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Introduction

Over the last decade, the field of quantum gas has been subjected taitamgex
growth accompanied by a rapid increase of both experimental and thabretiearch
activities. This amazing development has been triggered by the first aohsen

of Bose-Einstein condensation in 1995 he firsts Bose-Einstein condensates have
been first produced with a sample®BRb [1], “Li [2], and 2*Na [3]. Further, other
atomic species have been employed, suctHgl], ®°Rb [5] , metastabléHe [6, 7],

41K 18], 133Cs [9] and!7™YDb [10]. Up to now, more than fifty groups worldwide
are producing dilute-gas condensates, using different tricks anditees. New
prospects using other atomic species are also under examination [1B]1dhis

big interest is mainly due to the fact that a Bose-Einstein condensate (BEQEis
state of matter characterized by a macroscopic occupation of a single oustatie .
Indeed, when the de Broglie thermal-wavelength exceeds the mean spatieen
atoms,10°-107 bosons arrange themselves in a single quantum state. This large oc-
cupation number together with the experimentally ability to manipulate atomic gases
opens the unique possibility to study, on a macroscopic scale, sevendliqueffects
enclosing many branches of physics [14, 15, 16].

Nevertheless, the field of qguantum gases is not exhausted here !

In 1999 another crucial goal has been reached with the first produafteodegenerate
Fermi gas of'’K atoms [17]. Up to now, seven experimental groups have produced a
Fermi gas well below the temperature of degeneracy exploiting evapoioling

on two different spin-states 6t.i [18, 19], or taking advantage from the sympathetic
cooling technique using &Li-"Li [20, 21], aSLi-?*Na [22], and &’K -8"Rb [23]
mixture.

Fermions exhibit a somehow opposite quantum behavior with respect todwsinly

due to their exchange properties. Indeed, indistinguishable particldescgbed by

a many body wave-function which turns out to be symmetric under the egehan

1The Nobel Prize in 2001 was awarded to Eric Cornell, Wolfgang Ketterlé,Garl Wieman for
their work on BEC



of two bosonic particles and anti-symmetric for fermions. Furthermore, fesrat
tract much attention not only as natural antagonist of bosons but algtefopeculiar
characteristics. First of all, the anti-symmetry of fermionic particles leads wwelie
known Pauli exclusion principle which introduces in the system a sort afatgcle
repulsion. Indeed, fermions have to occupy one-by-one the quaraies @ind the
multiple-occupation of one state is forbidden. In the energy space, tméofes are
arranged in the so-called Fermi sphere whose radids -at, is fixed by the highest
energy level reachable (Fermi energy). For instance, a white dwdmeutron stars
are mainly composed of fermions and the existence of a Fermi sphere witetlloc
dimension yields to a "quantum pressure" which stabilizes the stars agairsilth
lapse enhanced by strong gravitational forces.

In despite of the above discussion, fermions and bosons do not beldwg tom-
pletely separate classes of particles. The link between them is quite subtieand
in the possibility to produce a bosonic-like particle starting from two distingbigha
fermions. This is the basic idea of the BCS theory of the superconductivity:
distinguishable electrons near the surface of the Fermi sphere arbleregjainst an
attractive perturbation and can form a pair, the so-called Cooper gdool like
quite natural to export the idea of Cooper pairs also to atomic Fermi gasesnt®/
many efforts have been focused in this direction. First of all, distingulsfHabmions
can be obtained from a mixture of fermions in two-spin states. Further,ampro-
duce an interaction between particles by tuning the interstate scattering leagth v
Feshbach resonances [24]. In the limit of strong repulsive interaghiersystem is
unstable with respect to the formation of molecules which can be eventually Bos
condensed (BEC regime) [25, 26, 27, 28]. In presence of a stribragtive interac-
tion, fermions could instead form Cooper pairs and the system behasahaghT
superconductor (BCS regime). Many experiments have been perfonnieel BCS-
BEC crossover [29, 30, 31, 32, 33], and, until now, a clear andudible evidence

of the achievement of the BCS regime has not yet been provided everiitrgudies

on collective excitations seam to indicate the accomplishment of this regimegB4, 3
Another promising scheme to achieve the BCS regime is to use a Fermi-Bose mixture
in which bosons induce an effective attraction between the two fermionicsiies
[36, 37]. Note that this method is the atomic analog of phonon-induced ititarac
which is the underlying mechanism of superconductivity.

The otherhot topic of the quantum gases field concerns optical lattices. An opti-
cal lattice is a perfect periodic potential produced by a retroflected bsesan in a
standing-wave configuration. In the last years, this periodic potentsablhan ex-



tensively exploited with Bose-Einstein condensates giving rise to spéatadfiects

at the border between different areas of physics. Experiments kplared effects

of quantum phase coherence by observing, for instance, a mapiosaoneling of
condensed atoms through the lattice [38, 39, 40, 41] or a coherent emuésiatter
wave from a condensate loaded in a vertical lattice [42]. Furthermoresyhtem

has also allowed the observation of phenomena ranging from the solid biaieq
such as Bloch oscillations [43, 44], to the physics of high correlatedraystéh the
evidence of a quantum phase transition from a superfluid to a Mott ins{d&iprand

to the field of gases of reduced dimensionality [46, 47].

In our experimental work, we have the unique possibility to combine togeteer th
Fermi gas and the optical lattice. Up to now, we are indeed the only experimenta
group producing such kind of system [48], and, as far as we kneveral groups

are now moving in this directidn The interest to bind together the field of Fermi
gases with that of optical lattices is excited by different reasons. Firatl,othe
tight resemblance between atomic fermions in an optical lattice and electrons in a
ions lattice pushes toward the extension of solid state effects to atomic Femsi gas
Moreover, a Fermi gas in an optical lattice iparfect systersompletely free from
interactions. This feature opens the unique possibility to study single-pactiele
herence effects which are usually overwhelm by interaction [49, 58]edd, in a
spin-polarized Fermi gas interatomic collisions are suppressed by thepPiagik

ple and, a lattice, produced by laser light, is perfect in the sense that impuwitie
phononic excitations are absent. This ideal system turns out to be the ppogpsa-

ate system to test the theory of transport in crystal in regimes not adeassither in
solids nor in bosonic gases [51]. Secondly, if a non-uniform extranpelds added

to a Fermi gas in the lattice then is possible to detect phenomena of localizatjon [52
which provides promising application in quantum computation devices [53jthAem
potentiality of this system has been pointed out recently by several thedretiks:
two-component Fermi gases or Fermi-Bose mixtures in a lattice exhibit a peculia
exoticphase diagram as a function of the interaction [54, 144, 145]. In add#ion
tight 2D-lattice can also be exploited to investigate the physics of Mott-transition in
a Fermi gas.

Finally, the optical lattice has recently been proposed as a tool to proberthmhic
superfluidity in a strong interacting two-components Fermi gas [57]. Tteztien of

the BCS regime is indeed an open question whose resolution is of cruciatanper

2As far as we know, the group of Tilman Esslinger in Zurich and the onelafis Sengstock in
Hamburg are now starting to work on Fermi gases in optical lattices.



The purpose of our experimental work, presented in this thesis, is tipravesting
ground for the basic behavior of a Fermi gas in an optical lattice. In thiseseur
study on a non-interacting Fermi gas locates as the first step on the rouatel$osv
superfluid fermionic gas in an optical lattice.

Outline of the Thesis

This thesis report on our experimental investigation on a non-interactimgi lgas

in presence of an optical lattice. We find that the statistical distribution makes the
properties of such system highly non trivial also in the limit of zero tempegator
deed, on the one hand we will exploit the non-interaction of the system &rabs
phenomena of single-particle coherence, such as Bloch oscillation, argditoe
scale, and on the other hand we use the broad energy distribaidarmions to
study localization effects in presence of an additional non-uniform tiatekVe also
study the transport of fermions from the non-interacting limit to the interactigg o
exploring regimes not accessible in solid state.

Our work of this thesis is organized as follow:

The first Chapter is devoted to the description of our experimental setyarticular,

we produce a Fermi gas 6fK atoms by using the technique of sympathetic cool-
ing with 8”Rb bosonic atoms. The presence of the Bose gas, which can eventually
condense, gives us a twofold possibility: we can whether study interaaffierts be-
tween the two species or obtain a direct comparison between a Fermi ase g

We also report on some effects exhibited by our strong interacting Ferse-Bix-

ture, such as the modification of the expansion and the collapse of the Fasning
Chapter 2, we give a brief overview on the theory of a particle in a perjoatiential,

with particular attention to the transport properties. The third Chapter igetvo

the study of our Fermi gas trapped in a vertical lattice against the gravityforbe

of gravity induces a motion of fermions resulting in a Bloch oscillation and/or in a
Zener tunneling. Due to the non-interacting nature of the system, our neeaesiis
provide the first experimental observation of long-lived Bloch oscillatishikh are
usuallykilled by interactions in common metals, or in semiconductors, or in Bose
gases. Thanks to this peculiarity, we employ such oscillation to perform a time-
resolved interferometric measurement of the force of gravity. We alsoistisihe
superiorness of fermions with respect to bosons in such kind of expetritmeChap-

3We remind to the reader that the Fermi distribution is broad due to the Padigle which impose
a single-occupation of energy levels.



ter 4, we address to the problem of a Fermi gas loaded in a combined laeaitb
periodic potential. We observe that the parabolic potential destroys theatianal
invariance of the system leading to two different classes of states, nagtwzhlized
and localized states. In particular, delocalized fermions are the equivdl&hoch

particles whose dynamical evolution can be described in the framework effec-

tive mass theory. Localized fermions are instead related to Wannier-$tek and
behave as an insulator under an external driven potential. In Chaptershow how
the introduction of a collisional channel induces a transport on localieedidns.
The interactions are introduced in the system by adding bosons. We thgyam®
our findings with the Esaki and Tsu theory which usually applies for serdigzior
superlattices.






Chapter 1

Atomic Fermi gas

Dove c’e sfizio non c’é perdenza...
A. B.

Over last decade, fundamental goal has been reached in the fieldt atoysics.
Above all, the achievement of Bose-Einstein condensation in neutral aigras3,
4,5,6,7,8,9, 10] has opened the exciting possibility to investigate quargbavior
on macroscopic scale. A Bose-Einstein condensate (BEC) is a new stasdtef in
which 10°-107 particles, below a critical temperature, go to occupy the same quan-
tum state. This "effective" attraction between bosons is a direct coeseqwf their
statistic and it turns out that all the particles can be described by a singl®@imacr
scopic wave-function. However in nature particles divide in two diffectasses and
the naturalantagonistsof bosons are known as fermions. In 1999 another crucial
goal has been reached with the production of a degenerate Fermi §4¢ atoms
[17, 18, 20, 21, 22, 23]. This experimental result has attracted muahtiattan
the community since fermions, near degeneracy, behave in a somehosite ypay
with respect to bosons. First of all, while a phase transition separatesdgkaetate
and the classical regime for a Bose gas, a system of identical fermioesgaed a
smooth crossover between these two regimes. Secondly, Fermi partiosteteexe a
effective repulsion due to their statistics which obliges a single occupatioeasést
neighbor quantum states.

In this Chapter we will show some of the fascinating consequences arisimgtifie
statistical nature of the Fermi gas.
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1.1 Outline

The aim of this Chapter is to discuss the main features of a non-interactingpttap
Fermi gas and to show how the behavior of the system is modified by the adafition
a collisional channel. Indeed we can produce a Fermi-Bose mixture wkithits

a strong interspecies attraction leading to spectacular effects, suchclépse of
the Fermi gas.

We start to remind the properties of a trapped non-interacting Fermi gasi3%.
We then describe our experimental procedure to produce a degeRerategas of
40K atoms (Sec. 1.3). In particular, our procedure to bring fermions intermgcy
exploits the technique of sympathetic cooling in which a bosonic g&&Rif atoms
acts as a refrigerator. OtftK -87Rb Fermi-Bose mixture is an extremely rich system
which gives us a twofold possibility: on the one hand, we can directly coenbr
behavior of atomic gases obeying to two different quantum statistics aride ather
hand, we can investigate interspecies interaction effects (Sec. 1.4rtioupar, our
Fermi-Bose mixture exhibits a large interspecies attraction which strongsaffeth
the density distribution and the dynamics of the system.

The main results reported in this Chapter on the Fermi-Bose mixture can kekifoun
our recent publications:

e Expansion of a Fermi gas interacting with a Bose-Einstein condenBaker-
laino, E. de Mirandes, G. Roati, G. Modugno, and M. Inguscio, Physv. R
Lett. 92, 140405 (2004).

e Magnetic Control of the Interaction in Ultracold K-Rb Mixturds Simoni,
F. Ferlaino, G. Roati, G. Modugno, and M. Inguscio, Phys. Rev. Le.
163202 (2003).

e Mean-field analysis of the stability of a K-Rb Fermi-Bose mixtile Mod-
ugno, F. Ferlaino, F. Riboli, G. Roati, G. Modugno, and M. IngusciojsPh
Rev. A68, 043626 (2003).

e Collapse of a degenerate Fermi ga3. Modugno, G. Roati, F. Riboli, F. Fer-
laino, R. Brecha, and M. Inguscio, Scierz@7, 2240 (2002).

e Dipolar oscillations in a quantum degenerate Fermi-Bose atomic mixEuieer-
laino, R. Brecha, P. Hannaford, F. Riboli, G. Roati, G. Modugno, andnv
guscio, J. Opt. B: Quantum Semiclass. CptS3 (2003).
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Figure 1.1:Fermi distributionf (¢) for different temperatures of the systeffi:= 0K (solid
line), T = T (dashed line) and” =80nK (dotted line). The energyis expressed in units
of l/k’B

1.2 Trapped Fermi gas

While the bosonic degeneracy involves the formation of a Bose-Einsteiteosate,
the fermionic degeneracy leads to a single occupation of quantum statessoAém-
perature, the occupation number of each fermionic quantum state is equred tg

to energies close to the Fermi enegy, and is zero for larger energies. The Fermi
energyEr corresponds to the higher energy level occupiefl at0 K, and sets the
relevant energy scale of the system. This tight packing creates a Ferofijzarticles
where a minimum size is maintained by the so-called Fermi pressure. Furtieermor
additional particles can not penetrate into the Fermi sea and this gives tise to
Pauli blocking of collisions. It is interesting to note that all these featuies aome-
how from the properties of symmetry of the fermionic wave-function. Irigaar,

a system composed hy identical fermions is described by a wave-function which
is antisymmetric under the interchange of any pair of particle coordinateghéOn
contrary, a bosonic function is completely symmetric. This fundamental elifter
leads to different statistical mechanics which govern these two classegicfgs. A
Fermi gas obeys to the well-known Fermi-Dirac distribution

1
f(r,p) = eBlH(r, p)—p] 11’

(1.1)

wheref is 1/kgT with kp the Bolzmann constant. The functigifr, p) is the oc-
cupation probability of a state of energywhereH (r, p)i¥(r,p) = e(r,p). The
chemical potential: fixes the atom number in the gas. Equation (1.1) includes the
Pauli principle which forbids the multiple occupation of a single energy leved. A
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shown in Fig. 1.1, the zero-temperature Fermi distribution (1.1) is equaledarn
energies lower thatr = u(T = 0K, N), and zero otherwise. The presence of
a finite temperature smooths the step-wise transition from one to zero oceupatio
numbers. In particular, a finite temperature a shell of amplitugl€ opens around
Er, and the unitary occupation is no more guaranteed. For such a distribornign,
fermions with energies in a shell near the Fermi surface provide a resprthe
system to external perturbations. Thus, the ratio between the temperaanckthie
Fermi temperaturel = Er/kp, defines the degree of degeneration of our system.
Note that the scenario is opposite in a Bose-condensed system wheeepltticles
participate in the response [14].

