (3.8)c).

At the same time, a part of the signal at Ω2 is taken to demodulate the PDH signal from

the fast photodetector.

3.2.4 Multi-wavelengths locking scheme

There are different proposals to obtain indipendent error signals in the case of different

lights inside the same optical cavity. One solution, shown in [46], is to divide the different

wavelengths with specific dichroic mirrors and use more fast photodiodes, one for each

wavelength. In our case we have decided to use a different scheme (Fig. (3.9)), where

it is possible to exploit only one photodiode. In particular, the PDH signal from the

photodiode is splitted in two parts and the two frequency components are filtered by

using band pass filters. Each component is then mixed togheter with the correpondent

local oscillator by a mixer that generates the error signal. The two error signals are shown

in Fig (3.10). In the case of the Mephisto we send the error signal to a PID controller

that has bandwidth of 200 kHz and its output is connected to the piezo driver of the

laser that has a nominal bandwidth of 100 kHz. For the Toptica TA pro we use instead a

commercial PID controller (FALC 110) that has two output channels. The fast output has

a bandwidth up to few MHz and it is connected to the fast current modulation input of the

driver with a bandwith of about 1 MHz. This part reduces the noise for frequencies larger

than few tens of Hz. The slow output has instead a transfer function that is enhanced in

the very low frequency range and it is exploited to cancel slow drifts keeping the frequency

around resonance. The output of this part is connected to a HV piezo inside the laser

head that has a large tunability in terms of frequency but a very small bandwidth.
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3.3. Extimation of the linewidth

(a) (b)

Figure 3.10: Error signal after the last mixer of the 1064 nm laser when the carrier is near reosonance in

(a) and of the 1013 nm laser when the sideband at ω + Ω1 is on resonance in (b)

3.3 Extimation of the linewidth

Let us consider the electric field of the laser as:

E(t) = Aei(2πν0t+ϕ(t)) (3.10)

where A is the amplitude that changes slowly respect to 1/ν0, ν0 is the carrier frequency

and ϕ(t) is the istantaneous modulation of the phase. The frequency modulation of the

ligth field is defined as the instantaneous variation of the phase:

ν(t) = ν0 +
1

2π

dϕ

dt
(3.11)

where the second term δν(t) = 1
2π

dϕ
dt

is called the frequency noise of the field. We can

define the spectral density noise (frequency PSD) the function defined as:

Sν(f) = lim
T→+∞

1

T

∣∣∣∣ ∫ T

0

δν(t)e−i2πftdt

∣∣∣∣2 (3.12)

where f is the Fourier frequency. The function Sδν(f) is a distribution that describes the

frequency noise of the laser.

In [47] a simple method to extimate the linewidth of the laser starting from the frequency

noise spectrum is shown. The frequency noise spectrum can be separated into two regions

that affect the lineshape in a different way. In the first region, defined by Sδν(f) >

8ln(2)f/π2, the noise contributes to the central part of the line shape and thus to the laser

linewidth. In the second region, defined by Sδν(f) < 8ln(2)f/π2, the noise contributes

mainly to the wings of the lineshape but does not affect the linewidth. The striking

difference between the noise effects in these two regions can be understood in terms of

frequency modulation theory. In the first region, the noise level is high compared to

its Fourier frequency, therefore it produces a slow frequency modulation with a high
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3.3. Extimation of the linewidth

modulation index β > 1, where β is defined as the ratio between the deviation ∆ν

and the modulation frequency f . Instead, in the second region, the noise level is small

compared to its Fourier frequency and the modulation index β is small, which means that

the modulation is too fast to have a significant effect on the laser linewidth. The line

separating these two regions is called the β-separation line. As a result, the line shape is

a Gaussian function whose variance is the sum of the contributions of all high modulation

index noise components. Therefore, one can obtain a good approximation of the laser

linewidth by the following simple expression [47]:

∆FWHM = (8 ln(2)A)1/2 (3.13)

where A is the surface of the high modulation index area, i.e., the overall surface under

the portions of Sδν(f) that exceed the β − separation line

A =

∫ +∞

1/T0

H(Sδν(f)− 8ln(2)f/π2)Sδν(f)df (3.14)

where H is the Heaviside unit step function and T0 is the measurement time that prevents

the observation of low frequencies below 1/T0.

We optimized the lock using the noise spectrum of the in-loop PDH error signal measuring

it by an FFT spectrum analyzer. The measured spectra after the optimization of the lock

performances, is reported in Fig. (3.11) and (3.12). The cut-off frequency 1/T0 is 0.5 Hz.

The traces are composed by spectra normalized by their resolution bandwidth and the

volt-to-hertz conversion factor is estimated from the PDH signal amplitude.

The Mephisto MOPA laser in free running configuration has a linewidth that is already

quite small, since it has a cavity inside its head. The company ensure a linewidth near 1

kHz. As one can see from Fig. (3.11), almost all the frequency noise is under the β-line,

except for the peak at f=50 Hz. The magnitude of this component is very close to the

β-line and we expect that its contribution to the linewidth is very small. The origin of this

peak is the frequency modulation of the AC supply current. At frequencies higher than

50 kHz the noise is flat because the laser itself has a high frequency stability. Using the

expressions (3.13) and (3.14), the extimated linewidth is about 100 Hz. Unfortunately,

we can’t measure the in-loop frequency noise when the laser is not locked because its PID

controller does not have a slow output that keeps the laser near resonance.

The TOPTICA laser, instead, is based on a laser diode and we expect a significant

frequency noise in absence of an active stabilization. When only the slow channel of the

PID is switched on, we observe that the noise level is above the beta line for most of the

frequency range of the measurement (see Fig (3.12)). Performing the same calculation

as in the previous case, the extimated free-running linewidth is about 100 kHz. When

the laser is locked to the cavity we observe instead a significant reduction (of about three

order of magnitude) of the noise in the low frequency region, which is the most significant

for the laser linewidth narrowing. For frequency higher than 10 kHz the noise level grows

up again but it remains under the β-line. The final linewidth is of about 1.2 kHz.
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3.3. Extimation of the linewidth

However, despite the in-loop spectra can provide information about the performances of

the locking system, the contribution of the cavity noise is not taken into account. The

real laser linewidth can be determined only exploting an external reference that has better

spectral properties or only by observing atomic transitions.
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3.3. Extimation of the linewidth

Figure 3.11: Frequency noise spectrum of the laser at 1064 nm locked to the cavity. The β-line [47] is a

limit above which the frequency noise components contribute significantly to the laser linewidth.

Figure 3.12: Comparison between the noise spectrum of the 1013 nm laser in free running and when it is

locked to the cavity. I report again the β-line as a reference.
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Chapter 4

Experimental results on the

beat-note lattice

In this chapter, I start describing the calibration of the lattice depth that we perform

measuring the on-site trapping frequencies. From the knowledge of the lattice depth

we can extimate the tunneling rate between neighbouring sites by the help of numerical

simulations. Since our goal is to induce Bloch oscillations, we need to know very well

which forces are present on our system. For this purpose, I show some measurements of

the residual forces exploiting two different methods: observing the clouds in free expansion

and, in the case of magnetic force, exploting RF spectroscopy on two separate condensates.

I show how we manage to observe a coherent dynamics in the BL in presence of an external

force starting from two different initial conditions: populating only one site or starting

with a condensate spread over few sites. Finally, I compare the experimental data with

the theoretical expectation predicted for Bloch oscillations. In the last section, I explain

some future improvements that can help to enhance the stability of our system.

4.1 Calibration of the lattice depth

The two main parameters that characterize an optical lattice is the tunneling rate between

neighbouring sites and the energy gap between the first bands. These two quantities de-

pend on the lattice depth that we can control changing the intensity of the laser beams.

A measurement of the lattice depth can be perform indirectly by measuring the trapping

frequency in a single well that, in the regime where the energy bands are flat, correponds

to the first energy gap.

The experimental sequence that we use is simple. After the evaporation, we load the

atoms in few wells and we switch off the dipole trap beam that provides the longitudinal

confinement. Then we change instantaneously the position of the minima of the periodic

potential. The condensates are initially out of equilibrium and start to oscillate inside the

wells. Fitting the oscillations we can extract the frequency.

In order to shift the position of the minima we change the frequency of the RF that we
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(a) (b)

(c)

Figure 4.1: Power (a) and frequency (b) of the RF signal sent to the double passage AOM used to control

the lattice phase as a function of the control voltage. In c) I report the displacement of the minima of

the lattice as a function of the detuning of the frequency of the RF.

sent to the double passage AOM showed in section (3.1.3). In general, in a configura-

tion where the optical lattice are generated by retro-reflected beams, the phase difference

between the two beams can be adjusted changing the wavelength of the radiation. Cor-

respondently the position of the maxima (or minima) of the potential moves. A relative

variation of the laser frequency ∆ν/ν correponds to a shift of the position ∆x ' ∆ν
ν
L,

where L is the distance between the atoms and the retro-reflecting mirror. The BL is

the superposition of two lattices, so we need to extract the dependence numerically. We

calculate that the displacement of the minima respect to a variation of the frequency is

of the order of ∆x0 ' 0.02µm/MHz.

In Fig. (4.1) I report the frequency and the power of the RF provided by the AOM driver

as a function of the control voltage. The AOM has a nominal RF bandwith of 90 MHz

and, in the range from -1 V to 1 V, it is possible to tune the frequency around 200± 40

MHz without significantly changing the RF power. Thanks to the double-passage config-

uration, this shift corresponds to a laser frequency variation of 160 MHz. According to

the numerical extimation, we experimentally measure (Fig. (4.1c)) that this tunability
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4.1. Calibration of the lattice depth

allows to move the position of the minima up to 2 µm that is large enough respect to the

spatial resolution of our imaging system.

Some examples of oscillations of the center of the condensate in a single site, recorded

for different values of the lattice depth, are reported in Fig. (4.2). We observe an in-

teresting behaviour: a clear beat-note between two different frequencies appears for all

the values that I report. Two frequencies correponds to two different energy scales. Our

interpretation is that the non complitely harmonic shape of the potential leads to an en-

ergy spectrum where the distance between the first energy bands is not the same. If the

initial wavefunction is projected not only on the second band but also on the third one,

we expect an oscillation of two different frequencies, corresponding to the energy distance

between the energy bands. Therefore, we fit all the oscillations with the product of two

sinusoidal functions and the fit reproduces very well the observed behaviour. The non zero

population of the third band is caused by the the instantaneous shift of the BL position,

that enlarge the momentum distribution and can provide additional kinetic energy to the

atoms.