We produce experimentally a Fermi gas which is confined by a harmonic trap
with a cylindrical symmetry. The main quantities involved, such as temperatdre an
atom number, depend also on the trapping potential. We now briefly remember to
the reader the basic features of a harmonically trapped Fermi gas. A miaited
description can be found in [58, 59].

The HamiltonianH (r, p) of a harmonically trapped Fermi gas is
H(r, p) = p_2 + Vp(r) 1.2)
) om )

wherem is the atomic mass of the fermion afgh(r) is the harmonic trap. Our
harmonic potential exhibits a cylindrical symmetry along kexis, also named axial
direction. The trapping frequencies age;,ws, w3) = (wr,wy,w,) With w, , the
radial and axial frequency, respectively. We introduce the aspdict of our trap
A = w, /w, andVy is given by

Ve(r) = %mw?(ﬁ +y? 4+ A22). (1.3)
The single particle levels are the familiar eigenvalues of the harmonic oscillator:
€ngnyn. = hwr(ng +ny + Anz) with ng, ny, n. non-negative integers. If the ther-
mal energy far exceeds the level spacihg{ >> hw,), we can replace the discrete
single-particle harmonic spectrum with a continuum one, whose densityeodyen

states is

62

g(f) = 2)\(%7_)3
The chemical potentigh is then given by the normalization condition for the total
number of fermionsVy in the trap

1 g(e)de
Np = . 15
= (2nh)? / eBle=m) 41 (1.9)

(1.4)
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Eq. (1.5) also fixes the Fermi ener@y- of the system [58]. Solving the integral, one
indeed finds
Ep = hw, [6ANF]"/?, (1.6)

which sets the relevant energy scale of the system. From the Fermi emerggn
define the typical size of a trapped degenerate gas

1 2EFR
Bp = gmuwiRp — Rp =\ [ 2 = ano(48NF) ", (1.7)

where the harmonic oscillator lengthds, = +/h/mwp, andwy, = (wiw,)?.
From Eqg. (1.7) follows that if the number of fermiodér > 1, the size of the
trapped Fermi cloud is much greater thap: this is a consequence of the statistical
"repulsion” imposed by the Pauli exclusion principle. This effective Ispn be-
tween fermions in the trap is known as Fermi pressure, and leads to a biggef
the cloud with respect to the harmonic oscillator length This is another important
difference with respect to both a "classical" gas and a Bose condgasebhdeed de-
creasing the temperature, the size of a classical gas continuously sicodslingly

to the classical Bolzmann distribution. The size of a non-interacting Bossteiin
condensate is instead temperature-independent dfid=di K it is exactly equal to
aro because they all occupy the lowest state of the harmonic oscillator. Ifleoe a
introduces the two-body repulsive interaction between condensed dtwmadius
of the cloud also increases wifkig. In particular, the radius of the condensatg
scales withNz as N'/5 which is slightly different from the behavior found for a
Fermi gas,Rr N}/G [58]. Despite to a similar dependence on the atom number,
the dependence @tp » from Np r has a very different physical origin.

1.2.1 Spatial and momentum distribution

For a temperature different from zero, the density distribution of a dergésFermi
gas has to be calculated numerically by integrating the distribution functionil.1)
the momentum space. At = 0 K, one instead finds an analytic expression:

n(r,T=0) =

3/2
8AN{ pw , (1.8)

2R3, R%,
wherep is the effective distancg = (22 + 32 + A\?22)/2 defined for a harmonic
trap with a cylindrical symmetry. Another important quantity for our propasal

the momentum distribution of the cloud. Indeed, in the experiments, most of the
information about the sample are obtained looking to the absorption signaé of th
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cloud, after the sudden release from the trap (see Sec. 1.3.2). Wheontfirement

is switched off, the cloud performs a rapid and adiabatic expansion aadevable to
measure the velocity distribution by imaging the atoms. The momentum distribution
(Thomas-Fermi distribution) at zero temperature is

n(p, T = 0) = / 0 (pp(r) - p), (1.9)

1
(2m)?
where ©(pr(r) — p) is the unit step function and the Fermi momentpm =
Vv2mFERr. The integral (1.9) gives [58]

n(p,T=0) =

8N 273/2
s [1 - p—g} . (1.10)
T™PE Pr

Despite the spatial anisotropy of the trap, the momentum distribution of the@egen
ate Fermi gas is isotropic i.e. the momentum distribution depends only on the magni-
tude ofp. As we will discuss in the next section, this is an important difference with

respect to the case of a Bose gas.

1.2.2 Comparison with the Bose-Einstein condensate

A Bose gas shows a behavior somehow opposite with respect to the dbéezkh
by fermions. The difference between these two systems arises entiralyttier
different statistical nature. For lack of space, we will report just & blisEcussion on
some characteristic features of the Bose gas which immediately clarifies tee diff
ence between the two gases. Above all, trapped bosons undergcedamaition as
the critical temperaturé, is reached and all the atoms prefer to occupy macroscop-
ically a single state. Furthermore, differently from a gas of identical fermitre
condensed bosons collide each other. Due to the low temperafures’{. ~100
nK ) and the diluteness of the cloud, the interparticle interaction can beiloegcr
in a simple way. Indeed one can consider that each boson experienwndield
potential produced by all the other particles on the gas [14, 15]. Thi®ziopation
is somehow justified by the fact that, at low temperature, just two-body coklision
survive. The interatomic potential can be written asfanction using the method of
the pseudo-potentials,

V(' —r) =g —r). (1.12)

The coupling constany, at the first order of the perturbation, takes the form

A h?
gp = —— 18 (1.12)

m
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wherea g is the boson-bosostwave scattering length. We just mention here that this
interaction introduces in the system a sortigfdity which yields to the spectacular
phenomena of superfluidity observed in Bose-Einstein condensate [14]

For a large atom numbéY g, the interaction energy is notably larger than the kinetic
energy. In this limit, one can neglect the latter contribution to the energy arsyshe
tem is known to be in the Thomas-Fermi regimeTA£0 K, the density distribution

of a trapped condensate has an inverted-parabola shape

R2 2
np(r) = 2—5 [1 - ]’%’—2], (1.13)
B

whereR g is the maximum radius of the cloud

1/5
Rp = <%> ) (1.14)
4

The typical energy scale of a Bose gas is the zero-temperature chewiieatial
which scales with the atom number more rapidly than the Fermi engrgy N;/s
while Er NI{/?’). Another important difference is connected to the spatial and mo-
mentum distribution of the two clouds. Even if the two gases exhibit a similar spatial
distribution, their momentum distributions differ in a profound way. The momentum
distribution of both a thermal cloud and a Fermi gas turns out to be isotropic. O
the contrary, in a condensates (p) anisotropic in a asymmetric trap due to the non-
linearity of the interparticle interactioh Furthermore, the widths of the momentum
distribution scale in the opposite wayji increases withVg, while the typical mo-
mentum for a condensed atom decrease with particle number,sineel / Rp due

to the Heisenberg uncertainty principle.

1.3 The intriguing issue of cooling a Fermi gas

We experimentally produce a Fermi gas'®k atoms well belowl ' using the tech-
nique of sympathetic cooling wittf Rb atoms [23].

In this section, we give a rapid overview on the experimental techniquktaggo-
duce our atomic Fermi gas. The reader can find a more detailed descriptio® in
PhD thesis of Giacomo Roati [59].

Since the first achievement of Bose-Einstein condensation, the stardhnique to
cool an atomic gas below the temperature of degeneracy consists ofcagbirey

1As we will show in Sec.1.4.2, the different momentum distribution of the tleads leads also to
a completely different expansion evolution.
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phase based on laser cooling which carries the systef a100 ;K and of an
evaporative cooling phase [60]. The initial cooling phase for both ali@dons and
fermions proceeds via laser cooling and magneto-optical trapping (MIDE) sub-
sequent cooling phase has instead to be different for the two spectsan®can
indeed exploit techniques based on re-thermalization, while fermions ¢aolfide
down touK [61]. In particular, bosons are transferred from the MOT into a magne
trap, where a forced evaporative cooling is applied to bring the gas igendeacy.
The evaporation of bosons is performed usually by using a radiodrexyusignal
which remove selectively the hottest atoms from the trap. The key requitdoren
the usefulness of this technique is clearly the existence of a large elastitooallis
rate between atoms which allows for an efficient thermalization of the gasnkrgl,

the elastic cross-section depends on the temperature. At very low tempetht
only significant contribution to the collisional rate is given by the s-wavétegag
amplitude which is temperature-independent. The other contributes (p-tvauasre,
ecc...) are proportional to the temperature and thus suppressed dowiyt&.10

The situation is even more complicated for identical fermions because interatomic
collisions are completely suppressed in suc a system. As a consequeneeqplo-
rative cooling fails for spin-polarized fermions and another cooling gaace have

to be found. One can circumvent this problem using some form of mutughopa-
thetic cooling between two types of distinguishable particles, either two spirs state
of the same atomic species or of two kind of atoms. In the first scheme, fermions
are simultaneously trapped in two different spin states and evaporatitiggd®
then performed on both components [17, 21]. Thermalization is how akbyre-
wave collisions between these two spin statékhe other scheme exploits the idea
of to mix fermions with a gas of bosons which can be efficiently cooled using the
usual evaporative cooling . The Fermi gas decrease its temperatuodiding with
bosons which act like a refrigerator. This latter technique is knowsyagpathetic
cooling and has been carried out with success at ENS (Paris) [20], at Rizgaq)l
[18], at MIT [22], and in our experiment [23].

In our experiment, we indeed adopt the sympathetic cooling scheme mixinge¢ogeth
two different atomic species, the fermiorfitk and the bosonié”Rb. In the next
two subsections we will give a brief overview on our experimental appsiand on

the main steps to produce tH& -7 Rb mixture. The reader can find a more detailed
description in [59].

2Fermions loaded in two spin state are no more indistinguishable and can collide



1.3 The intriguing issue of cooling a Fermigas 17

4K
F=5/2
100 Mhz L 712
9/2
Pyy——
'Y 4 \[ix 1172
cooling ! :
780 nm repumpdf 766.7 11 n? cooling
| repumper
F=2
28— 6.834 GHz v o F=7/2
48,—— " 1.284GHz
1 92

Figure 1.2:Hyperfine structure of’Rb and'’K . The light grey indicates the transition used
to cool the atoms while the white one is the repumper transiti

1.3.1 Experimental setup

e 0K and®"Rb atoms:

Our Fermi-Bose mixture is composed by two stables isotopes of differerti alka
atoms. The Fermi gas is composed'K atoms while we employ’Rb atoms for

the Bose gas. The choice of these atomic species is suggested by sexsoals.
First of all, alkali atoms are well suited for cooling methods based both onlighe

and thermalization processes because of their internal energy-lexatUsérand their

low probability of three-body collisions which could produce losses of ativom

the trap. Furthermore the energy levels of such atoms are easy to hamd|¢hain
optical transitions can be excited by the available laser sources. FinalhsdRom
atoms have in nature two bosonic isotops and3°K (nuclear spin/ = 3/2) and

one fermionic°K (nuclear spin/ = 4). Since Potassium combined with Rubidium
gives the unique possibility to study both a Bose-Bose mixture [8] and a F&ose-
mixture [23]. Rubidium atom is instead present in nature in two bosonic isetope
85Rb and®”Rb . The former is characterized by an interparticle attraction with a scat-
tering lengtha = —10ag, Whereqy is the Bohr radius. A negative scattering length
carries out instability in the system which could lead to the collapse of the system
[14]. Nevertheless it is possible to produce a stable condensed aRtfatoms
tuning the scattering length by applying an homogeneous magnetic field wiifish sh
the atomic levels (Feshbach resonances) [63, 64]. The other bosotuipés®” Rb

, has, on the contrary, a positive scattering lengts 99a, [65] which guarantees
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Figure 1.3: Scheme of our experimental setup: atoms of both speciescaled: and
trapped in the first MOT and then transferred in the second M@€re they are magnetically
trapped.

a stability with respect to the Bose-Einstein condensation. We remind“iRhthas
been the first atomic species brought to the condensation in 1995 [1].

e Hyperfine structure of’K and®"Rb :

In Fig. 1.2 we report the internal level structure?8K compared with the one of
87Rb . The internal states are labelled with the quantum number F which identify the
total angular momentum of the atorhs Despite of the relatively small separation
between the excited statds & 1 GHz) of °K , we are able to reach Sub-Doppler
temperatures using laser cooling method with iheline (S, — P3/5). Further-
more,*°K exhibits a peculiar hyperfine structure with both the excited states and the
ground states inverted. This complete inversion is caused by its large naplaa

(I = 4) that points in the opposite direction with respect to the nuclear magnetic
moment. As a consequence, the ground statékhas a large angular momentum,

f = 9/2; this implies the existence of many magnetically trapped Zeeman levels
(mp = 9/2;7/2;5/2;3/2;1/2). In Fig. 1.2, we also report the two optical wave-
length (known as cooling and repumper light) used for the laser coolingedinth
species.

e The cells:

3The total angular momentumis = J+ 1, with J the total electronic momentum afidhe nuclear
one.
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The heart of our experimental apparatus is composed by two cells whédjoiat

by a transfer tube surrounded by a magnetic guide, as is shown in FigEach

cell is furnished with optical windows for the access of the differentrlasams and
connected to a vacuum pump. The pumps are necessary to obtain a lifetinge of th
mixture much longer than the characteristic time of collisions between the trapped
mixture and the background gas which determines the main loss processsyseu
tem. The atoms are initially captured in the first cell where a ion pump maintains a
pressure ol 0~ Torr. The atoms are then transferred into the second cell where the
pressure is fixed at0~'? Torr by another ion pump. The transfer tubgiscm long

tube with radius oft mm and maintains a differential pressure between the two cells.

e Laser sources:

The aim of our experiment is to cool simultaneously a Bose and a Fermi gkthan
degeneracy is reached. The production of a mixture introduce a highgslexity

in our apparatus with respect to the standard single specie set-up sirneemthas
exhibit different optical and magnetic characteristic. In particular, thiealtransi-
tions needed to cool the two gases are notably far one from the otheweahédve

to handle with different laser sources. As reported in Fig. 1.2, the coolitigal
transitions fo®”Rb as a wavelength @80 nm, while the one fotK is at 766.7 nm.

In the case of Rubidium, the splitting of the hyperfine levels in the ground state is
large Ar = 6.85 GHz) that we are forced to use two diode lasergsitnm, one
operating on the repumper and the other on the cooling transition. Both dets,la
home-made grating stabilized external cavity lasers, are locked to diffet@mic
reference signals 6f Rb. The cooling light is splitted in two part: one part goes to
generate the frequency resonant with fhie= 2 — F’ = 2 transition needed for
the optical pumping of Rubidium, while the second one gives the frequenityeo
MOTs, red detuned respect to the= 2 — F’ = 3 transition (the typical detun-
ingisA ~ —3I'). Furthermore, a part of this latter beam is also used for the push
beant and/or for the imaging beam which is resonant with fhe= 2 — F/ = 3
transition. The repumper light (see Fig. 1.2) is instead produced by theditue
laser. This laser light is resonant with thie = 1 — F’ = 2 transition, and is
needed for the optical pumping sequence. The MOTSs cooling and repgiigtits,
with typical ratio between the two powers 3:1.

All the laser lights needed to manipulate Potassium atoms are instead obtained by a

“The push beam is needed to transfer atoms from the first to the secofidaMi®has to be slightly
ontheredofthe" = 2 — F’ = 3transition
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single laser source combined with acusto-optic modulators (AOM). Indiel-
ently from Rubidium, the hyperfine splitting of the Potassium ground state is only
1.8 GHz so that we are able to produce all the frequencies we need thanks to an
home-made Ti:Sa, pumped by a Nd:Yag (Millennia X, Spectra Physics). Tdma be
exiting from the Ti:Sa laser is splitted in two parts, one for the cooling and the othe
for the repumping, with a controllable ratio typically of the order of 4:1. Thel-co
ing part is then divided in other two beams, one for the MOT and the othehéor
imaging, push beam and the optical pumping. The cooling frequency fo@iEs

is red shifted respect to the closed transition= 9/2 — F’ = 11/2. The light

for the imaging, is instead resonant with = 9/2 — F’ = 11/2, while the one

for the push beam must be slightly blue shifted respeétte 9/2 — F' = 11/2.
Finally, the optical pumping light is resonant with = 9/2 — F' = 9/2. We
generate the frequency for the repumper with three different AOMgptiogiice the
light resonant with thé” = 7/2 — F’ = 9/2 transition.

Our four laser beams (cooling-repumper for Rb and cooling-repunapéf)fare in-
jected simultaneously in a semiconductor tapered amplifier (MOPA) which mevid
the necessary power for the two magneto-optical traps (MOTSs). Thedies Potas-
sium and for Rubidium have opposite polarization. This gives us the plitysib
choose the ratio between their powers using a halfwave plate displacae e
MOPA.

1.3.2 Experimental procedure

The aim of our experiment is to cod?K atoms until the degeneracy is reached
(I < Tr). To achieve this regime, we first cool and tr&fiRb and‘°K atoms in

a standard double magneto-optical trap. We then load the cold sampe (i K)

in a magnetic trap where a selective evaporative cooling is performed loialiRun
atoms. At this point, the Potassium component is sympathetically cooled down to the
degenerate regime. Figure 1.4 shows a schematic representation of thehamas p

of our experimental procedure and a brief discussion is reported below

e 1° step: Loading”Rb atoms in the second MOT

At first, the background vapor 6f Rb atoms in the first cell is loaded into the first
MOT. The first MOT is produced by combining a quadrupole magnetic field with
two pairs of retroflected beams along the directions and two independent beams
along thez-axis, as shown in Fig. 1.4(a). The laser light is composed by a superpo-
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1° step : Loading of Rb in the MOT2
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2° step : Rband K in the MOT2

MOT 2 5 MOT 1

= | - S —
g IR
oK $7Rb

()
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Figure 1.4: Sketch of the experimental sequence. Our procedure cermsically of 3
steps: (a) Transfer of bosorf§ Rb ) from the first to the second cell using a continuous push
beam. (b) transfer of fermion$’K ) by a pulsed push beam. Both species are now magneto-
optically trapped (MOT 2) in the second cell. (¢) Loading lné tmixture in a magnetic trap
using a QUIC configuration of the coils (c.1). In this magoetap, we perform a radio-
frequency evaporative cooling of Rb atoms, which therneatzaching lower temperature

(c.2).
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sition of red detunedy;, < w) cooling and repumper beams. The quadrupoleield
splits the atomic levels in many position-dependent Zeeman sub-levels. The atoms
occupying a sub-level resonant with the laser light,( ~ w;) experience a braking
force (FF = —~v) produced by the radiation field which slows down its motion. In
the meanwhile, the atoms are transferred from the first to the second ezk wiey

are again trapped in the second MOT. The transfer is achieved usingtiaumus
pushing beam acting on the red of the= 2 — F’ = 3 transition. In about 25 s we

are able to transfer and then to recapture in the second MOT abbRb atoms at a
temperature of 5@K.

e 2° step:3"Rb and*’K atoms in the second MOT

After the first 25 s during which just the Rb atoms are loaded in the secon W&
rotate the mechanical halfwave plate to inject into the MOPA also the laser béams a
the Potassium frequency. In this stage the ratio between the K an Rb lighaus ab
10:1. Potassium atoms, initially loaded in the first MOT, are transferred integite

ond MOT thanks to a pulsed push beam, as reported in Fig. 1.4(b). Wetbelsash
beam every 200 ms, taking care the quadrupole field of the first MOT isheditoff
during each shot. At the end of this procedure(10 s) alSoatoms of'°K coexist

with 10° Rb atoms in the second MOT.

e 3° step: Magnetic trapping and evaporative/sympathetic cooling

While in the MOT phase the mixture are trapped and cooled at the meantime, in this
stage we trap the two gases using a magnetic field and we cotiRbeatoms using

the usual technique of evaporative cooling [15]. The K atoms are insigagdathet-

ically cooled because of the collisions with the Rb gas.

MAGNETIC TRAPPING We trap the atoms in a conservative potential produced by
magnetic fields. The magnetic potential splits the hyperfine levels in Zeeman sub-
levels

E(7) = Eo + mrgrppB(7), (1.15)

whereE), is the energy of the unperturbed level labels the Zeeman levejy is

the Lande’ factorup is the Bohr magneton, anB(7) the applied magnetic field.
Just the atoms occupying a Zeeman sub-level withy> > 0 can be magnetically
trapped because their energyr) increases withB () (Wing theorem) [60]. These

5This magnetic field is realized using two coils in anti-Helmholtz configuration.
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states are namddw-field seekersin our case we trap both Rb and K atoms in their
doubly polarized states, in which the nuclear and electronic spin compdrexgshe
largest possible values along the direction of the magnetic field. In partiéliRiy
atoms are in thé2, 2) state, while!’K atoms in|F = 9/2,mpr = 9/2). Note that
the sample have to be completely polarized before transferring it into the tiagne
potential to avoid large losses of atoms (interstate collisions). This can leelgon
using an optical pumping light which is selective on the Zeeman sub-level.

To realize the magnetic trap, we use three coils in the quadrupole loffdéhdtc
configuration (QUIC) consisting of two coils which generate a radial guzale
field and a third one (pinch coil) orthogonal to the quadrupole axis whiodyme

a harmonic confinement (see Fig. 1.4(c.1)). The effective magnetimeoméint ex-
perienced by the atoms depends on the fivdd (02 = B') and second derivative
(8°B/dz* = B") of the magnetic field

1 " 2 B/2 2
U(z,r) x |By+ =B z*+ —1r°]|, (1.16)

where By is the bias field. Atoms experience a cylindrical harmonic potential with
different frequencies along the axial and radial directions. Theufregy along the
axial pinch direction (weak axis of the trap) given by

B2
mBo '

B//
w, o {/ — while in the radial direction w, o< (2.17)
m

The trap frequencies measured for tH&b cloud arew, ~ 27 x 16.3 Hz and

wy ~ 21 x 197 Hz and the ones fot’K atoms arew, =~ 27 x 24 Hz and

wy =~ 2w x 317 Hz. Difference in the trapping frequencies experienced by the
two species has to be ascribe to their different masses, indeed the rateehdtve
frequency scales ag/mp,/mx. We can typically transfer from the MOT to the
QUIC trap about 10atoms of'’K and 5x 10° of 8’Rb at a temperature of 1QK.
EVAPORATIVE AND SYMPATHETIC COOLING. Once the mixture is trapped in the
magnetic potential, we perform an evaporative cooling only on the Rb coampon
The basic idea of this technique is to selectively remove the hottest atoms from a
trapped states to untrapped ones with a radio-frequency knife. Thial siguples
indeed trapped Zeeman levels to untrapped dieés continuously remove atoms
with energy larger than the average energy while the remaining atoms edesilata

a lower mean temperature through elastic collisions, as schematized in Fig2)L.4(c

5The Zeeman splitting between the Rb levels is of the order of tens of MHzddyfiical magnetic
field applied (1 Gauss).
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One can stop the evaporation when we reach the Bose-Einstein cotidlersdhe
Rb cloud to have a degenerate Fermi-Bose mixture or to continue until all toaizo
atoms are removed to obtain a pure Fermi gas. We typically achieve the satiden
of ’Rb atT = 80nk with Ny, ~ 10°. During all the evaporation ramp the Potas-
sium atoms thermalize with the colder Rb gas through elastic collisiong anth*
atoms reach the degenerate regime.

During the evaporation of bosons, the Bose and Fermi gases are in theroia
librium each others. We have found the same temperature for both gafémiy
their momentum profile with a Bolzmann distributichi £ 7., Tr) ’. We have also
checked the thermal equilibrium during all the evaporation phase by niegduas
a function of the radio-frequency signal applied. As we will discuss n 4.1, the
efficiency of the thermalization is also confirmed by the high interspecies sogtte
length measured. Note that the thermal capacity of the Bose gas decréidistee
temperature agl'/T.)? and in the deep degenerate regiriie<{ < T,), the thermal
capacity of bosons becomes smaller than the one of the Fermi gas. In tHisamgn
bosons can no more be considered as a thermal bath for the fermionsavé tio-
rative cooling is then stopped.

At the end of our procedure we obtain a Fermi gag’¢ coexisting with a Bose-
Einstein condensate 6fRb well below the temperature of degeneracy, ie.<
Tr,Tc . The minimum temperature reached in our apparatus §z0.2or our
experimental parameters, the Fermi temperatuif@-/250 nK and the critical tem-
peratureT,=110 nK for a sample composed by*1frmions and 210* bosons.
These atom numbers correspond to peak-densities of the orderof10'* cm—3
for Rb andn ~ 5 x 10'2 cm™3 for K.

e 4° step: Imaging the mixture

We observe the density distribution of the two clouds using the standardoéibso
imaging technique. We switch off the magnetic trap and we let the mixture expand f

a suitable time to avoid problems related to the high density of the samples. We then
shine the mixture with a two-colors resonant probe beams delayed by erpapte

time to have two spatially separate absorption images which are captured by a CC
camera. From the analysis of these images, we can extract fundamenitiadatibn

on the system such as the atom numbers of each specie, the temperattine and
momentum distribution. The laser intensity revealed by the camera and the density

"Note that in the degenerate regime the two gases have a distribution whidcirlis teenperature
independent.
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Figure 1.5: Simultaneous onset of Fermi degeneracy 44 (left) and of Bose-Einstein
condensation fot”Rb (right). The absorption images are taken for three deargaemper-
atures, after 4.5 ms of expansion for K and 17.5 ms for Rb, b@déctions show the profile
of the momentum distributions [23].

of each specie are connected by the following relation

Ip(z, z) = Iy(z, z) expo [/ dyn(x, y, z)] , (1.18)

where n is the atomic density, the cross section of absorption and integration is
made along the beam direction. The quantity/ dy n(z, y, z)] is the optical den-

sity (OP) of the system which is directly measured in the experiment. Assuming tha
the thermal contact between the two components is efficient also in the higlgpn-de
erate mixture, the temperature is determined by fitting the thermal tails of the Bose
gas.

In Fig.1.5, we show a series of absorption images of the mixture for thresretitf
stages of the evaporation ramp taken after a ballistic expansion. As the tdurper

is decreased beloW., we observe the appearance of a narrow peak in the momen-
tum distribution of the Bose gas which is the signature of the condensatioen Wh
instead the Fermi gas reaches the degeneracy we observe that, lcivertegper-
ature, its width remains almost constant due to the Fermi pressure which &ca dir
consequence of the their statistics. We fit the two clouds with a Thomas-Fistnii d
bution [58, 14]. For instance, typical sizes of the trapped Fermi gaRare 52um
andR, = 5.1um in axial and radial direction, respectively. The BEC is completely
immersed in the Fermi sea due to its smaller dimension.
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1.4 Fermi-Bose mixture

The production of a Fermi-Bose mixture solves on the one hand the probleoolito
down a Fermi gas and on the other hand opens the exciting possibility to iratestig
interspecies interaction phenomena. The first goal of such kind of stiglte de-
termine the interspecies scattering length which affects the behavior ofdtesrsin
several phenomena.

1.4.1 Measurement of the interspecies scattering length

We now report on our effort to characterize the dominant collisional ar@sims
between fermions and bosons. For (h& temperatures common in ultracold atom
traps, interactions are dominated by two-body s-wave scatferidg mentioned
earlier, the two-body collisions between spin-polarized fermions are coshpiip-
pressed down t@ K -temperature, due to the Pauli principle. Fermions coexisting
with a Bose gas can instead collide with bosons and the interspecies scadtegtig

apr is the relevant quantity governing collisional mechanisms. Note that the knowl-
edge ofapr is not only crucial to determine the efficiency of sympathetic cooling
but also necessary to predict the regimes of stability and the phasetsapaxeriap

of the mixtures. In additiomy g is needed to determine the occurrence of Feshbach
resonances, which allows to tune the zero-field scattering lengthby applying a
homogeneous magnetic field [37].

We have measured the valueafr by studying the center-of-mass motion of both
gases when a dipolar mode is excited [66] of the mixture. We induce a dipoteommo

by displacing the minima of the magnetic potential. From the damping of the coupled
oscillations we estimate the interspecies scattering lemggh This procedure has
been originally used for a Bose-Einstein condensate (BEC) loaded inifigoedt
hyperfine levels [67] and then extended to a gas of fermions in two spEsdE8]

and to a mixture composed of different atoms [69]. The basic idea is that, while
in a pure harmonic potential, single gases undergo undamped collectilletimsts,

two gases experiencing different trap frequency can exhibit a damyedf-phase
motion. From the damping rate we can extract quantitative information about the
scattering processes.

To perform these measurements we magnetically ¥fRb atoms in the2, 2) state
and“’K atoms in|F' = 9/2,mr = 9/2). These doubly polarized states have the

8For typical collisions kR << 1, wherefik is the relative momentum anBl is the range of the
interatomic potential.
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Figure 1.6:Coupled dipolar oscillations of810° non-degenerate K (triangles) ane 80*
uncondensed Rb (circles) atoms along the axial directi@800 nK. The two samples os-
cillate at the same frequency with a collisional rRtg;=190 s! typical of a hydrodynamic
regime. The solid lines are the best fit to the model presantteb text.

maximum coupling with the magnetic field and the two species experience the same
trapping potential. The axial and radial harmonic frequencies are 27 x 24 s71
andw, = 27 x 317 s~ for K, while those for Rb are a fact¢f/, /My )'/? ~ 1.47
smaller. This different trapping frequencies allows one to induce a relaintion
between the two components.

Dipolar oscillations are excited by a sudden displacement of the trap minimum in the
axial directionz. This is easily done by changing the ratio of currents in the trap coils
which corresponds to modify the value of the bias fiBld(see Eq. (1.16)) . With an
appropriate choice of the amplitude and timing of such displacement we cae exc
a quasi-pure dipolar oscillati8nwith no apparent higher-order (shape) oscillations.
The amplitude of those oscillations is also chosen small enough to presemxesthe

lap of the two clouds even in the degenerate regime.

We perform the measurement using a non-degenerate K-Rb mixture atrétonpe

T = 300 — 500 nK for which the collisional rate can be directly related to the elastic
cross-section. As shown in Fig. 1.6, due to the interspecies collisionsKlaotd Rb
oscillations are damped, and the K motion is also frequency-shifted. Toloke$ite
coupled center-of-mass motion of the two cloud, we use a classical mad&ido

°The typical mean relative velocity of K and Rb samples during the suleseascillations is

v/ (v?)=5 pm/ms.
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harmonic oscillators coupled through a viscous damping. The coupleti@giaf
motion are

. - 9 4 Mg Nk . .