In Fig. (4.3) I show the measured trapping frequencies as a function of the lattice depth

that is extimated by the geometrical and optical characteristics of the beams measured

by a CCD camera. In order to confirm the picture of more bands involved in the dynam-

ics, I compare the experimental data with the theoretical values of the energy difference

(expressed in terms of frequency) between the first three bands. The good agreement be-

tween the experimental data and the theory confirms the prediction and provide a good

calibration of the energy gap and the tunneling of the BL. Moreover, it indicates that,

for certain values of the optical intensity, the beat-note lattice works as expected as an

effective large spacing optical lattice. However, on site it does not reach the behaviour of

a pure harmonic potential.
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(a)

(b)

(c)

Figure 4.2: On-site oscillations of the condensate in the BL for different values of the lattice depth: a)

400 nK b) 200 nK c) 140 nK. The appearance of a beating between two different frequencies is clear.

Figure 4.3: Measured trapping frequencies as a function of the lattice depth. The red dots and the blu

diamonds are the experimental data, where the error bars on the lattice depth take into account the

uncertainties of the measurements of the beam’s size and of the optical power. The solid blu line and the

dashed red line represent the theoretical values of the first two gaps.
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Figure 4.4: a) Magnetic field dependence of the energy of the various ground state magnetic sublevels of

39K. RF spectroscopy measurements are performed at B=56 G exploiting the transition MF = −1 →
MF = 0 instead all the experiments in the lattice are performed around 350 G. b) Sketch of all the

coils that are present around the science chamber. c) Image of the two clouds in time of flight during a

Stern-gerlach experiment to measure the magnetic gradient.

4.2 Measurement of the residual forces on the system

During the measurements of the trapping frequencies, for small values of the lattice depth,

we have observed a residual force on the atoms that tends to drag them away from the

initial position. In order to compensate this effect we slightly move the focus position

of the radial beam and we tune its intensity to provide an opposite force. Moreover,

the knowledge of the residual potential applied on the sample is really important in the

realization of an interferometer. In this section we will focus the attention on the methods

that we have used to measure these residual gradients and to calibrate and control the

applied force on the condensate.
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4.2.1 RF spettroscopy at low magnetic field

The energy of the three hyperfine state of the lowest energy manyfold F = 1 of the 39K is

shown in Fig (4.4a). The magnetic dipole of each state correpond to the derivative of the

energy respect to the magnetic field. At values smaller than 150 G, the three hyperfine

states show different magnetic dipoles. For this reason a spectroscopic measurement that

exploits RF transitions between two hyperfine states is possible. Observing two different

BECs far away one from the other can provide information about magnetic gradients

that are present in the chamber. A sketch of all the magnetic coils present around the

chamber is shown in Fig. (4.4b). If there is a difference in the local magnetic field, the

resonant frequency between the internal states of the two condensates will be shifted by

a proportional quantity.

Experimentally we perform measurements around B=56 G exploiting the transition be-

tween the hyperfine states |F = 1 |MF = −1〉 and |F = 1 |MF = 0〉. At this value of the

magnetic field both the states have respulsive interactions, ensuring the stability of the

condensate. The difference between the two magnetic dipoles is 0.7 MHz/G ' 0.5 µB,

where µB is the Bohr magneton. After the condensation in the |F = 1 |MF = −1〉 in the

radial beam, we load the atoms in two crossed dipole traps, made by using the IPG and

an additional IR beam (see Fig. (4.4)c) that comes from below and that intersects the

radial beam. According to the dimensions of our imaging system, we manage to separate

the two condensates up to 250 µm. After the loading, we set the magnetic field around

56 G and we apply an RF pulse of 60 µs on the sample. We adjust the amplitude and the

length of the RF pulse in order to completely transfer all the atoms in the |F = 1 |MF = 0〉
state. After the pulse we switch off the dipole trap and let the atom move in a vertical

magnetic gradient, generated by the coils that we use to compensate gravity (see Fig.

4.4b). Due to the different magnetic dipole moments the two states spatially separate

as in a Stern-Gerlach experiment and we can count the atom number in the different

components.

First, we measure the residual magentic gradient when only the Feshbach field is on. The

Feshbach coils are designed to produce a very homogeneous magnetic field, therefore we

do not expect to observe a difference in the resonant frequency. Scanning the frequency of

the RF pulse we obtain the profiles shown in Fig. (4.5), where I report the fraction of the

transferred atoms as a function of the RF frequency. We fit indipendently the two curves

and we extract the position of the central frequencies ν1,2. As expected, the difference

∆ν = ν1 − ν2 is lower than 0.4 kHz, that correponds to a magnetic gradient smaller than

20 mG/cm.

However, this technique is limited by the common fluctuactions of the magnetic field. In

order to achieve an higher sensitivity we can exploit the fact that we measure the mag-

netic field in two different positions at the same time. For a single realization the two
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(a) (b)

Figure 4.5: a)Fraction of the transferred atoms in the two BECs as a function of the RF frequency,

in presence of the Feshbach magnetic field only. No appreciable shifts are present. b) Corrispondent

comparison between δ1,2, extracted solving the equation (4.1). The results of the measurement is reported

in Tab. (4.1).

measured fractions of the transferred atoms in the |F = 1 |MF = 0〉 are:

N10

Ntot

∣∣∣
1

=
Ω2

Ω2 + δ2
1

sin
(√

Ω− δ1∆t
)

N10

Ntot

∣∣∣
2

=
Ω2

Ω2 + δ2
2

sin
(√

Ω− δ2∆t
) (4.1)

where Ω is the Rabi frequency and δ1,2 = ν − µB(xi) is the detuning from the resonance

of each cloud. The Rabi frequency Ω can be measured from coherent Rabi oscillation

between the two hyperfine states. The only unknown quantities are δ1,2 that we can

extract solving numerically the two equations in (4.1) for each realization. In Fig. (4.5)

I report on each axis the measured values of δi togheter with a linear fit. If the intercept

of the line is different from zero, it provides a mesurement of the deviation between the

two resonances where the common noise of the magnetic field is removed. Indeed, the

uncertainty is reduced by a factor around 2-3 and the resulting shift is lower than 0.2 kHz.

The result provides an upper value for the residual magnetic gradient of 10 mG/cm. We

repeat the same procedure switching on the coils for gravity compensation and we find a

different situation. As shown in Fig. (4.6) mainly two effects can be identified. First, we

observe a global shift of both the resonances of the order of few hundreds of kHz, that

correponds to a changing of the bias field B0 of the order of 0.1− 0.3 G. This offset can

be taken into account during the Feshbach field calibration, and it is not relevant for our

purposes. More importantly, we observe a small deviation between the central peaks of

the two resonances that higlights the presence of a spatial gradient of B along x, that is

more relevant because represents an additional potential along the direction of the lattice.

Such effect can be due to non-pefect anti-Helmoltz configuration of the coils.

In order to characterize better this gradient, we probe the field for different values of the

46
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(a) (b)

Figure 4.6: a) Fraction of the transferred atoms in the two BECs as a function of the RF frequency, in

presence of the Feshbach magnetic field plus the gradient generated by the gravity compensation coils

with a current of 3 Amps. The centers of the two resonances are shifted by about 1 kHz b) Corrispondent

comparison between δ1,2 extracted solving the equation (4.1). The results of the measurement is reported

in Tab. (4.1)

∆ν (kHz) ∆ν (kHz) ∆B0 ∆B/∆x

(independent fit) (correlated fit) (G) (mG/cm)

Fesh only (56 G) < 0.4 < 0.2 / < 10

Fesh (56 G) + Grad (2A) 1.7 ± 0.9 0.9 ± 0.3 0.23 ± 0.01 50 ± 16

Fesh (56 G) + Grad (3A) 1.4 ± 1 1.4 ± 0.5 0.35 ± 0.01 80 ± 30

Fesh (56 G) + Grad (5A) 1.3 ± 1.4 1 ± 0.6 0.56 ± 0.01 60 ± 40

Table 4.1: The table resumes the results of the measurements of the residual magnetic gradient in four

different conditions. I report the result of both the analysis discussed in the text, here labelled as

“independent” and “correlated” fit. As one can see, when the coils for gravity compensation is switched

on there is a residual gradient of B along x.

current that flows in the coils. I summarize all the results in the Tab. (4.1). As expected

the offset in the bias field is proportional to the current. The residual gradient instead

does not show a dependence on the current. The reason why it does not depend on the

current is now under investigation. The dynamics that I’ll show in the next sessions will

be driven by acceleration of the order of 10−3 µm/ms2, that corresponds to a magnetic

force of 10−3 G/cm. For this reason we are looking for a realiable method to compensate

such residual magnetic gradient.

As I explained in the previous chapter, all the experiment in the lattice are performed

in the state |F = 1 |MF = 1〉 around 350 G. The most reliable procedure should be

measuring the residual gradient at the same value of magnetic field starting from the

same hyperfine state. However, in this region (see Fig. (4.4)a) all the sublevels in the

manifold F = 1 have a similar magnetic dipole moment. In particular, the difference is
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smaller than 0.06 MHz/G. The resonances of two clouds 300 µm far from the other that

experience a gradient of 0.1 G/cm will be shifted by 0.2 kHz that is of the same order of

our uncertainty.

4.2.2 Balistic expansion in the radial beam

In order to measure the residual force on the condensate at high magnetic field, we can

observe the motion of the atomic cloud during a free expansion in the waveguide provided

by the radial beam. This measurement can be useful to understand the magnitude and

the sign of spurious forces.

The first measurement that we perform is the observation of the expansion with only the

Feshbach field on. Surprisingly, while at low magnetic field we measure a negligible force,

we observe a strong acceleration. Because of that, we slightly move the focus of the radial

beam respect to the position of the crossed dipole trap (made with the IPG) where the

condensate is produced. In this way the dipole potential inprints an optical force on the

sample that can compensate the magnetic one. The magnitude and the sign of the total

force can be therefore controlled tuning the intensity of the optical beam.

We perform the same measurement with only the Feshbach field on for different values

of the intensity of the radial beam. We observe a parabolic trajectory, higligthing the

presence of an external constant force. We fit the data with a parabolic function and we

extract the acceleration. The three different trajectories are shown in Fig. (4.7) where

I report the correpondent measured acceleration as a function of the power of the ra-

dial beam P. The acceleration goes linearly as a function of P and the intercept at P=0

provides a measurement of the residual gradient when the optical force is switched off.