ZRp = —WRpERH — gﬁwrcoll (ZRb - ZK)

i 4 Mgy N . .

ik = —wkax + g%%ﬂm (2rb — 2K) (1.19)

whereM is the total mass i + mpg,, N the total number of atom& i + Ny, and

I'.o is the rate of K-Rb two-body elastic collisions. This model well describes cou
pled dipolar motion of the two clouds, whereas all the microscopic damping mecha
nisms are described by the quantity,;. Assuming two Boltzmann distributions for
the gases, the collisional rate is related to the elastic cross-section

Lot = novgy, (1.20)

wherevy, = /8kpT/mM is the rms relative thermal velocity and the mean density
in the overval region i = (NLK + NLRb) [ ngngyd®z. Finally, the collision cross-
sectiono depends on the interspecies s-wave scattering length as

o = 4na®. (1.21)

From Eq. (1.19), one find that the system has two normal modes, whezgesficies

w and damping times vary with the collisional ratd".,;;. We solve numerically

Eq. (1.19) for the typical ratio of atom numbers,Ng;,/Nx=7.5. At low collisional

rate, in the so-called collisionless regimez;, 7, wix ™ <1), the two samples are pre-
dicted to oscillate at their bare frequenciesy ~ 27 x 24 s, wpy =~ 2w x 16.3

s~!), and the ratio of the two damping times scale as the inverse ratio of the total
mass of each sample. As the collisional rate increases, the damping time of the two
normal modes decreases and their frequencies are shifted toward®@mneiiate
value. Here each sample oscillates at a combination of both normal modely, Fina

at very high collisional rater >1) the system enters in the hydrodynamic regime.
Here there is a mode at this intermediate frequency with low damping and adsecon
overdamped mode whose frequency rapidly decreases with incrdasingrhe lat-

ter corresponds to our experimental situation ( see Fig. 1.6): the two sapspiiate

at the same frequency, almost in phase and with a long damping time. Note that, the
collisional ratd’...;; depends strongly on the relative phase gained by K and Rb atoms
during their motion. This dependence helps us to provide an accuratendeigon

of the experimentdr,.,;; and then of s-wave scattering lengthy, since the phase of

the oscillations can be determined with relatively high accuracy. As alregudyted
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in our previous work [70], one can extract the value of the collision zEEtion

and hence ofipp fitting the experimental data for the dipole oscillations with the
solution of Eq. (1.19). We have repeated this procedure by varying inectature

in the rangel’=300-500 nK, the total number of atoms in the rafge10*-5x10°,

and the ratio- from 2.5 to 7.5. From the above measurement, we find a large s-wave
scattering length between the Fermi and Bose gas

lapr| = 41018 aq. (1.22)

This value is in good agreement with the one reported in our previous V&K [
which was found from the measurétk-8"Rb scattering length with a re-scaling

of mass. This result gives a signature of the strong interspecies interaetiween

the two gase¥. The value (1.22) is obtained by a weighted average of the different
measurements performed with different atom numbers and temperaturendére
tainty is dominated by a 40% a priori uncertainty in the number density. Note that
such large scattering length found also seems to indicate the attractive ofatinee
interspecies interactions, since a positive one would be compatible only witleta mu
smaller magnitude. However, one can not extract the sigigef by studying the
dipolar oscillations because of the square dependeneg; pffrom the collisional
cross-section. Another method to measure directly the scattering lengthets dtras

the study of rethermalization mechanism performed on a thermal Fermi-Boseeanixtu
[23]. The idea id to drive out the system from the initial equilibrium by modugatin
the trapping potential at twice the radial oscillation frequency of just thadiuh
atoms { ~420 Hz). After this phase of selective heating, one can study the subse-
guent heating of the Potassium, mediated by the elastic collisions with the Rubidium
component and extract the scattering length. In principle this method psozise
information on the sign of the interaction by measuring the thermalization rate as a
function of the temperature of the mixture. This procedure has been falowiae

case of''K-87Rb [69]. In the case of’K -37Rb this method falls down because, due

to the large value ofizr, the system is in the Wigner regime, i.e. the collisional
cross-section will not depend on the temperature. As we will see in theseext
tions, the system exhibits phenomena which are peculiar only of a binary mixtur
with attractive interspecies interaction.

For comparison, note that the s-wave scattering length between bobthe Y Rb cloud is
‘GB| :99a0
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1.4.2 Mean field approach

Atomic ultracold gases are also a well-suited system from a theoretical pwieto
Indeed, due to the diluteness of these atomic gases, the interparticle intesarto
relatively easy to handle, as already discussed in Sec. 1.2.2. In sHiusein con-
densate, the collisions between bosons are fully taken into account byrafislea
potential which depends on the s-wave scattering length (zero-order pertuba-
tion). Considering this potential, the condensate is described by the wellnkno
Gross-Pitaevskii equation (GPE) [14, 15], which is Schrédinger témuavith an
extra non-linear term relative to the mean field potential. We now considese-Bo
Einstein condensate coexisting with a Fermi gas. The interspecies interaation
again be described by a mean field potential proportional to the fermiosgyand

to the insterspecies s-wave scattering lengih. One has thus to add the Fermi-Bose
potential to the GPE

2

S V? + Vi(r) + gppnp(r) + grenr(r) | (r) = ppo(r), (1.23)

wherenp(r) is the bosons densityy(r) is the condensate wave function. The
boson-boson and boson-fermion interactions are proportional to th@icg con-
stantsypp = 4nh?agp/mp andgpr = 2nh’apr/mg, wherem g r are the atomic
masses whileng = mpmp/(mp + mp) is the reduced mass. As already shown,
for our Rubidium-Potassium mixture, the values of the scattering lengthss;are-

99 qp andagr = —410 £+ 80 ay.

Similarly, also the Thomas-Fermi equation describing the Fermi gas have tdenclu
the interspecies mean field term [71, 72]

2m%
3n2
wherepr is the chemical potentiah » the Fermi-cloud density antdz r the har-
monic trapping potential for the two species.
From Eq. (1.23-1.24), it turns immediately out that the density distribution tf bo
gases are modified due to their mutual interaction. The study of such modiiicatio
will provide a clear indication and a test for the mean field approach. We hav
merically solved the two coupled equations (1.23) and (1.24) for our typigaber
of atoms, our nominal trap frequencies and dgrm = —410ag [73]. Our result is
reported in Fig. 1.7 where we show the new ground state of the trapped eniXtue
atom number considered here af¢ and3 x 104, for Potassium and Rubidium re-
spectively. The dotted curves show the calculated density profiles alertiréction

np(r) = [ur — Vi(r) — grenp ()2, (1.24)
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Figure 1.7:Density profile of the Bose-Einstein condensate and of thenFgas in trap. The
dotted lines correspond to the non-interacting cagg-(= 0). The higher density profile is
the one of the condensate. The effect of the strong intelespatiractiondzr = —410ag) is
an increase of the density of both species in the overlapmggbntinuous lines). The curves
are the result of the mean-field calculations.

of the gravity of both the clouds in non-interacting casgf{ = 0). Also in this
case the two distributions are not concentric due to a gravitational sagdretive
two clouds, which affects both the horizontal and vertical directions tol@esmall
misalignment of the magnetic trap with respect to the direction of the gtayitg].
The peak-density of the Fermi gas is much lower than the one of the catdehs
deed, the Fermi pressure stabilizes the fermionic system to a much largerasich
consequently lower density respect to the BEC. If we now switch on thectata
interactionagr = —410 ay, the situation notably changes, as clearly appear from
the continuous lines in Fig. (1.7). From the attractive nature of the intdespieter-
action follows the absence of any phase-separation between the twa:clbey still
keep good spatial superposition, despite of the gravitational sag, arattioutar,
with the condensate completely immersed in the Fermi "sea".

Furthermore, we observe a large increase of the density of both theespethe
overlap region. This increase is evident for both the components, batlakger in
the case of Potassium since the effective influence of the interactiomdiefrem
the density of the other specie, and the mean density of a Bose-Einsteiensaiel

\We can consider the relative gravitational sag between the two cloudsusithehFermi cloud will

experience a trapping potentiel (x) = Smr [wi, (2 + (y — 40)?) + wi. (2 — 20)?]. The values

of the displacement between the two potential centerg@ee 3.6 um andzo = 20 pum.
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Figure 1.8: Modification of the expansion of a K Fermi gas due to the irtioa with

a Rb BEC. The radial-to-axial aspect ratio of a clouddok 10* fermions evolves more
slowly in presence 03.5 x 10* condensed bosons (solid circles) than in presence of assimil
number of uncondensed bosons (open circles). Each dathipdite average of five or six
measurements. The dashed line is the calculated exparfsipwe Fermi gas, while the
solid line is the prediction for an interacting Fermi gas.

(n ~ 10™) is typically two orders of magnitude larger than the one of a Fermi gas
(n ~ 10'2).

The deformed ground state of the system is predicted to affect also tlzeniys

of the mixture leading to a modification of the frequencies of collective excitstion
[75, 76] and of the expansion of the two clouds from the trap [77]. We laatually
observed a modification of the expansion of both the condensate [23harkrmi

gas [78].

1.4.3 Expansion of the Fermi gas

The study of the expansion of an ultracold gases is one of the major toolsdio stu
the interactions between atoms. As we switch of the confinement, the atoms freely
expand and the interaction energy starts to be converted into kinetic erffengn

the knowledge of the expansion velocity, one can traces back to the imeraeld.

For instance, the anisotropic expansion exhibited by a condensate gafiestdli-

rect evidence of the role of the boson-boson interaction [1, 2, 3]eRBg a large
anisotropic expansion has also been observed in a two-component ga&ses at
Feshbach resonances [79, 80, 81] which has revealed the high calliside of the
mixture [82, 83]. Similarly, in order to observe the effect of their large rAg=ld
interaction, we have studied in detail the expansion of our Fermi-Bose mijure
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Figure 1.9:Modification of the expansion of a Rb condensate due to tieedntion with a K
Fermi gas. The radial-to-axial aspect ratio increases magielly with time for condensates
created with K (solid circles) than for pure condensatesifagprcles).

suddenly switching off the magnetic confinement [23, 78]. The expardiamon-
interacting Fermi gas exhibits an isotropic expansion and, despite to thérapiso
magnetic confinement, the cloud tends to a symmetric shapeRyite Rz, simi-
larly to a classical gas. When we switch on the interactions between the Feiimi a
Bose gas, the situation notably changes. The first quantity which givestanpo
information on the interspecies interaction is the radial-to-axial aspect ratfeeo
cloud, defined as2,./R,. In Fig. 1.8 and Fig. 1.9 , we report the evolution of the
aspect ratio of both the Fermi gas and the BEC. It is evident from the dattatpat
the Fermi gas exhibits an aspect ratio always smaller than the one measueed f
Fermi gas coexisting with a dilute thermal cloud of bosons [78] (see Fig. w8l
the condensate, on the contrary, inverts its aspect ratio more rapidlysanmoe of
the Fermi gas [23] (see Fig. 1.9). This opposite behavior is somehowisagpbe-
cause both gases are subjected to a similar interspecies interaction. $be ofa
such difference has to be found on the different atomic densities anc: aifférent
weight of interaction energy respect to the other energy (bosormbotaraction for
the condensate and the kinetic energy for the fermions). On the one thanelx-
pansion of bosons reveals the expected enhancement of density isgeapig. 1.7)
which corresponds to a effective tighter confinement which tends tadspeehe
evolution of the aspect ratio during the expansion. On the other handeliawibr of
the Fermi gas gives evidence that the mutual attraction felt by the two spethes
first moment of the expansion also plays a crucial role in the subseqyeatnits.
Indeed, during the early stage of the expansion, each of the two ggssseaces a
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Figure 1.10:Radial momentum distribution of the Fermi gas, detecteeraft ms of ex-
pansion, for different atom number in the mixture. Pés = 2 x 10%, (a) we observe that
below Ng = 6 x 10* the distribution is slightly affected by interspecies putal, while
(b) aboveNE = 6 x 10* a bimodal structure appears. (c) After the collapse, theisimg
1.2 x 10* fermions coexisting witt7.4 x 10* bosons exhibit a narrower distribution than the
non-interacting gas (dotted line).
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time-dependent trapping potential produced by the other species. Inhéée phe
negative interaction energy is converted into kinetic energy which, inrgerean

be unevenly distributed between the two samples. Indeed, the Fermi gamgsdak
large part of the interaction energy, which results in a largely reducei&ienergy

in the radial direction, and therefore in the slower evolution of the aspéot4, as
shown in Fig. 1.8. This interpretation is also confirmed by the observeddepee

of the expansion of the Fermi gas on the atom numbers in the mixture [78harin p
ticular, the aspect ratio decreases by increasing the effective ovedam between

the two species. We can increase density in the overlap region by ingy€dsiat
constantNVg. In this case, we observe the appearance of a double distribution in the
radial profile of fermions with a narrow peak surrounded by a brodidéiibution, as
illustrated in Fig. 1.10. We attribute the narrow distribution to the fermions trapped
into the condensate while the broader distribution is occupied by the morgeticer
atoms outside the overlap volume which can expands freely. Note that vedlare

to observe the bimodal distribution only in the radial direction, confirming that th
interaction energy between the two clouds is exchanged mainly in the more tightly
confined direction. From the observed behavior of the expanding Fgsniwe can
conclude that the momentum distribution reflects somehow the spatial distribution in
the trap.

1.4.4 Collapse of the Fermi gas

The modified expansion of the Fermi gas can be completely described irathe-fr
work of the mean-field approximation [76, 82]. Although the atom numbersen th
mixture are increased above some critical value, the situation changedidedima

We have observed instabilities in the system which are driven by the intéespe
attraction. As we will discuss in this section, such instabilities can not more-be de
scribed using a mean field approach.

In general, both the non-interacting Fermi gas and the Bose-Einsteiensaig are
stable systems. The stability of the fermionic gas is indeed assured essentially b
the Fermi pressure which arranges the fermions in the trap in a relativgly $pa-

tial distribution compared to the one of a Bose-Einstein condensate. Nottithat

2The theoretical curve has been obtained by a numerical simulation pobisigl X.J. Liu for our
experimental parameters. The numerical calculation are perforntechwr = —330a0 instead of
apr = —410ao, which is the value that better fits also the expansion of bosons, as didcimss
Ref. [77].
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Figure 1.11:Evolution of the number of Potassium atofNg (A) during the final stage of
the evaporation of condensed Rubidium atoms (B). When theébeuwf condensed atoms
Ny, is increased abovid® (highlighted region), we observe a sudden decreagéaf

pressure acts as a repulsive force on the fermions and it is a gengpalty of any
degenerate Fermi system, also present in white dwarfs and neutron Blersta-
bility of a Bose-Einstein condensate is instead guaranteed by the positivefste
interspecies scattering length, which corresponds to a net repulsivactibe be-
tween the atoms. In the case of a Fermi-Bose mixture, the stability of the system
depends essentially by the interspecies mean tigld = gprnr . As we have
already discussed, such interaction tends to squeeze the spatial distributap of

both species increasing the peak-density. The potentials which ensurextioee
stability, i.e. the kinetic energy for the Fermi gas and the boson-bosondtiterdor

the BEC, have instead a repulsive nature. Since these latter dominate \pictres
to the interspecies attraction, the mixture is stable with a lifetime of the system of
about a second. When instead the numbers of atoms are increasecdhatydical
value, the repulsive energies of both gases cannot balance the atisdétioUp,

and the system can lower indefinitely its energy by increasing further eathidn

and boson densities [70, 73]. Indeed, the onset of instability is chawaddy an
indefinite growth of central densities which triggers the simultaneous coltH#hke

two species. We have experimental observed the collapse of the Feras gasud-
denly drop of the fermions atom numbers to less than half its original valstoam

in Fig. 1.11. As long as the condensate is forming, we observe inelastis lok&e
atoms on the same time scale of the evaporation. When the condensed atdnas reac
critical threshold (at 0.6 s of the evaporation ramp), the number of K atoduesly
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Figure 1.12:Region of stability of the Fermi-Bose mixture, as a functasrthe number of
atoms. The black dots are the experimental points; linetharéheoretical prediction for the
boundary between the stable (left) and collapse (rightjprey for three values of the inter-
particle scattering lengthigr = —380 aq (dotted line),agr = —395 ag (continuous line),
apr = —410 ag (dashed-dotted line). The marked dots are found very ctofeetinstability
(see text).

drops to a lower value with a duration much shorter than the time scale of the other
loss mechanisms observed. Indeed, when we try to span the time intervakbetw
0.55 and 0.6 s, the small shot-to-shot fluctuations of the atom numbers liaseilts
ther alarge Nx = 2 x 10%) or a small (Vg < 10%) Fermi gas, i.e. we are not able to
follow the dynamics during the collapse which seems to happens on & times0

ms. Note that the theory predicts the simultaneous collapse of both speciesveto

in the experiment, we have observed only a marginally change in the atom numbe
of the condensate. Indeed, in correspondence of the collapse oéthe §as, the
depletion of the condensate is only of the ordeof 10* atoms. We ascribe this
behavior to the 3-body K-Rb losses which alt the collapse of the mixtureciragiu

the number of atoms below the critical values [70]. It is possible to determiyeriex
mentally the critical values of the atom numbers at the onset of the collapgs&\&0
have found the threshold to be A ~ 2 x 10* andNpg, ~ 10°. These values are
compatible with the ones predicted by the mean-field theory with = —410 ag

[72, 73]. Due to the strong dependence of the critical atom number wittesog
length, the onset of the collapse also provide an alternative way to detedsmine
using a mean-field model. Accordingly to the study reported in Refs. [72 w4

can study numerically found the&tableground state of the mixture. In our model,
the signature of the instability is the failure of the convergence proceduiegdthe
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Figure 1.13Evolution of the aspect ratio of the Fermi gas (solid trizsyland of the number
of bosons (empty circles) and fermions (solid circles) atdhllapse [70]. During the final
stage of the bosons evaporation, the aspect ratio decreamksuddenly drops to a much
lower value after the collapse (highlighted region). Thpeeas ratio is measured atms of
expansion and the error bars are the standard deviatioffefetit measurements.

iterative evolution toward the ground state of the system [73]. To compeum ¢alic-
tions of the mean-field model to the experimental findings on the instability, wee hav
built a stability diagram, shown in Fig. 1.12. Here we report in the plEpe— Ng

the condensate and fermion atom numbers that we were able to measurexn the e
periment forstablesamples, and compare them with the calculated critical line for
instability for differentapr around the nominal value. Note that the position of the
critical line depends quite strongly on the valueugfz. In the experiment we have
observed the collapse of the Fermi gas for number pairs close to the twedrdata
points.