We measure a strong acceleration of the order 0.3 µm/ms2. If we convert this value in

a magnetic gradient, it correponds to ∆B/∆x ≈ 0.2 G/cm, much larger than the one

we measure at B=56 G. We repeat the measurement in the working condition, i.e with

both the Feshbach and the gravity compensation coils on, and we find a gradient a fac-

tor of two smaller. The levitating system creates a force in the opposite direction that

naturally helps to compensate the spurious gradient. The magnitude of the component

provided by the levitating system is of the order of 0.1 G/cm, that is comparable with

the measurement performed by using RF spectroscopy. Finally, in order to check if the

strong acceleration that we measured comes only from spurious magnetic fields, we ob-

serve the motion of a condensate in the state |F = 1 |MF = −1〉 at B=83 G. At this field

the sample has a negligible magnetic dipole moment, of the order of 5 · 10−3 µB. The

resulting residual acceleration at P=0 is 0.06 µm/ms2, much smaller than in the first case.

It indicates that the main contributions to the residual gradients are provided by some

magnetic effects acting on the apparatus. For example, due to the high field and the high

currents that flow in the Feshbach coils, some thermal and mechanical effects can occur,

leading to some deformations of the structure and the position of the coils. Moreover, the

high field can magnetize some objects around the chamber, leading to a deformation of

the magnetic field lines.
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(a)

(b)

(c)

Figure 4.7: Trajectories of the free expanding condensate in the radial beam (left) and correspondent

measured acceleration as a function of its optical power (right). The measurements are performed with

only the Feshbach field on at 350 G (a), with the gravity compensation switched on (b) and with a non

magnetic cloud at B=83 G (c).
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acc (µm/ms2)

B = 350 G 0.29 ± 0.01

B = 350 G + Anti G ON 0.160 ± 0.015

B = 83 G 0.06 ± 0.02

Table 4.2: The table resumes the results of the measurements of the acceleration during a free expansion

in the radial beam.

The measured acceleration at B=83 G could be due to the non perfect orizzontal aligne-

ment of the radial beam. If the direction of the beam has an angle θ with the horizzontal

direction, a fraction of gravity equal to g sin θ is applied on the sample along x. From the

measured value we can extimate that θ = arcsin(a/g) ≈ 6 · 10−3 rad.

4.2.3 Calibration of the local force on the sample

The goal of this work is to observe Bloch oscillations in presence of very weak forces.

In an optical lattice, the maximum tunneling rate between neighbouring sites is of the

order of ER/4. Since we are working with a spacing of 10 µm, it corresponds to about

3 Hz. In order to achieve an appreciable amplitude of the dynamics in situ and avoid

that the atoms will be dragged away, we have to apply accelerations smaller than 0.2

Hz/µm∼ 2 · 10−3 µm/ms2. For this reason, we keep the radial beam out of focus and we

tune the intensity to change the local force that is applied on the sample.

Since the force is provided by a focused laser beam, it depends on the spatial profile of

the intensity. The peak intensity of a gaussian beam along the direction of propagation

x is given by:

I0(x) =
2P0

πw(x)2
(4.2)

where the 1/e2 waist w(x) evolves in space following the relation w(x) = w0

√
1 + (x−x0

xR
)2,

with w0 the waist in the focus placed at x0, xR the Rayleigh range and P0 is the total

optical power. The correspondent dipole force F = −dU
dx

is reported in Fig. (4.8). It shows

a strong dependence on the position. In order to minimize such dependence we place the

atoms around an extremal point where the derivative of the force is negligible. Measuring

the radial trapping frequency in different positions we extimate a waist w0 ≈ 17 µm and

that the atoms are distant 450±50 µm from the focus.

One way to calibrate the total force applied on the system, is to observe spatial Bloch

oscillations [33] in a single lattice with d = 0.5 µm. The procedure that we exploit is

the following. We load the condensate in the crossed dipole trap with radial trapping

frquencies of ω⊥ ≈ 2π · 200 Hz and a longitudinal frequency of about ω‖ ≈ 2π · 40 Hz.

We then adiabatically ramp up only the intensity of the lattice with λ = 1064 nm and

we change the Feshbach field in order to have negligible interactions. We switch off

instantaneously the longitudinal harmonic trap and we let the condensate moves in the
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lattice in presence of the force. We repeat the same measurement for different value of

the radial beam.

In Fig. (4.9a) I report the measured frequency as a function of the power of the radial

beam. We observe a linear behaviour of the frequency only for large values. When the

frequency approaches zero, we observe instead a deviation.

The oberved behaviour is mainly related to two limitations of this technique. The first one

is the limited interogation that is influenced by the loss of coherence during the evolution.

In this experiments we manage to observe a clear dynamics up to half a second. We need

to work with an high lattice depth and intensity fluctuactions can cause heating in the

sample and shorten our interrogation time. Since the frequency scales like 1/d it is not

possible to perform measurements with forces smaller than 1 Hz/µm, that correspond to

20 Hz in the BL. We need to reach values that are one order of magnitude smaller.

The second limitation is related to the amplitude of the oscillations. If we reduce the

lattice depth in order to decrease the heating effects, the amplitude becomes larger than

the field of view of the imaging system. On the other side, the maximum lattice depth

that we can achieve is V0 ≈ 5ER and it is not enough to confine the motion of the cloud

in a region where the force is almost constant even for the largest value of the force we

can apply. As a test, we observe bloch oscillations for a fixed value of the force changing

the depth of the lattice. We find (Fig. (4.9)b) a significant variation of the frequency,

indicating that the atoms explore regions where the force depends significantly on the

position. The example that I show, corresponds to the maximum value of the frequency

measured in Fig. (4.9a). For smaller forces the situation is even worse because the

amplitude is inversely proportional to the frequency. In conclusion, we cannot use this

type of measurements as a calibration of the local force on a length scale of few tens of

micrometers.

As an alternative way, we can observe again the balistic expansion of the sample inside the

radial beam measuring its position after a fixed time. We set the scattering length of the

condensate slightly negative, in order to reduce the spreading of the wave function, and

we record the position of the cloud, changing the intensity of the radial beam. During this

expansion the displacement of the condensate from the starting point is always smaller

than ±20 µm. Therefore, despite the precision of measurement is not very high, the

results shown in Fig.(4.10) can provide a first calibration of the local force as a function

of the power of the beam.
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Figure 4.8: a) Dipole force provided by the radial beam as a function of the displacement from the

position of the focus x0. The values are calculated for a power of 1 mW. The two vertical dashed lines

indicate the uncertainty in the knowledge of the position of the atoms.

(a) (b)

Figure 4.9: Bloch oscillations inside the primary lattice. a) Bloch frequency as a function of the power of

the radial beam. For large value of the optical power, i.e the applied force, the frequency scales linearly.

For smaller values the amplitude of the oscillations increases and the cloud moves in region where the

force is not constant. In b) I report the time evolution of the center of mass for a fixed value of the

force and different values of the lattice depth. The results show a dependence of the frequency on the

amplitude.
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Figure 4.10: Calibration of the local force on the atoms as a function of the optical power of the radial

beam. The dots are the data points extracted measuring the position of the cloud after 50 ms of balistic

expansion. The dashed line represents the linear fit with the best fit parameters and the solid lines

correpond to the 95% confidence interval.

4.3 Coherent dynamics in presence of an external

force

The amplitude of Bloch oscillations is proportional to the ratio between the potential

energy difference among the sites and the tunneling rate, that depends on the lattice

depth and the lattice spacing. The dynamics that we want to observe has a time scale

of few Hz. Therefore, in order to achieve a tunneling rate of the same order we need to

work with very shallow lattices. In this condition, the energy gap between the two first

bands of the BL is very small, of the order of tens of Hz. For this reason, we develope an

experimental procedure that can allow to avoid sudden changes in the potential that can

lead to unwanted excitations in the upper bands.

4.3.1 Experimental procedure to induce Bloch oscillations

After the evaporative cooling in the dipole trap we ramp up the lattice adiabatically in

300 ms to a lattice depth larger than 200 nK in order to populate only one site, keeping

small repulsive interactions that help to evaporate the excitations. Then, we switch off

the longitudinal dipole trap slowly and, at the same time, we decrease also the intensity

of the radial beam, changing the scattering length to a negligible value. The duration

of this step is of the order of hundreds milliseconds. This procedure helps to evaporate

excitations that can be still present after the first step. After this second evaporation,

we change the power of the radial beam to the working value, setting the total force.
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Figure 4.11: In-situ images and correpondent density profile during a Bloch oscillations togheter with the

fit performed with a triple gaussian function.
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Figure 4.12: Time evolution of the populations in the starting site N0 and in the neighbouring site N±1.

The dots are the data and the solid line is a fit performed with a sinusoidal function times an exponential

decay. The errors are the statistical uncertainties calculated on 5-6 images recorded for each value of the

time.

Finally, we decrease the lattice depth in 50 ms to a value around 70 nK, that correponds

to a finite tunneling rate of few Hz. Following the results in Fig. (4.3), the energy gap

passes from 100 Hz to 40 Hz, so this time interval is longer enough to ensure an adiabatic

tranformation and avoid unwainted excitations. The time scales of the dynamics goes

from 1 to 6 Hz, therefore the subsequent oscillation is not significantly modified after the

rapid passage. We set t = 0 at the end of this ramp. Obviously, mainly when the force is

large, the dynamics can already start during the ramp, but this delay corresponds only

in a phase shift respect to the starting point. During the oscillation we set the scattering

length to a negligible value. According to the stability of the magnetic field and the

dependence of as on B( that is of the order of 0.6 a0/G), the scattering length is null with

an uncertainty smaller than 0.1 a0.

Following the discussed procedure we manage to observe the time evolution shown in Fig.

(4.11), where I report images of the condensate togheter with the spatial density profile

integrated in one direction. In order to extract the atom number in each site we fit the

profile with a multi-gaussian function. In particular, we are interested in the fraction

of atoms that remain in the starting site N0 and that tunnel in the neighbouring sites

N±1. In Fig. (4.12) I report an example of the time evolution of the populations. In

particular, I show the evolution of N0 and the sum of N+1 and N−1. We fit the data with

an exponentially dumped sinusoidal function:

f(t) = f(0) + exp(−t/τ) sin2(
ωt

2
+ φ) (4.3)

that takes into account the decreasing of the amplitude that we observe. This trend could

be caused by different sources. First, fluctuactions of the intensity of the radial beam

55



4.3. Coherent dynamics in presence of an external force

Figure 4.13: In situ images and realtive density profile during a Bloch oscillations togheter with the fit

perfomed with a modulated gaussian function. The vertical dashed lines connect the same lattice sites

at different time.
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and the magnetic residual gradient can introduce excitations with a consequent loss of

coherence. Moreover, a non perfect cancellation of the interaction can caused interaction

induced decoherence, decreasing the amplitude [48] and reducing the interrogation time.

In order to check the latter we plan to observe oscillations with different interaction

strength. Finally, phase noise due to vibrations of the retroreflecting mirror and the

frequency noise of the lasers can contribute to this effect. However, we measure a 1/e

decay time of the amplitude τ of the order of 500 ms that allows an interrogation time

up to 1 s. This window is long enough to measure frequencies of 1 Hz.