Finally, we have studied the aspect ratio of the Fermi gas at the occarofribe
collapse. We have observed that, after the collapse, the aspect rateorefitaining
fermions results up t80% lower than the one expected for a pure Fermi gas and of
the same order of the one measured for a stable mixture with comparable atem nu
bers, as reported in Fig. 1.13. Indeed, increasdipgwe first observe a small decrease
of the aspect ratio followed by a jump to a lower value just in corresporedenihe
collapse. The aspect ratio then slowly tends to the unperturbed value BE@es
completely evaporated. This indicates that after the collapse the systeelchsd

a new equilibrium distribution in the same time scale of the collapse in which most of
the fermions are immersed in the condensate feeling a large interspeciestiotera
during the expansion from the trap. This observation is somehow suprsimce
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one could expect that during the collapse exactly the fermions in the higtitgen
region within the condensate are lost through inelastic processes whikntléing
fermions are mostly located in the outer region. This would correspond edtlzer
faster expansion with a larger aspect ratio, or to an oscillating Fermi gemgtrout
of the equilibrium which we do not observe in the experiment.

1.4.5 On the route toward the BCS transition

As already mentioned, Fermi gases are attracting more and more interestamthe
munity of quantum gases. This interest lies in the possibility to achieve, in such
fermionic systems, a superfluid regime similar Cooper pairs in supercomduete
als. The underlying physics of the usual superconductor metals is wsstided

by the Bardeen-Cooper-Schrieffer (BCS) theory: two distinguisheleletrons near
the surface of the Fermi sphere are unstable against an attractivebpédn and
can form a pair, the so-called Cooper pair. The same instability is expectalleto
place in a dilute gas of fermions at very low temperatures, typically much lowar th
the Fermi temperature of the system [85]. At these ultralow temperatutisiors

are strongly suppressed and the pairing can be achieved only thraugdesinter-
action. Since in the case of identical fermions this scattering process is ighibite
we have to consider a system composed by two different fermionic spasiefor
example, the case of fermions in two different Zeeman levels. Note thatithe cr
cal temperatur@’gcs expected for Cooper pairing is typically of the order of some
fraction of the Fermi temperature for the system, which is hardly achievapkrie
mentally. Neverthelesd,z¢s is expected to increase exponentially by increasing the
interstates s-wave scattering lengthThe now well-tested method to tune the scat-
tering length is based on the Feshbach resonances technique whittisctlnapply

an homogeneous magnetic field which shifting the Zeeman levels [24, 86]. Wdth th
technique, one can range from negative to positive scattering lengtnewlfifferent
physical phenomena are expected. In the limit of strong repulsive ititarathe
system is unstable with respect to the formation of molecules. These moleautes h
been recently observed both in the normal phase and Bose condBiEseddgime)
[25, 26, 27, 28]. In the other limit i.e. in presence of a strong attractivedotien,
one expect that fermions near k- could instead form Cooper pairs. In this case,
the system behaves as an hifjh superconductor (BCS regime). Many experiments
have been performed in the BCS-BEC crossover [29, 30, 31, 32aB8] until now,

a clear and indisputable evidence of the achievement of the BCS regimethget n
been provided even if recent studies on collective excitations seam t@tedioe
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accomplishment of this regime [34, 35].

Another promising scheme to achieve the BCS regime is to use a Fermi-Bose mixture
in which bosons induce an effective attraction between the two fermionicsiies

[36, 37]. Indeed, a large boson-fermion interaction affects not ordysthbility of

the system [70], as we have presented above, but it also play a reteleim the
mechanisms of Cooper pairing [36] by introducing an effective attrastiezaction
between the fermions. This is the atomic analog of phonon-induced interadtion

is the underlying mechanism of superconductivity, where the couplingeestiwo
electrons is provided by the exchange of lattice phonons. Our mixture ety
40K-87Rb atoms seems particularly interesting from this point of view, due to their
large fermion-boson scattering length (see Sec. 1.4.1). By using tHesres[86],

one can estimate tHe€K-40K effective interaction¢rgr). At zero field, we know
that the'°K-87Rb scattering isigr = —410 ag, the Rb-Rb isipp = —100, ag. For
these values, we find that the boson-induced scattering lengih at zero-field is

~ —1700aq [70, 37]. This value is very large compared to the "bare" repulsive in-
teraction between Potassium atoms. = 174 ag. From the value g, we obtain
that the critical temperature for the BCS-transition turns out t@’bes = 0.17F,
which is a temperature experimentally achievable.



Chapter 2

Quantum gas in a periodic
potential

Il particello...
H. O.

Recently, a great attention has been devoted to understand the geopeatips
of a quantum gas in a periodic potential. The problem of an electron movingen a
riodic potential has been exhaustively investigated in solid state physicsdeailuie
systems such as conductors or semiconductors [87]. The preseaqeedbdic po-
tential strongly modifies the free-particle energy spectrum and givesehd&mown
energy bands. The energy bands arise merely from the periodicity pbthetial and
the generality of this result suggests that such kind of phenomenologidsiiso be
present in ultracold atomic gases subjected to a periodic potential. For iasthac
atomic gases has been successfully exploited to observe some typicatatdighe-
nomena such as the Wannier-stark ladders [88] and its dynamical camsyg the
Bloch oscillation [89], the Zener tunneling [90] and the Rabi oscillation betwe
Bloch bands [91].
In this Chapter we will give an overview on the basic phenomenology exdibitex
single particle into a periodic potential. The aim is to remind to the reader the single-
particle behavior in order to supply the basis to understand the behadaraibmic
gas observed in our experiment and reported in the subsequent Shdjhie starting
point of this Chapter is to describe the standard way to produce a periodiotial
for an atomic gas (Sec.2.1). We then remind the well-known Bloch theorem for
particle in a periodic potential, and we analyze some general features eigte
functions and eigenvalues of the Mathieu equation. Particular attention vglivba
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to the Wannier eigenfunctions and to the energy dispersion which exhibasd b
structure (Sec. 2.2). In the case of a sinusoidal potential, the Scheidiggation

for our problem is known as the Mathieu equation (Sec. 2.3) which is radytcal
solvable in the general case, while numerical solutions are well-knowmll¥iwe
report on an overview of the dynamics of a particle into the lattice when debjéa

an external static force (Sec. 2.4). The most spectacular phenomepssis-tialled
Bloch oscillationwhich corresponds to an oscillating motion of a particle when a
static external force is applied.

2.1 A periodic potential for quantum gases

Inthe last years, ultracold atoms in an optical lattice have been the subjetertdive
and rich research activities providing a straight link between two diffesiezas of
physics which are usually separated. On the one hand, cold atoms tiapfaeskr
beams fall in the domain of atomic physics and quantum optics. On the other hand
the periodicity of the optical potential provides a strong connection with sbéitk
physics. Furthermore, typical solid-state effects can be investigatedinsystems
with the advantage that the optical lattice behaves like "perfect periodiatmite
The usual imperfections of traditional crystalline materials such as impuritiesedhis
ions or thermal vibrations (phonons) have no equivalent in the opticaldattic

In this section, we report the basic ideas for the production of a periatgénpal for
atomic gases using laser beams.

2.1.1 The optical lattice

The optical lattice is produced by two laser beams propagating alongradbiés in
opposite direction, with a time-independent frequesa@nd phase difference:

E_, = FRpFEjcos(kpz —wt)

E_ = FkpEycos(kpz +wt+ ), (2.1)

wherek;, = 27 /) is the wave number anilis the wavelength of the laser light.
The total intensity is given by

I(z,¢) = 2e0c|E_ + E_|* = 2eqc[Ef + E3 + 2E1 By cos(2kz + ¢)]. (2.2)

The interference term gives the spatial modulation to the intensity with nogas se
rated byd = A\/2. The atoms subjected to a laser field experience the dipole potential

Uopt = —%(p -E), (2.3)
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Figure 2.1:Sketch of the periodic potential experienced by the atonhe dashed curves
represent the harmonic potential in each lattice site wighdencyw = hkp+/s.

wherep = oFE is the electric dipole induced by the light aadis the complex
polarizability. If we consider an atom as a simple oscillator subjected to a @assic
radiation field, Eq. (2.3) takes the form [92]

3mc? E

Uopt = %8 (2) (2.4)

wherewy is the frequency of an atomic transition,the spontaneous decay rate of
the excited level and = w — wy the laser detuning.
Another important quantity is the photon scattering date which account fot the
heating of the systems:
2

Iy = % (5) 1) (2.5)
Note that if the laser frequency is smaller thag(red detuningy < 0), thenU,,;
is negative and the potential minima have the maximum intensity while, above the
resonance (blue detuning > 0), the potential minima correspond to minima of
intensity. Furthermore, the dipole potential scale$ as whereas the scattering rate
scales ag/42. The optical potential is therefore chosen with large detuning and high
intensity to keep the scattering rate as low as possible for a given potemnithl de
Combining Eq. (2.2) and (2.4), we finally get the periodic potential expegi@iny

the atoms
Uy 2mz
Uopt = ? |:1 — COS <7):| . (26)
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The potential deptb; is usually expressed in units of the single-photon recoil energy
Uy = sE, where .
h
B, = AL 2.7)
2m

with m the mass of the atomic species considered. In Fig. 2.1, we report a schematic
representation of the optical lattice. The procedure used to calibratgstatftial is
reported in Appendix A.

2.2 One-Dimensional periodic potential

We now discuss some general features arising from the periodicity ofotieatal.
In particular we will report on the Bloch theorem and on its main conse@senc

2.2.1 Useful definitions

We start introducing some definitions which could be useful for the suieseqlis-
cussion.

1. The Bravais lattice: A fundamental concept in the description of any crys-
talline structure of lattice sites is the Bravais lattice which can be viewed in
terms of an infinite array of discrete points with a regular arrangement and a
fixed orientation. A one-dimensional Bravais lattice consists of all points with
positionZ = md, with m € N.

2. The reciprocal lattice: Consider a set of point& constituting a Bravais lat-
tice, and a plane wavei**. For generak, such plane wave will not have, of
course, the periodicity of the Bravais lattice, but for certain special esatk
it will. the set of all wave vectors K that yield plane wave with the periodicity
of a given Bravais lattice is known as its reciprocal lattice. Analytically,
satisfies the following relation:

6iK(z+Z) — €iKZ, (28)

for anyz, and for allZ in the Bravais lattice. From the condition (2.8), we find
K =127, wherel € N.

3. The first Brillouin zone: The first Brillouin zone is a primitive cell of the
reciprocal lattice which fills all the z-axis without overlapping when it is trans
lated through the lattice. The Brillouin zone centeredkoa 0, extends from
—kp to kg, wherekp = 7 is usually known as Bragg momentum.
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Figure 2.2:Wave functions along the periodic potential associatedfterdnt energy levels.
The dashed lines are the modulating sine curves.

2.2.2 Bloch theorem

The one dimensional single-particle Hamiltonian for an atom in a periodic pdtentia
is given by:

{ Hopt = $5 + Vot (2) (2.9)

Vopt(z £ md) = Vope(2) VmeN
The Hamiltonian is periodic in space, with period given by the inter-well digtdnc
The problem is completely solved if we find the stationary stateghich satisfy the
Schrédinger equation
Hopth = B (2.10)

As a general consequence of the periodicity/gf;, the stationary solutions obey to
the Bloch theorem :

Bloch theorem: the eigenstateg of the Hamiltonian (2.9) can be expressed as the
product of a plane wave and a function with the periodicity of the lattice:

Uni(2) = €My, 4 (2) (2.11)

whereu,, (2 + md) = u,1(2) Vm € Nandn is a positive integer. The Bloch
theorem demonstrates that if the potential shows a periodicity then the eigéafs
have also to exhibit a similar periodicity. There are several important amdrivaal
consequences arising from this theorem.

1. Bloch theorem introduce a wave vector With appropriate boundary condi-
tion on the wave functionp,, j, 1 one can demonstrate that the vedtanust

We can choose the Born-von Karman boundary condition(z + Nd) = 1, (z), whereN is
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be real and represents a good quantum number for the problem. Thityjua

hk is known as thejuasimomenturaf a particle in a periodic potential which

is not proportional to the particle momentym This is a crucial point that
immediately shows the difference with respect to the free-particle case. The
wave functiony,, , is not an eigenstate of the momentum operégi)V :

h o h
V() = B+ €2V (). (2.12)

The k vector determines the behavior of the wave function under translation
and, as we will discuss in the next section, the different meanirigaoidp/
involves that the system does not have completely translational invariance in
the presence of a nonconstant potential.

. Any vector of the reciprocal lattide = k + l%ﬁ, with [ € N, gives the same

value of the wave function becausé®+!“7)md — ¢ikmd This means that the
wave vectork can always be confined in the first Brillouin zone.

. For a givenk, the Schrédinger equation (2.10) allows for an infinite family of

solution with discretely spaced eigenvaluesg a positive integer). This gives
rise to the wee-known band structure of the energy levels. The diffeigen-
values and its corresponding eigenfunctions are labelled by the bandrinde
In a infinite periodic potential, each energy lewg(k) is a continuous function
of the quasimomenturi.

. The energy dispersian, (k) also shows properties of periodicity

enll + z%”) — oo (k). (2.13)

As a consequence, the full set of energy levels can be described:wiéth
stricted to the Brillouin zone without losing generality.