To our knowledge this is the lowest frequency measured in an interferometric sensor using

trapped atoms for the detection of small forces. The state of the art interferometers based

on a double well scheme show a coherence time up to 100-200 ms and they are mainly

limited by the presence of interatomic interaction [11] and the stability of the optical

potential [13]. Note that, in our system, 1 Hz corresponds to a force of 10−4 g.

With the discussed procedure we can extract the magnitude of the force. However, since

we start from a single site, the center of mass motion of the cloud is frozen. Therefore,

in order to gain information about the sign of the force, we repeat the same procedure

changing the delay between the switching-off of the longitudinal dipole trap and the

increasing of the heigth of the lattice. In this way we load few sites at t = 0 and the

consequent dynamics is represented by an oscillation of the center of mass. This type of

measurement is more sensitive to the spatial dependence of the force, since the cloud is

spread over distances larger than 50 µm. However, depending on the sign of the initial

velocity we can indentify the sign of the force. As in the previous case, In Fig. (4.13) I

report images of the condensate during an oscillation togheter with the integrated spatial

density profile. In this case the fit of the density is performed using a gaussian function

with an additional modulation:

f(x) = exp
(
−(x− x0)2/2σ2

)(
1 + A cos

(
2π

d
x+ φ

))
(4.4)

where σ is the width of the gaussian envelope and d is fixed to 10 µm. We record the

center of the envelope x0 for different time and we obtain the time evolution reported in

Fig. (4.14). I show the time evolution of the center of mass for two values of the power

of the radial beam that highlight the changing in the sign of the force.

4.3.2 Discussion on the results and comparison with theory

We repeat the same procedure for different values of the applied force, tuning the power

of the radial beam. We compare the frequencies measured by Bloch oscillations with the

prediction provided by the calibration in Fig. (4.10), where I have converted the values of

the force in terms of frequency. As shown in Fig. (4.15) the two set of data are comparable

within the error bars and the confidence interval. They show the same dependence on

the optical power of the beam, confirming that the observed coherent tunneling is driven

by the external force. There is only a small shift that can be caused, for example, by
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Figure 4.14: Time evolution of the center of mass of the condensate during Bloch oscillations in presence

of a force with a different sign.

the presence of some sistematic errors in the measurement of the balistic expansion. An

uncontrolled small initial velocity of the order of 0.05 µm/s can explain the observed

deviation.

In a Bloch oscillation the amplitude and the frequency are correlated by the tunneling

rate. We can create a sort of phase diagram where I report on the x-axis the measured

frequency and on the y-axis the measured amplitude (Fig. (4.16)). We observe a sligthly

dependence of the amplitude as a function of the applied force. As expected, small

forces lead to larger amplitudes. We compare the observed behaviour with the theoretical

expectations provided by numerical simulations that take into account the uncertainties

in the value of the lattice depth, that goes from 65 nK to 75 nK. The two trends are

in qualitatively good agreement excepted for frequencies below 1 Hz or larger than 4

Hz. The presence of residual harmonic potential can modify the amplitude and the

frequency. From numerical simulations (for more details see Appendix 1) we observe that

our data are comparable with an additional harmonic potential with a frequency of 1 Hz.

However, the presence of this curvature does not explain the observed deviation for small

frequencies. For an oscillation with a frequency of 1 Hz, the maximum value is reached at

0.5 s that correponds to τ . It means that it is still possible to extract the frequency but

the amplitude does not reach its maximum value. Moreover, for such small frequencies

the dependence of the amplitude on the force becomes stronger, and fluctuactions in the

optical power of the radial beam are more significant.

In conclusion, we observe a coherent tunneling between neighbouring sites of the BL in

presence of a small force of the order of 10−4 g with a spatial resolution of 10 µm. The

results show that, incresing the lattice constant d, the sensitivity can be enhanced and,

since the tunneling rate scales quadratically in d, the amplitude of the oscillations can

be reduced to few lattice sites. The agreement with theoretical expectations for Bloch
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oscillations indicates that the BL behaves as the same way of a single wavelength optical

lattice with a spacing of 10 µm. The possibility to exploit retroreflected beams provided

by the developed technique allows to achieve a larger stability respect to mechanical

fluctuactions in comparison with the common way that is used to increase the lattice

constant. The achieved results pave the way to the realization of an interferometer with

trapped Bose-Einstein condensates with an unprecedent sensitivity to weak and local

forces.

Figure 4.15: Measured frequency as a function of the power of the radial beam. I report the confidence

interval of the calibration reported in Fig. (4.10), that shows how the force scales linearly with the optical

power. The experimental data shows a linear dependence comparable with the expected behaviour, ensure

that the dynamics in the BL is driven the external force. The horizzontal error bars correspond to the

uncertainty due to the experimental noise of the electronic circuit for the stabilization of the optical

intensity. The vertical bars (not visible) are extracted from the fit of the time evolution.
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Figure 4.16: Measured amplitude as a function of the frequency. The error bars correpond to the un-

certainty of the amplitude and the frequency provided by the fit of the oscillation. The shaded area

represents the theoretical expectations provided by numerical simulations taking into acount the uncer-

tainty of the lattice depth from the measurements in Fig (4.3). The dashed lines indicates how the shaded

area is modified by the presence of an additional curvature of 1 Hz that can explain the deviation for

large frequencies.

4.4 Future improvements

Starting from the results achieved so far, it is possibile to understand which are the crucial

aspects of our system that need to be improved in order to enhance its performances. In

this final section, I would like to discuss two main important upgrades that we plan to

implement in our experimental setup.

4.4.1 A new RF antenna and an additional coil for compensation

of the residual gradient

One of the most significant limitation in our apparatus is the presence of a large resid-

ual grandient that add an uncotrollable potential. Currently, this force is compensated

optically but, in general, it is very difficult to stabilize the optical intensity of a laser

beam very well. In our case we extimate that we can control the optical intensity of the

radial beam with a relative uncertainty of 5 · 10−3, that is equal to our current optimal

sensitivity. In any case, achieve a stability better than 10−3 is very challenging and a

different compensation method is needed.

One solution is to place additional magnetic coils in order to create a magnetic gradient

along the direction of the lattice. The current that flows in a magnetic coil can be sta-

bilized quite easly with an uncertainty of 10−4/10−5. The geometrical constraints of our

apparatus do not allow to place a pair of coils, that is the best configuration to create

a magnetic gradient. Indeed, the combination of the magnetic field produced by coils
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Figure 4.17: a) Sketch of the vertical Feshbach coils togheter with the additional orizzontal coil to

compensate the external magnetic gradient. b) Energy of the magnetic sub-levels of the 39K belong to

the hyperfine manifolds F=1 and F=2 as a function of the applied magnetic field. The arrows indicates

the transition that we plan to exploit to obtain an higher sensitivity in the measurements of residual

magnetic gradients.

in anti-Helmholtz configuration, provides a field along the axis that scales linearly as a

function of the distance from the center of coil [49].

We are investigating to place a single coil, like sketched in Fig. (4.17). A circular coil

with a radius R and a current I provides a magnetic field along it axis [49]:

Bcomp(x) ∝ IR2

[R2 + (A− x)2]3/2
(4.5)

where x is the distance from the center of the coil. The total field is the sum of the

additional coil and the bias vertical field provided by the Fesbbach coils. Since the bias

field is strong (∼ 350 G) the vertical modulus of the field along z does not change sig-

nificantly. The presence of the additional field can instead modify the dependence of B

in the x-direction. However, since the compensation field is not linear in x, if we manage

to compensate locally the external residual gradient we introduce also an harmonic po-

tential. In particular, from numerical simulations based on the geometrical properties of

the coil that we want to use, we extimate that, compensating a gradient of 0.1 G/cm, we

introduce a curvature of 3 Hz.

A second limitation of our work is the difficulty to measure the force precisely in an

indipendent way respect to Bloch oscillations. In section (4.2.1) I have explained that,

exploiting transitions between sublevels of the manifold F = 1 at 350 G, it is not possible

to achieve an high sensitivity, because of the small difference in the magnetic moment. A

possibility to increase the resolution is to exploit transitions between a sub-level of the

manifold F = 1 and an other sub-level of the manifold F = 2. In particular, if we produce

the condensate in the state |F = 1,mF = 1〉 we can be coupled it with an RF pulse with

the states |F = 2,mF = 2〉. Between the two states there is a difference of the magnetic

dipole of about 2µB, that corresponds to 2.8 MHz/G. Two condensates 100 µm far away
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one from the other with a resolution of 0.3 kHz in the measurement of the resonance shifts

( like reported in section (4.2.1) at low field) would correspond to a magnetic gradient

resolution of 10 mG/cm. For this purpose we are designing a new RF antenna with a

resonance frequency around 1.3 GHz that will help to measure and control the external

magnetic force acting in the system with higher precision.

4.4.2 The beat-note of three wavelengths

The limited range of parameters that we have explored with the BL is due to the fact

that we cannot tune separatly the tunneling and the energy gap because they are both

related to the lattice depth.

In general, adding more wavelengths it is possible to engineer the potential with different

shape and increase the tunability of the optical potential. In particular we are interested in

the realization of an optical superlattice with two periodicities where one is the half of the

other. This scheme realizes an array of double-wells that represents the ideal configuration

for the realization of a Mach-Zender interferometer with trapped BECs [11]. A sketch of

the working principle of such interferometer is reported in Fig. (4.18).

Exploiting the technique of the beat-note it is possible to produce a super-lattice involving

only three different wavelengths. In particular if λi, with i = 1..3 are the wavelengths,

the two relations that must be fulfilled at the same time are{
(n− 1)λ1 = nλ2

nλ2 = (n+ 1)λ3

(4.6)

The two beat-notes λ1 − λ2 and λ2 − λ3 produce a peridocity of d1 = nλ2/2. Instead

the beat-note between λ1 and λ3 generate an additional modulation with a periodicity

d2 = nλ2/4. In Fig. (4.19) I show the expected potential maintaining λ1 ∼ 1 µm and

n = 20 as in the previous discussion. The shape of the potential is an array of double

wells with a periodicity of 10 µm for the primary lattice and of 5 µm for the secondary

lattice. The energy gap can be modified changing the intensity of the beams with λ1

and λ2. The tunneling inside a single double well can instead be tuned indipendently

changing the intensity of the lattice at λ1 or λ3. Obviously, in this way also the heigth of

the barriers at 10 µm changes, but it is possible to compensate the deviation tuning the

power of the lattice at λ2. Changing instead the phase of the lattice at λ3, it is possible

to shift the position of the central barrier and unbalance the energy minima of the two

wells, leading to a complete tunability of the optical potential.
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Figure 4.18: (Left) Sketch of the working principle of a Mach-Zender (MZ) interferometer with Bose-

Einstein condensates trapped in a double well potential. The three steps are the first splitting, the

subsequent phase accumulation and the final recombination. An external force causes an energy difference

between the two wells Fd that is converted in a phase difference ∆ϕ = Fdt/~, where t is the interrogation

time. At the end of the sequence, the information about the phase are converted in an atomic imbalance.

(Right) A skecth of a MZ interferometer exploiting light waves shows the complete equivalence between

the two schemes.

Figure 4.19: Spatial profile of the resulting potential of the beat-note between three wavelengths(above)

and the correspondent ground state wave-function (below).
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Chapter 5

Conclusions and perspectives

In conclusion, in this thesis I report the realization of a large spacing optical lattice ex-

ploiting the beat-note of two retroreflected laser beams with slightly different wavelengths,

i.e 1064 nm and 1013 nm. The resulting potential, in addition to a very fast modulation,

exhibits a slow periodicity that provides an optical potential for the atoms that behaves

like an effective lattice with a 10 µm separation between the lattice sites.

I studied theoretically the band structure of the new lattice and I performed numerical

simulations in order to obtain predictions of the energy gap as a function of the lattice

depth in different configurations. I observed a maximum values of the achievable gap

that depends on the wavelengths of the radiation that are used to realize the beating.

The existance of this maximum is related to the tunneling rate inside the primary lattice.

When the lattice depth becomes too large the wavefunction starts to localize inside the

wells of the primary lattice and the BL stops to work as an effective large spacing optical

lattice.

Regarding my experimental contribution, I showed the laser setup that I have designed

and assembled for the production and the control of the optical potential on the atoms.

In particular, I reported in details the methods that we exploit to lock the two frequencies

at the same optical cavity in order to reduce relative frequency fluctuactions.

Thanks to the capability to cancel the interatomic interactions using magnetic Feshbach

resonances, we have managed to observe spatial Bloch oscillations of condensates, mea-

suring the atom number in each well. The observed dynamics exhibits a coherence up

to 1 s that correponds to a sensitivity of the order of 5 · 10−5 g with a spatial resolution

of ten microns. We characterized experimentally the frequency and the amplitude of the

oscillations for different values of the force and the results show a good agreement with

theoretical simulations. To our knowledge the sensitivity acquired in this work is the

higher reported in litterature in the measurement of small forces (<< g) using a trapped

atom interferometer. The main limitations to the coherence time and the precision of the

measurements are related to the limited control we have in the way we tune the external

force, i.e, optically.

The simplicity of the Bloch oscillation interferometer and the creation of a large spac-
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ing periodic potential open interesting perspective in the measurements of small forces

with trapped condensates. They can be exploited, for example, for the investigation of

Casimir-Polder forces or deviations of the gravitational law at short distances.
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Chapter 6

Self-bound quantum droplets of

ultracold atomic mixtures

Even if I have dedicated this thesis to the project on the new optical lattice, in this final

chapter I report a summary of our experimental investigation about quantum droplets in

ultracold bosonic mixture, that we carried on in the first half of my PhD.

Ultracold atomic systems are commonly found in a gas phase. However, self-bound quan-

tum droplets have been recently theoretically predicted [50] and experimentally observed

[51, 52, 53, 54] as a new liquid-like phase in this context. At the origin of this new phase

there is the coexistence of repulsive and attractive forces that perfectly balance to gen-

erate the self-binding mechanism. In particular, in bosonic mixture, droplets form due

to the balance of the attractive mean-field energy close to the collapse threshold and the

repulsive first-order correction due to quantum fluctuations, the so-called Lee-Huan-Yang

term [55]. This stabilization mechanism generated by the LHY correction has been rec-

ognized as responsible also for the formation of a different class of self-bound quantum

systems, i.e., dipolar droplets [51, 52]. While attractive mixtures create spherical droplets,

in dipolar gases droplets are elongated along the dipole direction and strongly anisotropic.

The different geometry, together with the different kinds of interactions governing the sta-

bilization, leads to important differences in the properties of the two objects and enriches

the range of phenomena that can be explored.

Self-bound droplets have been observed in bosonic mixtures only in confined geometries

[53, 54]. In this chapter I describe our experimental observation of self-bound droplets in

an atomic mixture in free space. Two are the main ingredients of our work: the capa-

bility to tune the interatomic scattering lengths exploiting magnetic Feshbach resonances

to reach the interaction regime where the mixture is predicted to be self-bound; the im-

plementation of an optical levitating potential with negligible residual confinement along

all directions, which allows us to have long interrogation times and access the droplet

properties in free space. The most peculiar feature of quantum droplets realized with

bosonic mixture in free space is related to its excitation spectrum. In a specific region of

the droplet phase diagram, the particle emission threshold is predicted to lie below any
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6.1. Theory of quantum droplets

possible excitation mode [50]. Any excess of energy is thus expelled by losing particles,

leading to an effective self-evaporation and keeping the droplet at zero temperature.

I start presenting a brief summary of the theoretical description of quantum droplets and

then I explain how we create and observe them experimentally. I present in more details

the properties of the optical levitating potential and the imaging technique that we have

exploited. I present our experimental results and the comparison with the theoretical

predictions. Finally, I show our research about collisions between two droplets. The dy-

namics of the collision could be useful to gain informations about the liquid-like nature

of the droplet and the typical energy scales.

6.1 Theory of quantum droplets

I first introduce the theoretical description of the self-binding mechanism that generates

droplets, starting from the case of a single condensate and then extending the theory to

a bosonic mixture.

6.1.1 Beyond mean-field description: Lee-Huang-Yang correc-

tion

In the second quantization approach, the many-body Hamiltonian operator of N bosons

in the external potential Vext(~r) is:

Ĥ =

∫
d3rΨ̂†

[
−~2∇2

2m
+ Vext(~r)

]
Ψ̂ +

1

2

∫
d3rd3r′Ψ̂†(~r)Ψ̂†(~r′)Vint(~r − ~r′)Ψ̂(~r)Ψ̂(~r′) (6.1)

where the field operator Ψ̂(~r) is defined by:

Ψ̂(~r) =
∑
i

ψi(~r)ai (6.2)

and ai is the single particle destruction operator of the i-th state described by the wave-

function ψi(~r) and
∫
|Ψ̂|2d3x = N . Because of the very small collisional energy, for

ultracold bosons it is possible to assume that the physics of the interactions is dominated

by the s-wave scattering and the two-body interaction Vint can be described by an effective

contact potential Vint ∼ gδ(~r − ~r′) where the strength of interactions is g = 4π~2as/m,

proportional to the the s-wave scattering length as. Assuming that the cloud is all con-

densed in the ground state we can substitute the field operator with a c-number. This

approximation corresponds to neglect a term δΨ̂(~r, t) (that takes into account quantum

fluctuactions) in the field operator and write:

Ψ̂ =
√
N0Ψ0(~r, t) +

√
N −N0δΨ̂(~r, t) '

√
N0Ψ0(~r, t) (6.3)

where N0 is the number of atoms in the ground state and Ψ0 is the wavefunction of the

condensate. Substituting the ansatz (6.3) in the Hamiltonian (6.1) one obtains the so
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6.1. Theory of quantum droplets

called Gross-Pitaevskii equation [56] that leads to the energy functional with the non-

linear term:

E[ψ] =

∫
d3r

[
N

~2

2m
|∇ψ(~r)|2 +NV (~r)|ψ(~r)|2 +

1

2
N2g|ψ(~r)|4

]
(6.4)

This approximation can describe many properties of the condensate but it assumes that

all the particles are in the ground state of the system. This is not really true, because in

an interacting condensate there is always a certain amount of particles that are not in the

lowest energy state that is called quantum depletion. The atoms in the condensate collide

and so they couple to the excited states. This interaction causes a shift in the energy of

the condensate. In order to take into account this contribution, one needs to consider the

term neglected in the field operator in (6.3). Substituting the complete expression for the

field operator in the Hamiltonian (6.1) and neglecting the second order terms in δΨ̂, the

total energy of the ground states becomes [57]

E0 =
1

2
gnN +

1

2

∑
k 6=0

[
ε(k)− gon−

~2k2

2m

]
(6.5)

where ε(k) is the famous Bogoliubov dispersion law [56]. Considering finite range contri-

butions in the interactions in addition to the contact one, the energy per unit of volume

can be written as [57]:

E0/V =
1

2
gn2

[
1 +

128

15

(
na3

π

)1/2]
+... (6.6)

The energy of the ground state at zero order is given by E0 = 1/2gn2 and corresponds

to the mean-field approximation. The first order correction of the energy of the ground

states gives a term proportional to n5/2 that is known as the first order Lee-Huang-Yang

(LHY) term [55].

Usually in a single species condensate the LHY term is orders of magnitude smaller than

the mean-field energy and it can be neglected. Despite the LHY correction is very difficult

to measure, experimental observation have been made so far using the equation of state

of an unitary Bose gas [58] or probing the system with RF spectroscopy [59, 60, 61, 62].

6.1.2 Bosonic mixtures

While in a single-species condensate both the MF and the LHY term depend on the

same parameter a, a different situation occurs in a Bose-Bose mixture, formed by atoms

of two different species, 1 and 2, which can be different atoms, different isotopes of the

same atom, or atoms of the same isotope but in different hyperfine states. In the case of a

mixture the interactions are described by different parameters: the intraspecies scattering

lengths a11 and a22 and the interspecies scattering length a12.

Let us consider the case of equal masses m1 = m2 and define the coupling constants as
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6.1. Theory of quantum droplets

gij = 4πaij/m, while n1, n2 are the densities of the two species. Following this notation

the ground state energy for the mixture in the mean-field approximation is:

EMF =

∫
V

d3rε(n1(~r), (n2(~r)) (6.7)

where

ε =
1

2
(g11n

2
1 + g22n

2
2) + n1n2g12 (6.8)

Depending on the magnitude and sign of the three interactions, such energy functional

describes different behaviours. In particular, in the case of repulsive intra-species inter-

actions (g11 > 0, g22 > 0) and attractive inter-species interaction (g12 < 0), the mixture

is thus stable according to the MF theory if:

δg =
√
g11g22 + g12 > 0 (6.9)

If instead δg < 0, which means that the mixture is globally attractive, according to the

mean-field picture, the double BEC should collapse.