. As shown in Fig. 2.2, the exponential function of the (2.11) gives assidal

modulation toy,, .. Note that the nodes af,, ;, can occur for two different
reasons: on account of those present,ji and on account of those introduced
by the exponential function.

the total number of primitive cells. We find = 75, with —N < m < andm € N. Imposing this
condition, we hav@N -+ 1 possible value of.
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2.2.3 Momentum eigenfunction and Wannier function

The Bloch theorem gives general properties of the eigenfunctions.02. E0. The
complete knowledge af,, 1 (z) can be obtained just by using a numerical approach
(see. Sec. 2.3). Nevertheless we can extract some of the gengait@s of,),, 1, (z)
without any computational method. From the Bloch theorem (Eq. 2.11), werkn
thatu,, (=) satisfies the following condition:

Up k(2 £ md) = up (2) Vm € N. (2.14)
Thus, we can express the function in term of its Fourier transform ik-tgace:

Ungo(2) = Y Falko + ki)er otk (2.15)
ki
where the Fourier coefficients, (ko + k;) are also periodic in the reciprocal space.
Note that we have different wave functions associated with the variargghbands,
indicated by the labek on thewu- and f-function but for each energy band, there
is a single functionf (k) which gives complete information on all the spatial wave
functions of this band. One can demonstrate that the momentum fungtion

is the solution of the Schrodinger equatiéhf (k) = Ef(k), where the operator
H is to be found from the ordinary Hamiltonian by replacing the coordindaby
—(h/27mi)(0/0z) [93].

The momentum eigenfunctiorfg (k) are normalized and exists an orthogonality re-
lation between thg'-functions associated to different bands:

k;
We can easily pass from the space-eigenfunctiong(z) to the momentum ones
v, (k) using the following inverse relation to Eq. (2.15):

1

falk) = & / dzuy e~ 1F2, (2.17)

where the integration is to be taken over a unitary cell of voldinendk equals
one of the vectorgy + k;. The momentum eigenstates allows us to introduce a
new function of great importance,(z — z;), known as théaVannier functior{94].

As we will discuss in Chap. 4, these functions are of great utility when tmslaa
tional invariance of the optical lattice is destroyed by some additional potemtial
impurities. Indeed, a change on the invariance properties of the systdmaigsa
accompanied by the appearance of a localization. The eigenfunctiowvedlathis
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problem are usually built up from the Wannier functions (see Sec. .2.th@8ged,
the functiona,,(z — z;) is localized in the neighborhood of tlith lattice site, in the
nth band. The Wannier functions can be directly obtained by the coefficiétie

Fourier-transformy, (k). Using the formula (2.15), we can also writg ;, in term of

an(z — 2;):

Un k(2) = \/ﬁz e%kzian(z — Zi). (2.18)

Equation (2.18) means that a particle in a periodic potential can be desbtrbed
combination of localized functions, (z — z;) in each cell, multiplied by an appro-
priate factor. Analogously, the Wannier function is a linear combinationdl tfiea
Bloch waves of a given band

Q i
h—\/; dke™ ¥y, 1 (2). (2.19)

an(z — z) =

More in general, the Wannier functions obey to the following theorem [95]:

For each band exists one and only one Wannier funetjdn — z;) which has all four
of the following properties:

1. a,(z — z;) isreal.

2. an(z — %) is either symmetric or antisymmetric about either 0 or z = d/2.

3. an(z — z;) is a short range function, i.e. it falls off exponentially in thepace.
4. a,(z — z;) andu, () can be expressed in term of one another.

We can conclude that the sets of Bloch and Wannier functions are twoadeyuii
basis in the z-space. In Ref.[96], it is shown that the more practical wépdaa
Wannier function is to find the momentum eigenfunctjfnik) and then its Fourier
transform.

2.2.4 Energy band in one dimension

The Bloch theorem tells us that the energy spectrum of a particle in a pepioidio-

tial exhibits a band structure,((k) with n € N). The nth band is separated by the
(n+1)th band by an energy gae,, (k) which depends on the band and on the quasi-
momentum. For lows, the band gap start to open in the neighborhood of the Bragg
quasimomentuntz and ofk = 0. Due to the periodicity of,, (k) in the reciprocal
lattice (see Eq. (2.13)), we can solve numerically the Mathieu equation tesjar
attention to the first Brillouin zone€duced-zone schengithout loosing generality.
The typical band spectrum, in units of the recoil enefgy is reported in Fig. 2.3

for different values of the lattice depth. As shown in Fig. 2.3(a), foradlstv lattice
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Figure 2.3:Energy dispersioit,, (k) and effective mass:* in units of E,., for atoms in a
lattice with (a)Uy = E,, (b) Uy = 4FE,, and (c)Uy = 8E,..

the energy dispersion has a behavior similar to the free-electron pawaimbka dis-
tortion arises only at the edge of the Brillouin zone. As we increagiee first band
becomes more and more flat straying from the free-particle case. Tigyeap and
the zero-point energy increases (Fig. 2.3(b-c)).

A useful quantity derived by the bands structure is ¢ffective mass:*, which is
defined through the curvature of the lowest energy bané ()

1 i@%(k)

m*(k) W2 Ok?

(2.20)

Under appropriate conditions, a particle in the lattice behaves like a fréielpar
but with its inertial properties changed by the presence of the periodiataite
(m — m*). For small lattice depth the effective maa$ approaches the bare value
(Fig. 2.3(a)). Increasing the height of the periodic potentidljs strongly enhanced
with respect ton (Fig. 2.3(b-c)) and particles with different quasimomentum will
have different effective masses.
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2.3 The Mathieu equation

A part from the Bloch theorem and its consequences, the numericalagipto solve
the problem of a particle in an one-dimensional periodic potential is well-kn@&or
the specific case of a sinusoidal potential, the Schrédinger equationvisilasthe
Mathieu equation whose solutions have been extensively studied by thenmadithe
cians [97]. The Mathieu equation
W d*y(z) | Uy
2m  dz?2 2

{1 - cos(%z)} P(z) = E(2) (2.21)

is numerically solvable for any/y. Furthermore, an analytic solution can be found in
two limiting cases where approximate methods can be used providing usefiul inf
mation on the problem. The former is calleght binding or atomic approximation
and it is used in the limit of a deep optical potential. In this case, the one-sie wav
function hardly overlap with the ones in the neighbor sites and conseqleatiyn-
neling probability through the lattice sites is small. The opposite limit is known
asweak binding or free-electron approximatiappropriate for shallow lattice: the
atoms move so fast that their wave function is not far from a plane waveeveral
physical situations however the atoms are described by a wave functtbe tfpe
intermediate between the range of validity of these two approximations. Fa thes
cases, one has to solve numerically Eq. (2.21). An instructive way togetiysical
meaning of these two approximations is to study the behavior of the energyispe

as a function of the lattice heiglify, = sE,.. We write the Schroédinger equation
(2.21) in term of dimensionless variables, to simplify the notation:

E
w = %Z, ‘=5 (2.22)
In terms of these quantities, we can express (2.21) in the alternative forms
2
d;;f;@ + %[1 — cos(2w)](z) = Vsew(w). (2.23)

In Fig. 2.4 we show the widths of the energy bardsf the one dimensional
problem as a function of the lattice heightFor large enough values ef the band
become indefinitely narrow and the wave function in each lattice site do ndapve
appreciably. The energy levels approach the harmonic oscillator limit witrevalu
(en, = 2n + 1). In fact, for larges each lattice well can be approximated with an
harmonic potential (see Fig. 2.1) of frequencyefined by

1
sET% = §mw2. (2.24)
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Energy bands

Lattice spacing

Figure 2.4:Energy band = E/FE, as a function of'/* for the one dimensional Mathieu
problem. The curve A represents the height of the potensiaidr between the lattice sites.
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As the lattice depth increases, the energy levels decrease before dldetirg into
bands becomes appreciable. If we write the potential as a power-lawsgpahen
the quadric term gives the parabolic potential while the higher order ofkiension
act like a perturbation to the harmonic oscillator problem. This terms are reipon
for the decrease of the energy levels. As the lattice becomes more andhabos
the energy levels begin to broaden into bigger bands and the energysgapehrs
ass goes to zero.

2.4 Transport through the lattice

So far we have studied the stationary solutions of the single-particle Sobeid
equation (2.21). We now address our attention on the motion of a particle into the
lattice under an external force of strendth The evolution of such particle can be
described using either a semiclassical model or a quantum-mechanicaaelppm
general, we know that a particle in théh band with quasimomentutnmoves in the
k-space with the mean velocity [87]

on(k) = %Geglik‘)

(2.25)

The energy levels,, (k) are stationary solutions of the Schrédinger equation in pres-
ence of the full periodic potential. Eq. (2.25) tells us that, in absence afetterce,

a particle with energy,, (k) moves forever without any degradation of its mean ve-
locity, if the initial mean velocity is different from zero (i.é: # 0 andk # i%”).
The collisions with a perfect lattice are not able to degrade the velocity otittiele,
because the interaction with the periodic array has been fully taken intortcio
initio in the Schrodinger equation solved by Bloch wave functions. Thus, the co
ductivity of the system is infinite.

In nature, electrons in crystals never behave like a perfect condidttals indeed
have always an electrical resistance because no real solid is atmeyigal. In such
systems, the periodic potential is produced by the ions and there aresdtwanri-
ties, missing ions or other imperfections that can scatter electrons every abwe
temperature. In addition, also in absence of imperfections, the conductwitgins
finite because of the thermal vibrations of the ions i.e. the phonons, whichuge
temperature-dependent distortions to the periodic potential which are adxatter
the electrons. As we will see in the next chapters, the situation is differeen we
deal with an atomic gas in a periodic potential produced by light. First of alpkie

cal lattice behaves like a perfect periodic potential where dissipativeanachs due
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to missing ions or phonons are not present. Further, the collisional niexpef the
atoms in the gas strongly depend on the statistical nature of such gas.teBoce)san
atomic Bose gas exhibits onkswave collisions while collisions between fermions
are forbidden by the Pauli principle. Note that a Fermi gas in a optical latitdiss
all the requirements to be a perfect conductor (see Chap.3).

2.4.1 Semiclassical model and Bloch oscillation

We start to describe the simpler and more intuitive model to study the dynamics of
a particle in presence of an external force. This model is knowseasclassical
model Clearly, the main goal of this approach is to bind the band structure defined
guasimomentum space with the transport in real space. This model is seivatlass
in the sense that the external potential applied so varies slowly over thesiognsn

of the atomic wave packet that can be treated classically, while the periadiatiad
obeys to the quantum mechanic. Note that this model does not take into aposun
sible collisional mechanism and its predictions are based on the complete Hgewle
of the band structure. Given the functiep(k), the semiclassical model associates
with each particle a position, a wave vectok and a band index. In presence of an
external forceF', the position, the wave vector and the band index evolve according
to the following rules:

1. The band index is a constant of the motion. This is a first approximation of
the model implying that interband transitions are forbidden.

2. The time evolution of the position is described by the equation of motion

_ 1 0en(k)

2 =w,(k) = ok

(2.26)

This is the relevant equation of the semiclassical model which connect the
motion in z-space with the evolution ik-space. In particular, if the particle is
described as a wave packet of Bloch functions centerédtlen v, (k) play

the role of the group velocity of the wave packet.

The behavior ob,—(k), is shown in Fig. 2.5. The velocity is linear injust

near the band minimum, it reaches a maximum value as the boundary of the
Brillouin zone is approached, and then drops back down, going to t¢he a
zone edge. Note that the region of linearity decrease increégjmadvg (k)
becomes more and more flat, according to the intuitive idea that the higher is
the inter-well potential the slower is the motion through the lattice. In the limit
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Figure 2.5:Mean velocityvy (k) in the fundamental band for different value of the lattice
height (a)Uy, (b) Uy = 4, and (c)U, = 8.

Uy — oo, the particles are completely localized in a lattice site ay{@) = 0
everywhere.

3. The model provides also the equation of motion for the wave véctor

1
k= F(=1). (2.27)

Eqg. (2.27) has formally the same structure as the one for free particles. Ho
ever, in the latter case, the rate of change of the momentum is given by the total
force acting on the particle, while for a particle in the lattiéejepends only

on the field applied externally and not on the periodic field.

Under these assumptions, the semiclassical model well describe the sgsfgmse
to a homogeneous and static external poteifiat F'z (i.e. a DC electric field for
metals). In particular, an external static forEeyield an oscillatory rather than uni-
form motion of the particles known &loch oscillation Bloch oscillation represents
the major result of the semiclassical theory.
We now derive the oscillating behavior of the particle in the framework of ¢nei-s
classical theory. The stationary Schrddinger equation (2.21) in presdra static
external forcef’, becomes

_%dzjz(;) + % [1 - cos(%)] u(z) + Fzu(z) = Eu(z). (2.28)
We can study the evolution of the system described by Eq. (2.28) usingrfielas-
sical model if the applied force is weak enough to not induce interbanditicrs
i.e. one assumes that the external force behaves as a perturbationysténe which
does not modify much the eigenfunctions and eigenvalues of the Hamiltonii).(2
According to Eqg. (2.27), the evolution of the quasimomentum is

Ft

k(1) = k(0) + 5. (2.29)
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Due to the periodicity of the systems, the quasimomernitithchanges linearly with
time until it reaches the boundary of the Bloch bakhg)(where it is Bragg reflected.
The quasimomenturh(t) is thus periodic in time with period’z = % This pe-
riod, known as Bloch period corresponds to the time required to the quasimame

to scan a full Brillouin zone. Note that also the mean velocity (2.29) exhibits an

oscillatory behavior in time

Ft

on(k(t) = va(k(0) + =) (2.30)
. This result is in striking contrast with the free-particle case, whéseproportional
to & and grows linearly in time. As a consequence of Eqg. (2.29), a particlagep
in a well-defined quasimomentum in théh band will also oscillate in the-space
with an amplitudeﬁ%, whered,, is the energy width of thath band.
Using the tight binding approximation is possible to derive explicitly the equatibns
motion. In the limit of deep lattice the lowest energy ba(k) can be approximated

with a simple cosine function, i.e.
e(k,t) = —g cos(k(t)d), (2.31)

whered is the width of the first band.
The cosine dispersion of the first band yields

_10e(k) _ dd

v(t) = =5 = 5 sin(k(0)d - wpt), (2.32)
where Fd
wp == (2.33)

is the so-called Bloch frequency. Under a static force, a particle oscillatbe real
space
1)
x(t) = oF cos(k(0)d — wpt) (2.34)

with amplitude proportional td/F. We can conclude that the linear growthdf)

and the periodicity of(k) transform the static stimulug' into an oscillating re-
sponse.

We remind that the semiclassical model does not include collisions and cemglg

all dissipative mechanisms that could degradie) and/ are absent. For instance, in
metals the scattering time of the electrons with lattice defects is remarkably shorter
than the time needed fofor scanning the Brillouin zoner), and the Bloch oscilla-
tions have never been observed. Recently the Bloch oscillations havebserved

with electrons in semi-conductor superlattices [98], cold atoms in optical laféiegs

and light in photonic structures [100].
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2.4.2 Zener tunneling

The semiclassical model well describes the dynamics of a particle into a tilted,lattice
provided that interband transitions are negligible. If this is not the caseathenon
as a particle reaches the edge of the Brillouin zone during its Bloch oscillati®n h
a finite probability to be transmitted to higher bands. This phenomena is known as
Zener tunneling which is a quite relevant effect when one works with aniatgas
in shallow lattice. For a fixed force acting on atoms, the interband tunneling rate
depends on the lattice height. Tuniagve can indeed completely suppress the tun-
neling or to deplete the lattice in one Bloch period.
It could be useful to summarize now the procedure to derive the raterafrZen-
neling. In general, at each band cycle, the particles can go to occupygtiner band
with a transmission rat&

R= 28|12 (2.35)

27

where|T'|? is the transmission amplitude. In the general case this amplitude can be
derived just within a numerical approach nevertheless, under aggm@pproxi-
mation, it is also possible to derive an analytical expression. Since thenissign
probability is maximum at the lower energy gag, we will focus at the edge of the
Brillouin zone ¢ = ¢g). We first require that the potential drdfa per lattice site be
small compared to the lattice degih,,. If this is not the case, the initially occupied
band will be emptied on a time scale comparable to the Bloch pé&tioe 27 /wp,
so the concept of the Bloch oscillation becomes questionable.
For sake of clarity, we rewrite the eigenvalue equation already reportelap. 2
n? d?