However, so far we have not considered beyond mean-field corrections, which will play

an important role in the stability of the mixture. When the two species have the same

density distribution, modulo a scale factor α (corresponding to different atom numbers

n2 = αn1 = αn) and the system is close to the mean-field collapse threshold, one can

further simplify the above expression by setting g12 ' g11g22 and neglecting small finite-

δg corrections. In this regime, the interaction energy of the mixture, including the LHY

term, can be written as the sum of two main contributes [50]:

Eint ' −2|δg|n2 + f

(
δg

g

)
(gn)5/2 (6.10)

Eq. (6.10) shows explicitly the competition between two contributions with different

signs: the mean-field attractive interaction and the effective repulsion due to the LHY

correction. Usually, the prefactor f is small and the second contribution is negligible.

However, in the regime where the droplet forms |δg| → 0, which means that the mean-

field energy becomes smaller while the LHY repulsion (∝ g5/2) does not vanish and the

two terms become comparable. Finally, the different scaling as a function of the density

leads to the interaction energy functional shown in Fig. (6.1): while the negative MF

contribution leads to an increase of density and eventually to collapse, the presence of the

LHY term generates a minimum for a finite value of the size that fixes the density of the

droplet in absence of an external confinement.

6.1.3 Properties of the quantum droplet

The properties of the droplet depend on the number of atoms in the mixture and on the

interaction strengths. At equilibrium the droplet is characterized by a well-defined ratio

between the number of atoms in the two species that is fixed to [50]:

N1

N2

=

√
g22

g11

(6.11)
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6.1. Theory of quantum droplets

Figure 6.1: The energy of an attractive mixture (δg < 0) is represented as a function of the size of the

atomic cloud R, for a fixed atom number N. The various terms contributing to the energy are the kinetic

energy EKIN , the MF interaction energy EMF and the LHY contribution ELHY . If only the first two are

present, the minimum of E is for R → 0, corresponding to collapse. Instead, thanks to the LHY term,

the minimum occurs at a finite value of R, indicating the formation of a self-bound droplet.

that minimizes the mean field energy EMF . Since the ratio is fixed, the wavefunction of

the two components in the ground state can be written as ψ(~r, t) =

√
n

(0)
i φ(~r,t), where

φ(~r, t) is a scalar wave function and n
(0)
i is the equilibrium density of the species i, that

depends only on the scattering lengths. In the following discussions, all the quantities of

interest will be rescaled using adimensional units. In rescaled units, the atom number Ñ

is defined by the normalization condition

Ñ =

∫
V

d3r̃|φ|2 (6.12)

with r̃ = r/ξ, where ξ is a characteristic length scale of the droplet [50]:

ξ =

√
3

2

√
g22/m1 +

√
g11/m2

|δg|√g11n
(0)
1

(6.13)

and Ñ is related to the number of atoms in the two components at equilibrium by Ni =

n
(0)
i ξ3Ñ .

By studying the dependence of the energy of the droplet on the rescaled particle number

Ñ it can be shown that, for decreasing Ñ , the energy minimum at finite size first becomes

metastable and then, over a certain critical number Ñc, it disappears. The kinetic energy

prevails and the system enters in a gas phase, expanding freely like a gas (Fig. (6.2)).

When the atom number is sufficiently large respect to the critical number (Fig. 6.3) the

droplet develops instead a constant bulk density, highlighted by the central flat region

of the wavefunction. This recalls the behaviour of a liquid, thus pointing out the first

interesting feature of these quantum droplets, which behave as a dilute liquid phase.

Another peculiar feature of the quantum droplet is related to its excitation spectrum [50],

which is shown in Fig. (6.4). As one can see there is an interval of the atom number,
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6.2. Experimental observation of quantum droplets in free space

Figure 6.2: For decreasing atom number the energy minimum becomes first metastable (the global ground

state corresponds to r →∞), and then disappears completely if N < Nc, where the phase of the system

becomes an expanding gas.

Figure 6.3: Droplet ground-state wave-function φ0, as calculated by Petrov in [50], for different values

of the rescaled atom number Ñ . While for large atom number Ñ we can distinguish a bulk part having

constant density and a surface part where the density decreases, for small Ñ the size of the droplet is

comparable with its surface thickness.

in the range 20.1 < Ñ < 94.2, where no excitation modes below the emission treshold

−µ̃ can be excited. In this interval, exciting the droplet leads to a loss of particle or a

breaking of the cloud in smaller droplets. This peculiar behaviour makes the droplet an

effectively “zero-temperature” object.

6.2 Experimental observation of quantum droplets in

free space

Experimentally we create self-bound droplets using two hyperfine states of 39K, namely,

|F = 1,mF = 0〉 (state 1) and |F = 1,mF = −1〉 (state 2). As I have explained before,

Feshbach resonances allow us to tune the mutual contact interactions as a function of the
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6.2. Experimental observation of quantum droplets in free space

Figure 6.4: Energy per particle (dash-dotted line), particle emission threshold -µ̃ (dotted), monopole

frequency ω0 (solid line) and frequencies of higher order modes as a function of (Ñ − Ñc)
−1/4, reported

by Petrov in [50]. In the interval 20.1 < Ñ < 94.2 all the excited modes lie above the particle emission

threshold.

magnetic field B. Fig. (6.5a) show that for these two states there is a certain region of

the magnetic field where the scattering lengths a11 and a22 are both positive, while the

interspecies a12 is negative. Considering the effective interaction δa, it becomes negative

for B < Bc, where Bc = 56.85 G, setting the threshold for collapse of the BEC in the

usual MF picture. The LHY term, however, determines a stabilization mechanism that

prevents the collapse, depending on the atom number. If the atom number is above the

critical value Nc the phase of the system is a liquid-like self-bound droplet that does not

expand in free space (blue region in Fig (6.5)). Otherwise, if the atom number is below

the critical value the system is an expanding LHY gas (light blu region in the diagram).

6.2.1 Experimental sequence for the production of a single droplet

We prepare the BEC in state 2, in a crossed dipole trap, created by three red-detuned

laser beams (see Fig. (6.6a)), with almost isotropic trapping frequencies of the order of

200 Hz and up to 400·103 atoms. After we have ramped the value of the magnetic field

to the desired target value, we apply a radio-frequency (RF) pulse to transfer 50% of the

atoms in state 1.

In order to observe the subsequent evolution for sufficiently long times, remaining within

the field of view of our imaging system, gravity compensation is required. Since the two

states have different magnetic dipole moments we cannot use the standard magnetic levi-

tation technique common in ultracold atomic systems. We have developed a novel optical

levitating potential, that I’ll describe briefly in session 6.2.2. In particular I focus on
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(a) (b)

Figure 6.5: a) (Top) Feshbach resonances relative to the intra- and interspecies scattering lengths for

atoms in the hyperfine states |1,−1〉 (state 2) and |1, 0〉 (state 1) of 39K, tuned by an external magnetic

field B. The MF energy of the mixture depends on the effective scattering length δa, which vanishes at

Bc = 56.85 G. (Bottom) Phase diagram for the mixture as a function of the atom number N and of

the magnetic field B. For B < Bc the mixture would collapse according to the MF picture. The LHY

term, however, determines a stabilization mechanism that prevents the collapse: depending on the atom

number, the phase of the system is either a liquid-like self-bound droplet (blue region of the diagram),

or an expanding LHY gas. b) The upper rows show the difference in the evolution of the density profiles

in the gas and droplet cases. In the graph the time evolution of the average size of the atomic cloud is

shown, for three different points in the phase diagram: gas, liquid-like droplet and LHY gas.

(a) (b)

Figure 6.6: a) Schematic representation of the geometry of the optical trap. b) The modulation of

the position of an elongated red detuned beam along the vertical direction (y) provides a time average

potential (above). Near the atomic position the resulting profile is linear and compensates the gravity

(below)
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6.2. Experimental observation of quantum droplets in free space

my personal contributes to the understanding of the effect that this potential has on the

atoms (for more details see [26, 63]).

At the end of the RF pulse, we switch off the dipole traps and switch on the levitating

potential and, after a variable waiting time, we record the density profile of the cloud via

absorption imaging. Fitting the density profiles with a gaussian function we measure the

size of the clouds. In order to characterize the droplet phase, we also perform measure-

ments of the total atom number and of the relative population in states 1 and 2. After a

variable time, we perform a Stern-Gerlach separation of the two components, by applying

a magnetic field gradient along the vertical direction z, so that we can count separately

N1 and N2.

6.2.2 Effect of the modulation on the atoms

The main requirement for the levitating potential is to not provide any significant con-

finement to the atomic cloud. In order to distinguish droplets from standard gaseous

mixtures, we want indeed to verify their self-bound nature in absence of external con-

fining potentials. Using a single gaussian laser beam would require a very broad beam

profile and, hence, a very large power. We then decided to make use of a time-averaged

potential. Modulating periodically in time the position of a laser beam, one can indeed

generate an arbitrary time-averaged intensity profile. If the modulation period is much

smaller than the typical time scale for the dynamical evolution of the atoms, they do not

distinguish the fast dynamics of the modulated potential, but they are only sensitive to

the time average.

In particular the vertical position of a red detuned elliptical laser beam is modulated in

time with an acousto-optical modulator, such that the averaged potential experienced by

the atoms provides a gradient opposite to gravity (Fig. (6.6b)). The minimum modu-

lation frequency is set by the timescales of the density oscillations of the cloud in the

unmodulated beam, which are determined by the trapping frequency. In order to be more

quantitative in the lower-bound limit of the modulation frequency, I have performed nu-

merical simulations of a non interacting BEC in the time-averaged optical potential where

I have studied the micro-motion and the heating of the cloud for different modulation fre-

quencies. The first parameter is related to the position of the cloud while the second to

its size. The time evolution of these two quantities is shown in Fig. (6.7): both effects are

negligible for modulation frequencies larger than 1 kHz, which sets a lower bound. On the

other side, while one would say that the best option is to modulate as fast as possible, we

need to consider some technical limitations to the maximum reachable frequency. They

are related to the frequency bandwidth of the AOM driver (in particular of the internal

VCO) and to the finite bandwidth of the intensity stabilization feedback loop. In our case

we measure that the global bandwidth ν0 is about 100 kHz. If the modulation of the volt-

age has some Fourier components at frequencies larger than ν0, the shape of the optical

averaged potential is affected. By the help of numerical simulations, we can calculate the

effect of a low pass filter with a cutoff frequency of ν0 on the shape of potential. From
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6.2. Experimental observation of quantum droplets in free space

a) b)

Figure 6.7: Numerical simulation of the micro-motion (a) and size (b) of a not interacting BEC inside

the time-averaged optical potential, for different values of the modulation frequencies.

some measurements of the intensity profile of the beam acquired with an auxiliary CCD

(for details see [63]), we find out that the upper bound is 5 kHz and therefore we set the

frequency to 3 kHz.