(= 9oz + Vhotle) ) t2) = (B — Fa)o(o) 2.36)
In order to derive the transmission amplitude, we have to construct dpyatex
eigenstates(x) of the biased lattice by gluing together the unperturbed Bloch states
corresponding to théocal energieds — Fx. This procedure, that we don't want to
discuss in detail here [101], corresponds to construct a functiorcaf veavenumber
k. (E — Fz) which determines(x). The individual functiong,, (£ — F'z) then have
to be analytically connected through the band-gaps to yield one overetidar (x)
defined for allz. The new eigenstates, which are Bloch waves with slowly varying
wavenumber, can be written as

o(z) = eap <z / x dx’k(:v’))ﬁk(x) (@), (2.37)

wherezis some arbitrary reference point, aiag, () is the Bloch function associ-
ated withk(x).



2.4 Transport through the lattice 57

Once the functiork(x) is known within a gap, we can calculate the transition ampli-
tude from the following equation

IT|? ~ exp( - 2/dm|[mk(a:)\), (2.38)

where the integral is made over the gap region. At the end of this prazadufinally
find an analytic expression for the transmission amplitude. In presence @irite
of gravity F' = mg, one finds

IT? = exp (—

whereAF is the energy gap between the ground state band and the continuum at the
edge of the Brillouin zone.

(2.39)

AE?)
8h2g )’

2.4.3 Wannier-Stark states

In the semiclassical model, the motion of particles in the periodic potential under a
external static force is investigated looking at the energy dispersion rekatid no
information about the eigenstates of the system is given. The static foreaisdr

as a perturbation and the key approximation of the model lies in the substitution of
the quasimomentum with the momentum of the particle. Nevertheless, also for small
F, the potentialF'z diverges asz| — oo and we can not considdrz as a small
perturbation in the usual sense: we have to deal wiingular perturbation. The
singularity of the perturbation manifests itself in the fact that it changes theena

of the unperturbed spectrum of the Hamiltonilp,:. As far asf” — 0, the energy
spectrum is continuous. In particular, this means that the eigenstatefatest@re

not square integrable functions, i.e. the Bloch eigenfunctions are diektalong

the whole infinite periodic potential. In a pure periodic potential, the transldtiona
invariance lets each energy level of each local lattice well to be degenegita all

other level. As a result, the eigenfunctions of a periodic system formsbafndielo-
calized state which extend over the entire lattice. As an external forcelis@gpbe
system is no more invariant with respect to a simple translation in-8pace and the
degeneracy of the energy levels is somehow removety, iff the translation operator

(z — 2z + d) and H the biased Hamiltonian

Hp = Hop + Fz, (2.40)
we find that the commutation relation is not zero

[Hp, Ty = FdTy. (2.41)
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However, Wannier has demonstrated that also in the presence of a stadictfee
system preserves a periodicity in the following sense [102]:

Wannier Theorem: If a solution of the one-electron Schrodinger equation in a
periodic potential and a static force exists for some enérgyen the wave function
YE(z) satisfies

VE(2) = YEyra(z + d). (2.42)

Thus, the system is invariant for a appropriate combined translation in ¢ngyeand
z-space. In the one-band model, the existence and the uniquengsis gfuaran-
teed. Eq. (2.42) leads to the so-call&tlannier-Stark laddersunder the influence

of an external potentiak’z, each unperturbed energy band split into a sequence of
resonances equally spaced in energy

E, (k) = en(k) + jFd, (2.43)

with j € N.

The single-patrticle states associated to the ladder structure are localimzibrig,
known as theNVannier-Stark functionsWe have to emphasize that the existence of
these Wannier-Stark ladders is quite a subtle problem which has beedediekar a
period of almost three decades [103]. If one neglects the transition betiierent
zero-field bands, it is possible to shown that the stationary problem with ahalH
tonian (2.40) admits for Wannier-Stark ladders as eigenvalues and tiesgonding
eigenfunctions are the localized Wannier-Stark states. The real cergi@\point is
whether the Wannier-Stark ladders survive with the inclusion of the imerbansi-
tion 2. The doubt is well founded since a particle moving in the lowest band iexper
ences a periodically varying energy separation from the first excited &ad comes
closest to it at the edges of the Brillouin zone where it could performiZeneaeling.
Indeed, when the particle knocks at the higher band (once per Blotd) ¢y partially
transmitted with a transmission amplitude already reported in Eq. (2.39). As we
will show in Sec. 3.3.1, this problem is particulary relevant in atomic Fermigyase
For instance, if the Fermi enerdgyr lies in the band gap, several fermions occupy
states close to the band-edge and could tunnel in higher bands. Fromermatth
ical point of view, the bands are thus not exactly decoupled, and thaiéfatark
ladders have to be understood as well-defimstnancese. long-lived states of the
system, rather than eigenvalue of the Hamiltoniin

The Wannier-Stark state(k) are immediately found solving the Schrddinger equa-
tion in the quasimomentum space within the one-band approximation (we skip the

2The survival of the ladder structure has been questioned in severia {104].
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band indexn):
[a(k) + zF%} Y(k) = E(k)y(k), (2.44)

wheree(k) is the eigenvalue of the Hamiltoniai,,: corresponding to the funda-
mental band. Solving Eqg. (2.44) for the eigenstates which are periodic kagpace,
with period2x/d, one directly found the quantized Wannier-Stark ladders:

b/2
E; = / e(k)dk + jFd (2.45)
—b/2

To derive explicitly the eigenfunction and the eigenvalues of the problemeed

to know the unperturbed energy dispersion of the first baid, In the tight bind-

ing regime,e(k) is a cosine function of the quasimomentum (Eg. (2.31)) and the
Schrédinger equation can be written

[— g cos(kd) + z‘Fd%] (k) = E(k)y(k). (2.46)
The Wannier-Stark state; (k) are found by integration the Schrodinger equation
which is a first-order differential equation

d

w](k,) — %e—i[jkd—kv sin(k:d)]} (2.47)

with 5 € Nandy = §/2dF. We note that the equation of motion foft) (Eq. (2.29)
can also be derived applying the time evolution operator to the Wannier{f8tark
tion (2.47) [105].

We want just to mention here that is possible to derive the Wannier-Stackidarin
the z-space by a linear combination of Wannier stdte— z;) (see Sec. 2.2.3) with
the Bessel functiow;_ ; () as coefficients

iz — 25) = Z Jioj(Va(z — z). (2.48)

From the properties of the Bessel function, we known thaf(~y) is mainly local-

ized in the intervali — j| < v and consequently the Wannier-Stark states extend over
anintervall, = §/F. Outside this interval, the Bessel functions decay;&s) ~ +*.

In Chapter 3, we will show that a fermion in a tilted lattice belongs in a superpositio
of Wannier-Stark states whose extension set the degree of localizattbe phrti-

cle. We just recall that the Wannier-Stark functions have already bssshia solid
state physics to discuss spatial localization of particles. For instance ftinesiens
have been chosen to describe the localization due to attractive impuritiesnithatb
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electron or magnetic phenomena with localized magnetic moment, and, in general,
they are useful to derive the motion of particles when the semiclassical/toktire
transport of Bloch particles breaks down.



Chapter 3

Fermi gas in a vertical lattice

Attenta agli obiettivi. Tra un obiettivo
ed un altro ci passa la vita.
C.T.

As discussed in Chap.2, an external static stimulus yields to a periodic motion of
a particle through the first energy band, known as Bloch oscillation. Tkidigtion
arises from a theory of single-particle in which the lattice is considered peifect
and no dissipative mechanisms are present. The scenario can chaaigly mden
we deal with real physical systems such as metals. For instance, Bladhtmsts
are never been observed in usual metals because of the high collisiaF elec-
trons with phonons or crystal impurities. Indeed, in such system the sogttiene
is much shorter with respect to the Bloch perigland an electron moving in a band
is back-scattered without reaching the edge of the Brillouin zone. In tlikdieali-
lute ultracold atomic gases the typical scattering times involved are much larger with
respect to the ones encountered in solids. In particular the collisional time dut
to be longer than the Bloch peridd; (r 2 T5) and phenomena as Bloch oscillation
and Zener tunneling can be observed. So far this kind of study hagpkee®nmed in
a gas of thermal atoms [99] and a Bose-Einstein condensate [42]. ldgwellisions
are still present in both systems reducing the observation time of thestseffec

3.1 Outline

In this Chapter, we report our experimental observation of Bloch oscitlé8ec. 3.4)
and Zener tunneling (Sec. 3.3) in a Fermi gas trapped in a vertical optiiee lander
the influence of gravity (Sec. 3.2). The interest of such extension liegifatt that
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a Fermi gas in a optical lattice is the first system completely free from interaction
which can be produced experimentally [48]. Indeed, in addition to theregpion

of collisions between fermions, an optical lattice is a perfect periodic potentia
which lattice phonons or impurities are absent. As a consequence, a Fesiini g
lattice performs a Bloch oscillation under the influence of the gravity whickd¢au
principle, persists forever. In our experimental apparatus, we éeebberve Bloch
oscillation of fermions on a time scale which is one order of magnitude bigger that
the one found for an interacting Bose-Einstein condensate (Sec./8dékd, interac-
tion between atoms dramatically affects an interferometric measurement, gseng r
to a shift or decay of the signal. The comparison between the behavioes# tivo
system proves the superiorness of non-interacting fermions with taspemndensed
bosons, which is somehow a counterintuitive result. Furthermore, frooaatgm
mechanical point of view, Bloch oscillation arises from the single-particlafarte
ence between the eigenstates of the tilted lattice (Sec. 3.5) and this eqevafiens

us the possibility to exploit the long-lived Bloch oscillations as an interferometric
scheme to measure forces with microscopic spatial resolution. In partiselaopt
this scheme to get a sensitive determination of the acceleration of gravity 8.8c
The main results reported in this Chapter can be found in our recent pidiica

e "Atom interferometry with trapped Fermi gases”, G. Roati, E. de Mirandes
F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, accepted in Physv. Re
Lett., cond-mat 0402328 (2004).

3.2 Production of an atomic Fermi gas in a vertical lattice

We now describe our procedure to load a degenerate Fermi gas in aal tgitice
vertically aligned. We employ a fermionic sample’®K atoms which are brought to
guantum degenerac{’(< Tr) using the technique of sympathetic cooling, already
described in Sec.1.3. In particular, during the last stage of cooling, thei Bas

is held together with a Bose gas URb in a cigar-shaped harmonic trap. We then
perform an evaporative cooling on bosons which also leads to a codlfiegions

via interspecies elastic collisions. To produce a Pure Fermi gas, we coppiete
move bosons from the trap by mean of a rf-knife which transfers thensasoun-
trapped Zeeman sublevels. At the end of this procedure, we obtain &eure gas

of about 3<10* atoms spin-polarized in thE=9/2, m=9/2 state. Typical temper-
ature reached i$'=0.3 T, whereTr»=330 nK is the Fermi temperature. We then
switch on adiabatically an optical lattice which is aligned along the vertical direc-
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(b)
i soum {

Figure 3.1:Schematic setup of the experiment. (a) Initially the atonizid is magneti-
cally trapped in the second cell and exhibits a cigar shapiedyof a cylindrical harmonic
confinement. (b) We then superimpose a counter-propagegtidetuned laser beam along
the vertical direction. Atoms arrange themselves in a @agaltice of pancake-like atomic
subensembles.
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tion (axial), as schematized in Fig. 3.1. Our one-dimensional lattice is creptad b
retroreflected laser beam in standing-wave configuration. The inconeiag and
the reflected one interfere each other giving rise to a spatial modulatiom ¢dghr
intensity with nodes separated by= \/2. The vertical lattice experienced by the

atoms is then U )
Uopt (2) = ?0 {1 — cos (%)] (3.1)

The radial confinement is instead provided by the gaussian profile ofseebdaams
in this direction. The atoms are thus subjected to the following total potential

-2
UL(Z7T) - Uopt('z)e_ﬁ? (32)

wherew is the beam waist of the laser beam.
Using different intensities for the two beams we obtain a radial trap depthafta
10 Er, with a typical trapping frequency @ x 30 s~1.
We chooses a laser wavelength far detuned to the red of the optical atonsitiors
(A=873 nm) to avoid photon scattering which leads to a heating of the sample. In a
red-detuned lattice, atoms are axially confined in the antinodes of the stamairey
resulting in a regular one-dimensional lattice of pancake-like atomic sulméhss
We adjust the depth of the potential in the raigel-4 Fr, whereFEy, is the recoil
energy

ERr = h%/2m\2. (3.3)

For our parameters, the recoil enery, = kpx310 nK. Note thatE'r turns to

be similar to the Fermi energy, which is the other fundamental energy scaler of
system. Sinc&/r ~ Er, the atoms are loaded mostly in the first Bloch band of the
lattice. From an experimental point of view, the calibration of the lattice conditute
an important and ticklish question since most of the measurable quantitiegidapen
the lattice depth. A precise tool to measure the effective optical potentiadvied

by Bragg diffraction of atoms from a grating of laser light. This calibratiascpdure

is described in Appendix A.

3.3 Bloch oscillations and Zener tunneling

As already mentioned in Sec. 2.4, when subjected to a static externaldqragticle
can cycle through the first band experiencing a periodically varyingggrseparation
from the first excited band. The energy separation has its minima at theobtige
Brillouin zone gz = 27 /). At gp, the particle has a finite probability to be Bragg
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Figure 3.2: Scheme of the typical single-particle dynamics in a tiltatlice. A particle
performing Bloch oscillation in the lowest band can be eiBeagg reflected or transmitted
via Zener tunneling when the edge of the Brillouin zone israpphed.

reflected and a finite one to be transmitted in the second band, as we hawsasch
tized in Fig. 3.2. When reflected, the particle continues to scan periodicalfirshe
Brillouin zone giving rise to an oscillation in both the quasi-momentum and the po-
sition space at the Bloch frequeney; = mg\/2h. Particle performing interband
transition, goes instead to occupy the first excited band and hardly fee|setit

odic potential. As a consequence, it escapes from the lattice and chnefxpands.
Dealing with a gas of particles, we will observe a finite fraction of atoms whseh o
cillates in the fundamental band and a fraction which performs interbansittcem

This transition to higher bands is known as Zener tunneling and has albegay
observed using a Bose-Einstein condensate by Kasevich group 2] Btoch os-
cillations have been detected in a gas of thermal atoms by Salomon and crsvorke
[99]. Itis important to stress that Bloch oscillations and Zener tunneling &ndsn

the single-particle coherence in the lattice, the extension to a cloud of atomssoblig
also to introduce inter-particle interaction effects which could in principlecathe
observability of such phenomena. For instance, condensed atomgeati@mselves

in a narrow distribution in the quasi-momentum space and the single-particlegpictu
seems to be preserved. Nevertheless bosons interact each othgtleirnmotion into

the band and the observed behavior can substantially stray from the-pantjee

one described in Chap. 2. One of the purposes of our experiment idéostand how
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Figure 3.3: Zener tunneling of a Bose-Einstein condensate induced @éygthvity. (a)
Scheme of the experimental procedure to load the atoms lietwertical lattice. (b) Ab-
sorption image of the condensate aft&rms of expansion at = 1. Bosons performing
interband transition escape from the confining lattice amdve following a ballistic expan-
sion. Notice that, aftei8 ms of expansion, atoms trapped into the lattice are stibqme
(atoms in z=0).

the interactions affect the dynamics of particles loaded into the optical lattiage. O
experiment allows us to tune the interaction between particles since we @hrcpro
independently a Bose-Einstein condensate, a gas of identical fermiensotture

of these two species. In brief, exploiting the versatility of our apparateshave
the unique possibility to range from an interacting gas (Bose-Einstein neatkeor
Bose-Fermi mixture) to an ideal gas (Fermi gas) and thus to investigatparapbe-
nomena reaching collisional regime which are not accessible in solid staegphy

3.3.1 Zener tunneling

Particles trapped in the first band start to scan periodically the band wittch Bk
guencywp as soon as a linear force is applied. The dynamical behavior of the system
can be described both in semiclassical approximation and using a quanturammec
ical description based on Wannier-Stark function (see Sec.2.4.1-Z24atively).
However, if the band gapj\ F' is smaller compared to the external potential applied
we are in the Zener tunneling regime: atoms can "jump" into higher bands. In this
case, the two single-band descriptions are no more valid. Indeed, eds ttetake

into account both particles in the higher band and the depletion of the initidl lave
Sec. 2.4.2, we have shown that the population of the first band desregsenen-
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Figure 3.4:Zener tunneling of a Bose time for increasing temperatuf@sAt I’ << T,
the atoms are Bose condensed providing highest visibitgyeffect of the different matter-
pulses. (b-e) If we increase the temperature up te> T, the train of pulses is still present
although the contrast tends to zero with the temperatuy&oel” >> T, the different pulse
are no more well-distinguishable.

tially with time. In the semiclassical picture, particles scanning the lower band can
be partially transmitted into higher band as the edge of the Brillouin zone isedach

In this sense, the atomic gas acts as a matter laser, emitting one pulse of matter per
Bloch period.