The levitating beam has a large waist on the horizontal direction (y) in order to guarantee

negligible residual curvatures on all directions. In order to measure the residual curvature,

we compare the evolution of a Bose-Einstein condensate at 7.5a0 in the levitating potential

and in free space. In Fig. (6.8) I show the time evolution of the measured Thomas-Fermi

radius Rz of the cloud along z. The two datasets corrrespond to the expansion in free-fall

(purple) and in the levitating potential (orange). We compare them to the theoretical

curves corresponding to the expansion of the BEC in free space and in a harmonic con-

fining potential V (z) = 1
2
mω2

zz
2. When Rz becomes larger than 30µm, we see a deviation

from the free-space expansion, which is compatible with the evolution of the BEC with

ωz = 2π× 12 Hz. This measurement is mostly sensitive to the curvature at large distance

and it also provides only an upper bound to the effective confinement experienced by the

droplets around z = 0. Finally, note that the sizes of the droplets we observe are always

isotropic along the two measured directions, togheter with the fact that we do not observe

any deformation of the droplet from its predicted spherical geometry let us conclude that

the effect of the levitating potential is negligible also on the vertical direction.

6.2.3 Switching-off of the magnetic field

As already mentioned in the chapter 2, in order to perform absorption imaging we need

to switch off the magnetic fields, so that both hyperfine states composing the droplet

become resonant with the imaging light.

Switching off the magnetic field requires a certain time before the current in the magnetic

coils stops to flow. During the switching-off of the magnetic field the inter and intra-

species scattering length in the mixture change Fig. (6.9) due to the presence of Feshbach
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Figure 6.8: Expansion of a BEC in the levitating potential (orange dots) vs free space (purple dots).

We measure the Thomas Fermi radius along the vertical direction after releasing a BEC from its dipole

trap. The purple points correspond to the free-space evolution, while the orange ones to the expansion

in the levitating potential. The theoretical curves are the result of the evolution calculated from the

Gross-Pitaevskii equation in free-space (solid purple) and with a vertical confinement of 12Hz (dashed

orange)

resonances, leads to a change in the size of the cloud. We optimized the experimental

setup, identifying and removing the major sources of induced currents. This allowed us to

implement an experimental sequence where the time required to switch off the magnetic

field is reduced to tswitch ∼ 80 µs.

As shwon in Fig. (6.9a) the scattering length of the state 2 a22 diverges at a Feshbach

resonance around B ∼ 35 G, while the scattering length a11 of the state 1 decreases from a

positive value to a negative one. In order to better understand the effect of the changing

in the scattering length,I have performed a numerical simulation of the evolution of a

BEC mixture for different values of the parameter N1/Ntot. The results are shown in Fig.

(6.9b). The major effect on a cloud mostly in the state 1 (N1/Ntot ∼ 1) is a contraction of

the size, in agreement with the fact that the scattering length of the majority of the atoms

is negative for a long fraction of the evolution time. On the contrary, when the mixture is

mainly made by atoms in state 2, a rapid expansion of the cloud is observed, starting at

the time corresponding to the crossing of the resonance in the scattering length, where the

atoms experience a very strong repulsive interaction. For intermediate values of N1/Ntot

as those typical of the droplet there is a compensation of the two effects and we observe

only a small variation of the size.

Finally, in Fig. (6.10) I report the simulated size after 80 µs and after 500 µs, for various

values of N1/Ntot, and I compare the results of the simulations with the experimental

measurements. Despite the numerical simulations are based on a simplified model, ne-

glecting for example density-dependent effects tha could be relevant near the resonance,

a qualitative agreement is anyway achieved. We conclude that performing the imaging
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Figure 6.9: a) Scattering lengths in the range of magnetic field that the atoms explore during the switching

off. (b) Corresponding evolution of the size of the atomic cloud, for different values of N1/Ntot, as obtained

from the simulations.

Figure 6.10: a) Simulated size after switching off the magnetic field in 500 µs (red) and 80 µs (blue) as

a function of the population imbalance N1/Ntot. b) Experimental data for the same quantity compared

to the simulation performed, with tswitch = 80 µs.

80 µs after switching off the magnetic-field coils introduces a systematic error on the

measured size of the atomic cloud, that depends on the fraction of atoms in the mixture.

For the imbalance N1/Ntot ∼ 0.4 typical of the droplet, the two effects almost completely

compensate each other and the error can be considered negligible in comparison to the

statistical uncertainty.

6.2.4 Time evolution of the droplet

With the experimental methods explained in section (6.2.1) we could observe the time

evolution of the mixture in free space. As one can see from Fig. (6.5a) when the system is

in the droplet phase the density profile evolves differently from a quantum gases and the

size remains constast during the time evolution. It is the first evidence of the self-bound

77



6.2. Experimental observation of quantum droplets in free space

phase of an atomic mixture in free space. In Fig. (6.11a) the cloud remains in the droplet

regime only in the first milliseconds of the evolution. The quick drop of the atom number

makes the droplet move vertically in the phase diagram reported in Fig. (6.5). When

it reaches the critical value the system undergoes a droplet-to-gas transition, where the

cloud starts to expand and the atom number stabilizes to a constant value. The effects

responsible for this significant losses of atoms are mainly two.

First, we observe a strong three-body ricombination phenomena [64, 65]. In the mixture

there are four channels of losses due to three body recombination that depends on the

species of the particles involved in the collision. However the rate of the losses in the

state 1 are few orders of magnitude larger that the others. In addition to this, another

phenomenon occurs, due to the fact the droplet forms with a fixed ratio N1/N2. It can bear

only a small deviation from that value and any excess of atoms beyond this threshold is

not bound to the droplet and expands away from it. The combination of these two effects

leads to the behaviour that we observe in Fig. (6.11a).

In order to extract a value for the equilibrium size we selected the time interval where it

does not change and we take the mean of all the values in the plateau. The critical atom

number and the equilibrium ratio are instead measured as the mean of the value after the

point of the liquid-to-gas transition. We repeat the measurements for different values of

the magnetic field and finally we summarize the experimental results in the phase diagram

show in Fig. (6.11). We compare our results with the predicted values. The agreement

of the experimental data with the theory is very good for all the measured parameters.
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6.2. Experimental observation of quantum droplets in free space

(a) (b)

Figure 6.11: a) Time evolution of the size σ, the total atom number N , and the ratio between the teo

component N1/N2. The dashed lines are the average of σ on the plateau and the critical atom number Nc,

measured as the average of N after the transition. The solid line represents the theoretical equilibrium

value of the ratio and the green area between the dashed lines include the allowed deviations. The

error bars represent the statistical uncertainty and correspond to the standard deviation. b) Measured

values of the three parameters as a function of the magnetic field B. We also report the deviation of the

aspect ratio from 1(diamonds). The colored areas in the graph at the top correspond to the theoretical

prediction for Nc ≤ N ≤ 2Nc. The curves in the middle graph correspond to the predicted critical atom

number for the metastable (dashed) and stable (solid) self-bound solutions. In the graph at the bottom,

the theoretical predictions take into account the allowed deviations . The vertical error bars correspond

to the statistical uncertainty and the horizzontal one is the uncertainty on the magnetic field.
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6.3. Collisions between quantum droplets

6.3 Collisions between quantum droplets

The problem of classical droplet collisions has been investigated extensively both theoret-

ically [66] and experimentally [67] in order to get information about the inner properties

of the droplets, like for example the surface tension. Analogous studies have been carried

out in the context of atomic nuclei to understand the dynamics of nuclear reactions and

fission [68, 69, 70].

Once we have characterized the equilibrium properties of quantum droplets, In this sec-

tion I report our experimental investigation about collisions between two droplets [71].

Due to the presence of three-body losses, the lifetime of the droplets is small but, since the

time scales of the collision are smaller, we manage to characterize the collisional dynamics

in different regimes. The study of the observed dynamics can be a good candidate to go

further in the investigation of the liquid-like properties of quantum droplets.

6.3.1 Experimental realization of two colliding droplets

In order to obtain two separate droplets we create the BEC in the same beam’s geometry

shown in section (6.2.1) and then we ramp up an additional blue detuned laser beam

(with a wavelength of 532 nm) that propagates vertically (Fig. (6.12)). The beam has an

elliptical intensity profile with a large waist along y (wy ∼ 1 mm) and a tight one along

x (wx ∼ 15 µm). It produces a repulsive barrier able to split the condensate in two parts

along the x direction. In order to give the clouds a finite velocity we develope a procedure

shown in Fig. (6.13). We switch off the horizzontal optical trap and the green barrier and

switch on the levitating potential, while keeping the droplets for a variable time ∆t in the

vertical infrared beam that provides an harmonic confinement along the x-direction. By

applying the same RF pulse used in the single droplet experiments, we can now create

two separate droplets. After ∆t we switch off this last beam and let the droplets collide in

free space. Changing the intensity of the vertical infrared beam and ∆t we can change the

momentum provided to the droplets, i.e their relative velocity. Moreover, since three body

losses are present, we can change the atom number changing the time when it occurs: it

can be done simply changing the initial separation, i.e. the heigth of the central barrier.

In order to have an independent measurement of the relative velocity, where the trajectory

followed by each droplet is not influenced by the presence of the other, we use the following

strategy (sketched in Fig. 6.13 (b)-(c)). The basic idea is to repeat the sequence, but

having one single droplet at a time. In order to load the BEC in a single well, we increase

the height of the barrier and then we move its position along the x direction. The minimum

of the right/left well is superimposed to that of the corresponding well in the previous

configuration (left column of Fig. 6.13). In this way the double-well potential results to

be strongly imbalanced and the BEC is loaded only in one of the two wells. At this point,

we follow the same procedure as in the measurement with two droplets and the velocity

provided to each will be the same as in the collision experiment.
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6.3. Collisions between quantum droplets

Figure 6.12: Schematic representation of the dipole optical traps plus the green barrier used to split the

condensate.

6.3.2 Measurement of the critical velocity

We study the dynamics of the collision for different relative velocities and atom numbers.

Depending on these parameters we observe different behaviours. Two examples are re-

ported in Fig. (6.14) where we observe a clear merging and a passing through. In the

first case the two droplets remain together in a single large droplet until the total atom

number reaches the critical number and the cloud starts to expand. In the second case we

observe that the two droplets pass through each other without significant perturbations.

In order to probe a large range of parameters, and in particular to reach the regime where

the droplet displays a liquid-like uniform bulk density (see Fig. 6.3), we can tune an

additional parameter, i.e. the magnetic field B. The reported parameters ṽ and Ñ are

riscaled adimensional quantities introduced in [50]. In this way we can change the value of

Ñ only by tuning the magnetic field B, without changing the actual atom number N. We

acquire a large set of measurements for different values of Ñ and ṽ. Then we associate to

each measurement the blue or red colour. Blue if the droplets separate after the collision;

red if the droplets merge. Reporting the data in Fig. (6.15), we create a sort of phase

diagram for the collisional dynamics. We observe that, for small values of Ñ (Ñ < 130)

the critical velocity increases for increasing Ñ , while, for large values of Ñ , it starts to

decrease. It is a sign that there is a crossover between two different regimes, that I’ll

explain in more details in the next session.

6.3.3 Discussion on the results and comparison with theory

In order understand the observed behaviour in the physics of the collisions, we have col-

laborated with a theoretical group (A. Gallemi, A. Recati and S. Stringari, University of
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6.3. Collisions between quantum droplets

Figure 6.13: Scheme of the experimental sequence used to produce two colliding droplets (a) and to

measure their relative velocity (b-c).

Trento) which has performed numerical simulations on a system analogous to the exper-

iment. They simulate numerically the dynamics of the collision by means of a modified

Gross-Pitaevskii equation (GPE) (see [27] for details). In order to distinguish between

the merging and separation regimes, we compute the fraction of atoms that remain in the

center of mass of the collision, that we identify as the merged fraction. A color plot of

the merged fraction is reported in (Fig. (6.16). We observe a qualitative agreement with

the experimental outcomes of Fig (6.15), but a quantitative difference in the position of

the maximum of vc, which is placed at Ñ ∼ 200.

In order to understand the origin of this discrepancy, we perform a second set of simu-

lations including the effect of three-body losses (3BL) that, as shwon in the first session

of measurements, are significantly strong in our droplets. The results are represented

in Fig. (6.16) by the red diamonds and the blu squares, representing correspondently

merging and separation. We observe that, while at small Ñ the position of vc is basically

unaffected by losses, at larger Ñ , the three body losses shift the maximum to Ñ ∼ 120,

in good agreement with the experimental results.

We can qualitatively understand the two opposite trends and the effect of losses, by draw-

ing a simple argument. The possibility of forming a single droplet during the collision

is related to the capability of the resulting merged droplet to absorb the excess kinetic

energy Ekin ∼ v2Ñ . In the limit of large Ñ , as discussed in section (6.1.3), the droplet

shows a bulk density entering in a liquid-like regime. We can decompose its energy using
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Figure 6.14: Examples of two collision measurements with different outcomes: merging in (a) and sep-

aration in (d). In b) and e) we report the corresponding time evolution of the distance d between the

droplets and in c) and f) of the total atom number. A linear fit of d(t) before the collision is used to

measure the relative velocity and the time of collision. This measurements allows to deduce the atom

number at the collision Ncoll. All the error bars represent the statistical uncertainty and correspond to

the standard deviation.
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6.3. Collisions between quantum droplets

Figure 6.15: Experimental outcome of the collisions as a function of the rescaled velocity ṽ and atom

number Ñ . Reds corresponds to merging, blue to separation. In a) we draw the droplet wavefunction for

increasing values of Ñ , which highlights the crossover from compressible to incompressible droplets.

the so-called liquid-drop model [72]:

Ẽdrop = ẼB + ẼSÑ
−1/3 + ẼCÑ

−2/3 (6.14)

where ẼB, ẼS and ẼC are, respectively, the bulk, surface and curvature energy terms. The

total energy of the colliding droplets is 2Ẽ(Ñ/2)+ẼKIN , with Ñ the total atom number. If

the outcome of the collision is a merging the final kinetic energy is zero, while the energy of

the final state corresponds to the energy of a droplet with Ñ atoms plus some excitations

of some surface modes descrived by a term ẼEXC . Requiring energy conservation and

considering that in expression (6.14) we can neglect the curvature energy and that the

bulk energy (linear in Ñ) remains constant, we have to compare the collisional kinetic

energy with the surface energy variation and ẼEXC . Imposing ẼKIN ∼ ẼSÑ
−2/3 we get

a critical velocity:

vC ∝ Ñ−1/6 (6.15)

that decreases for increasing Ñ .

In the opposite case of small Ñ , there is no distinction between the bulk and the surface

and we expect that the relevant energy scale is the whole binding energy of the droplet.

By imposing ẼKIN ∼ Ẽdrop we get a critical velocity:

vC ∝
√

2|Edrop|Ñ (6.16)
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6.3. Collisions between quantum droplets

Figure 6.16: Results of simulations in the ideal case without losses. The color plot represents the merging

fraction introduced in the text, while the data points represent merging (red diamonds) or separation

(blue squares) as otucome of numerical simulations with 3BL. The solid lines represent the expected

trend vC ∝
√

2|Edrop|Ñ , while the dotted line correpond to vC ∝ Ñ−1/6, which are the two predicted

scaling in the different regimes of Ñ . The dashed lines correspond to the same Ñ1/6 scaling, but in this

case it is simply used as a guide to the eye

These two trends of the critical velocity are represented in Fig. (6.16) by the dotted and

continous lines and they are compared with the experimental data. We find that these

simple energetic considerations qualitatively justify the observed behavior.

In conclusion, using binary collisions as a probe of the dynamical properties of mixture

droplets, we have found the first evidences of a crossover from compressible to incom-

pressible regimes driven by Ñ . This is highlighted by the different scaling of ṽC which

is well justified by simple energetic considerations. The results can pave the way to the

investigation of phenomena related to the superfluidity of quantum droplets and to its

peculiar energy spectrum.
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Appendix A

Bloch oscillations in presence of an

additional harmonic potential

In this appendix I would like to discuss in more detail the problem of non-interacting

atoms in an optical lattice that are subjected not only to an external force, but also to a

weak harmonic potential.

In litterature, the motion of atoms in an additional harmonic potential has already been

discussed in different regimes [73, 74], but in all of these works the starting condensate

is spread over many lattice sites. In this section, I investigate numerically the effect of

an additional harmonic potential on a condensate that is initially loaded in a single site,

like in our experiment. The results can be interesting in order to check the effect of some

inhomogeneities of the force.

The potential felt by the atoms is:

V (x) = VOL(x) + Fx+
1

2
mω2

addx
2 (A.1)

The lattice spacing of the optical lattice is 10 µm and, for potassium 39, the harmonic

oscillator length aho =
√
~/mωadd for ωadd = 2π×1 Hz is 16 µm. In presence of a force F

the Bloch frequency is νB = Fd/~. In particular, in analogy with the range of parameters

that we explored experimentally, I will consider the case of a BL with a depth of 70 nK

that provides a tunneling rate of 1.5 Hz.

I investigate the coherent tunneling between neighbouring sites with a variable ωadd. I

numerically solve the time dependent Schrödinger equation, reproducing the same pro-

cedure that we perform experimentally, and I record the populations in the starting site

(labbelled by i = 0) and in the next neighbours (labelled by i = ±1). Examples of the

time evolution of the sum of the populations N ±1 for different ωadd in the case of νB = 3

Hz are shown in Fig. (A.1a). For ωadd 6= 0 we observe the appearance of a beating between

two frequencies and the curves are no longer described by a single sinusoidal function. In

order to separate the different components, I calculate the Fourier trasformation of the

time traces (see Fig. (A.1b)). For small ωadd a clear beating is highlighted by the presence

of peaks around half of the sum and the difference of νB and ωadd/2π (or multiples of these
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Figure A.1: a) Some examples of the time evolution of the fractional populations in the site ±1 for the

case νB = 3 Hz in presence of an additional harmonic potential. b) Fourier spectra as a function of ωadd

show the appearance of spourious components and the deviation of the largest component respect to νB .

c) Schematic representation of the effect of an harmonic potential on the tilted lattice.

frequencies). In order to investigate more quantitatively the observed behaviour, I report

respectively the value of the largest frequency component νmax in Fig. (A.2a) and the

amplitude of the oscillation in Fig. (A.2b) (in terms of fractional populations) extracted

by each time trace as a function of ωadd. If there is a beating-note, the amplitude of the

oscillation is not constant, therefore I report the mean value Amean. I show the numerical

results for 3 different values of νB.

For a curvature smaller than 4 Hz we observe a slightly variation of νmax. The presence

of the curvature shifts the energy levels near the starting site (A.1c). Depending on the

side, the curvature increases or decreases the energy difference between them and con-

sequently the tunneling probability changes. From Fig. (A.2a) we observe that the net

effect is a decreasing of νmax with a correspondent growing up of the amplitude. For

values larger than 4 Hz the harmonic oscillator length starts to become smaller than the
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Figure A.2: a) Numerical prediction of νmax of the frequency respect to the Bloch frequency νB as a

function of the force for difference values of ωadd/2π. In (b) I report the relative amplitudes.

lattice spacing and the wavefunction is more and more confined in the starting well. The

Bloch dynamics dissappears and we observe a quick drop of the amplitude togheter with

a fast increasing of νmax. The measured frequency no longer depends on the applied force

F and the dynamics is dominated by ωadd and the single site trapping frequency that is

of the order of 20-30 Hz.

In the experimental results shown in Chapter 3 we observe a linear behaviour of the fre-

quency as a function of the force and amplitudes that go from 0.3 to 0.5. In conclusion,

the experimental data are in agreement with the numerical predictions for ωadd/2π < 2

Hz, that is comparable with the expected value related to the curvature of the optical

potential.
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Grimm. Three-body recombination at large scattering lengths in an ultracold atomic

gas. Physical review letters, 91(12):123201, 2003.

[66] J Qian and Chung King Law. Regimes of coalescence and separation in droplet

collision. Journal of Fluid Mechanics, 331:59–80, 1997.

[67] Melissa Orme. Experiments on droplet collisions, bounce, coalescence and disruption.

Progress in Energy and Combustion Science, 23(1):65–79, 1997.

[68] AN Andreyev, Katsuhisa Nishio, and Karl-Heinz Schmidt. Nuclear fission: a re-

view of experimental advances and phenomenology. Reports on Progress in Physics,

81(1):016301, 2017.

[69] Piotr Magierski, Kazuyuki Sekizawa, and Gabriel Wlaz lowski. Novel role of super-

fluidity in low-energy nuclear reactions. Physical review letters, 119(4):042501, 2017.

[70] Aurel Bulgac and Shi Jin. Dynamics of fragmented condensates and macroscopic

entanglement. Physical review letters, 119(5):052501, 2017.

[71] GE Astrakharchik and Boris A Malomed. Dynamics of one-dimensional quantum

droplets. Physical Review A, 98(1):013631, 2018.

94



Bibliography

[72] Ivana Bešlić, L Vranješ Markić, and Jordi Boronat. Quantum monte carlo

study of large spin-polarized tritium clusters. The Journal of chemical physics,

131(24):244506, 2009.
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