To investigate the Zener tunneling regime, we choose a lattice depth whicly sagisf
conditionAE < dmg, whered = \/2 andm the mass. The experimental procedure
is schematized in Fig. 3.3(a). We adiabatically ramp up the vertical lattice {over
ms) while the magnetic confinement is switched off. Note that the adiabatic svgitchin
on of the lattice assures that atoms populate the bottom of the fundamentavittand

a well defined quasi-momentul The atoms are therefore trapped in a pure vertical
periodic potential and experience a constant force provided by thiygrahe parti-

cles start to oscillate in the lower band at the Bloch frequengyand we detect the
fraction of atoms escaping from the lattice as soon as the Bragg quasi-maomisntu
reached. In Fig. 3.3, we report the observation of Zener tunnelind3oka gas well
below the critical temperaturE-. Each atom-pulse corresponds to bosons escaping
from the lattice at one Bloch cycle. Indeed, the excited energy leveldstaisa
continuum of bands: excited particles are no more trapped by the lattice asd th
start to expand ballistically. It seems clear that Zener tunneling gives analte
evidence of Bloch oscillations in term of out-coupled atoms arranged asits®s.
Since the gas is loaded into the minimum of the first band, i.e. the atomic distribution
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Figure 3.5: Study of the Zener tunneling of a BEC as a function of the attemic-
interaction time in the lattice. (a) Scheme of the experitalgorocedure. (b) Optical density
of the train of pulses for different holding time, .

is centered around the zero quasi-momentum, one can exploit Zener tgrhoedis:
timate the Bloch perio@’s which correspond to the delay time between two pdlses
Note that fors =1, we are able to produce a train of about 15-16 pulses before the
initially trapped population was depleted. The observation time is then limited af-
fecting the accuracy ofiz. As we will discuss in Sec. 3.4, in the case of fermions,
a better estimate of the period is obtained to studying directly Bloch oscillations of
trapped particles in the time-domain.

Note that the size of each pulse gives a signature of the mean field interaetion
tween bosons (see Fig. 3.3). Although the distribution of the trapped samygyis
narrow in quasi-momentum, during the first stage of the expansion the thosom
interaction is rapidly converted into kinetic energy giving rise to a larger mtumen
distribution of the expanding pulses. Note that an increase of temperatuites one
hand leads to a small mean field interaction between the atoms but on the other the

!By measuring the spatial separation between two subsequent ators;puisean directly obtain
the period of the Bloch oscillation in trap
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Figure 3.6: Atoms performing Zener tunneling for different holding &nmn the vertical
lattice. The measurements are performed on a bosonic satiple: T (a)-(b), and using
a Fermigas a” > T (c)-(d).

number of quasi-momentum states occupied in the band increases. In Fige3.4
study the behavior of atoms performing Zener tunneling as a function ofritysete
ature. We find that atom-pulses continue to be detectable also a temperahee hig
thanT. However the contrast of the signal decreases incredsisigce the spread
of the momentum distribution of atoms in tr&yy is approachin@qg. AsAq > 2¢p,
the bosons flow continuously out of the lattice and the pulses are no mae/abke.
Note that the survival of Bloch oscillations also fbr> T demonstrates that such
phenomena arise just from single-particle coherence and no maciosobgrence
is required. Condensate properties are needed only to get a better visibilitg
effect. Our observation removes the ambiguity introduced in [42] by theota/drf-
terpretation given in term of both Bloch and Josephson a.c. oscillations.

Another important point is related to the boson-boson interaction which couhe-
how deteriorate the brightness of our atomic source. To investigate thef thkein-
teractions, we have repeated the measurement reported in Fig. 3.3(a),Hettirthe
condensed atoms to interact for a longer timdY{). The experimental procedure is
shown in Fig. 3.5(a). We now rise up the optical lattice to a value larger tHfandte
suppress Zener tunneling. We leave the atoms in such deep potential foraime
During this time, bosons can cycle through the band and collide each otheéhew
decrease the lattice depth to a sufficiently low value to have a high probability of
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Figure 3.7: Evolution of the interference pattern of the Fermi gas faréasing holding
times in the vertical lattice. The spatial distribution bétcloud detected after 8 ms of free
expansion reflects the momentum distribution in the trapeatitne of release.

terband transitions(=1). We observe the atoms escaping by suddenly switching off
the lattice, and we take an absorption image afters3 In Fig. 3.5(b), we report the
optical density of the matter-pulse train for different interaction tinZ&%;(= 0 — 10

ms). We find that the visibility of the pulses washes out rapidly increaaifig This
corresponds to a decoherence of Bloch oscillations. The decay ismewenclear
looking at the absorption image of Fig. 3.6(a)-(b). After just 10 ms, theubdig-

nal consists of a continuum overflow of atoms from the lattice (Fig. 3.6¢l))the
pulsed behavior (Fig. 3.6(a)) is completely destroyed. This seems to indicdte
during this 10 ms, boson-boson collisions change the momentum of particieg gi
rise to a spread of the distribution in trap which corresponds to a banky fiked. In
other words, the mean field interaction between bosons modifies the cheotmal p
tial of atoms in each lattice site by an amount which depends on the positionrgeak
the translation symmetry of the system and leading to a dephased output. Note tha
the decay of Bloch oscillations are not accompanied to an heating to the system.
fact, the radial size of the atom distribution of Fig. 3.6(b) is comparable tortheb
atom pulse in Fig. 3.6(a).

As shownin Fig. 3.6(c-d), the behavior is completely different if we detl fermions.
Due their non-interacting nature, fermions are completely unsensitive to the time
spent in the lattice. Indeed, aftéd ms, we find the same space-resolved matter
pulses of AT} = 0 ms. As we will see in the next section, this result suggests a
longer survival of the Bloch oscillations in trap.

3.4 Bloch oscillations of a Fermi gas

This section is devoted to the study of a Fermi gas in a tilted potential when the
Landau-Zener tunneling is negligible and one can use the single-banoxapp-

tion. Under this condition, we have observed time-resolved Bloch oscilladibtie
Fermi gas.

We start with a brief description of the procedure adopted in our expetinidre



3.4 Bloch oscillations of a Fermigas 71

05F

00

Momentum (q,)

05}

10k ) 1 ) 1 . 1 1 . 1 =
0 5 10 15 250 255

Time (ms)

Figure 3.8:Bloch oscillation of the Fermi gas driven by gravity: the be&the momentum
distribution of the sample scans periodically the firstIBtiln zone of the lattice. More than
100 oscillations can be followed with large contrast.

fermions are trapped in the vertical lattice against the gravity. The latticergewe
risen up adiabatically i50 ms. We then let the fermions to evolve in such potential
for a variable holding time. The lattice depth is then lowered to zero in abous 50

a time scale longer than the oscillation period of the atoms in each lattice well. The
adiabatic release allows to study the evolution of the momentum in the first Brillouin
zone. Finally, we probe the cloud by absorption imaging after a 8-ms ballistic ex
pansion, which maps the initial momentum distribution into a position distribution.
Fig. 3.7 shows the time-evolution inspace detected in the experiment which cor-
responds to the Bloch oscillations of the Fermi gas. Indeed, we can ckeslthe
vertical motion of the peak of the distribution which is initially centeredy#1® at

t=2 ms. It gradually disappears as it reaches the lower edge of the Britonm at
t=2.8 ms, while a second peak builds up at the upper edge and then scartbe
Brillouin zone as the first one. This behavior is completely in agreement with the
semiclassical idea of an atomic cloud that moves uniformly épace under the in-
fluence of the gravity and is gradually Bragg reflected each time it redlchdsand
edge. Indeed, the periodicity of the effect amounts to about 2.3 ms, iaragré with

the expected’z=2h/mgA. Note that we use a tighter lattice with respect to the one
used for the previous measurements to avoid Zener tunneling to higher bHhaisd
also allows us to keep the atoms oscillating in the lattice for a very long times. If
we follow the vertical position of the peak of the distribution in Fig. 3.7, we get th
periodic motion shown in Fig. 3.8, which has the peculiar sawtooth shapetexpe
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Figure 3.9:a) Momentum distribution of fermions at two different haiditimes in the
lattice: 1 ms (continuous line) and 252 ms (dashed line). déntum distribution of bosons
at 0.6 ms (continuous line) and 3.8 ms (dashed line). The rfastar broadening for bosons
is due to the presence of interactions.

for Bloch oscillations. We can follow the oscillations for more than 250 ms, trat ¢
respond to about 110 Bloch periods, and only at later times the contrasyrigcted

by a broadening of the momentum distribution. This is to our knowledge thedonge
lived Bloch oscillator observed so far in all kinds of physical systems.

Note that for our parameter&'f- ~ E'r) the initial halfwidth of the wavepacket is
dq ~ 0.75¢p, which fulfills the requirement of a momentum distribution narrower
than the first Brillouin zone of the lattice to observe the interference. DiBlagh
oscillations the distribution broadens steadily and eventually fills completely #he fir
Brillouin zone. The reduction of contrast is illustrated in Fig. 3.9a.

3.4.1 Bosons vs fermions: decoherence of Bloch oscillation

The long-lived Bloch oscillation observed with a Fermi gas is somehow aising
result because, due to the Fermi statistic, the atoms occupy severahtprasintum
state and their large distribution could in principle affect the visibility of suailas
tions. One can thus expect to get a benefit from the brightness of a ®E€esin the
observation such kind of effects. However, the coherence propefte condensate
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Figure 3.10:Comparison between the momentum distribution of fermiamd laosons at
different holding time in the lattice. We also report thepestive optical density of the
interference peaks.

have not to undeceive the reader. Despite to their narrow distribution in ntame
space, condensed atoms interact each other. The interparticle potandidlices a
decoherence time which can affect the single-particle phenomena unestigation.

As we have already discussed in Sec. 3.3.1, the pulsed behavior ofsyjesdorm-

ing Zener tunneling is completely destroyed as soon as we let the atoms totinterac
for a longer time. It is therefore interesting to compare the behavior of fegrdaad
bosons which perform Bloch oscillation in trap. As already noticed, theaviity

of our apparatus allow us to simply repeat the experiment with a BEC of rubidiu
atoms. We use a sample of typically 50* atoms, at temperaturds <0.67.,. The
condensed bosons are transferred into the lattice with the same proasddrer the
Fermi gas and described in Sec. 3.4. The lattice depth is in the randez2\¥here

the recoil energy for rubidium parametersfiig=k g x 150 nK. As expected, the gen-
eral phenomenology that we observe is analogous to that found foicies: bosons
perform a Bloch oscillation with a period which is n@ ~1.2 msi.e. nearly half of
the one measured for fermions in accordance to the different mass ofdletdmic
species. Nevertheless two striking differences appear, as shown.if.Big3.10.
First of all, at very short times the width of the momentum distribution of the BEC
is comparable tgp and therefore even larger than one exhibits by fermions. This
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result may seem in contrast with the expectation of a much narrower momeigtum d
tribution for the BEC. In reality, we detect the atomic cloud at fixed time after the
release from the lattice. During the early stage of the expansion, the-boson
interaction energy is rapidly converted into kinetic energy giving rise teseefax-
pansion with respect to the case of non interacting particle. As a consathe
momentum distribution detected after a time-of-light,f =8 ms) is much larger
than the one detectable in trap. Furthermore, the evolution of bosons idfalsed

by interparticle interactions whereas they are trapped in the lattice. On tHeaade
interactions spread the atomic distribution in trap, and on the other hand ggn ca
the condensate in regions of instability. Indeed, as soon as the extercaldrives

the system far from the "parabolic" region of the band, non-lineaceffeould arise
eventually destroying the visibility of Bloch oscillations. Note that we have veske

aa similar degradation of the signal in the Zener tunneling experiments pedor
on a condensate. Such kind of phenomena has already been obisepredence

of gravity [106] and in combination with magnetic traps [127]. In our expenime
we detect the decay of Bloch oscillation as a very rapid broadening of tineemo
tum distribution, which tends to wash out the visibility of the incoming and reflected
peak. As shown in Fig. 3.9, in a lattice with depil+2F r, the momentum distribu-
tion fills completely the Brillouin zone after typically 4 ms. We have checked that
the decay time for the contrast gets shorter with an increasing lattice deptia-and
dial confinement, as expected because of the larger density of the samdpleus

an higher interatomic interaction. The longest decay time measured forrsmdie
bosons is of about 10 ms, with a lattice depth offlg5and an almost absent radial
confinement. For this low lattice height we can no more neglect the Zenedlingne
which reduce the lifetime of trapped atoms to a timescale comparable to the decay
time of the contrast.

We have also repeated the experiment with a cold but uncondensed ¢€loasoms
atT =~ 250 nK. Due to the low density of bosonic thermal samples, the interatomic
interaction are reduced with respect to the case of BEC. We again etsasteady
broadening of the distribution. In this case the contrast degrades ogex kimescale

of about 10 ms, which is still much shorter than the one observed for ferniios
comparison proves the superiorness of noninteracting fermions witbagsposons

to observe single-patrticle effects.
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Figure 3.11:Momentum distribution of a coherent superposition of Wamn3tark states.
Although the single state fills completely the first Brillawone (thin line), the interference
of several states gives narrow momentum peaks. Shown asa#ies of a phase difference
between successive states®$=0 (continuous line) and\¢== (dashed line). The inset
shows the square of Wannier-Stark wavefunctions calalifae!’K atoms in a lattice with
U=2Fr subjected to gravity (for clarity, the states shown are s&@pd by four lattice sites).

3.5 Interference between Wannier-Stark states

In Chap. 2 we have shown that a particle in a lattice tilted by a homogeneous pote
tial U = F'z can be described by using both a semiclassical picture and the quantum
mechanical formalism based on Wannier-Stark states. As we know, inrtfielassi-

cal approach, a particle evolves in the tilted potential performing a Blodhatizm

in momentum space (see Sec. 3.4-2.4.1). In the quantum mechanicaldpphmza
particle is instead described by a superposition of Wannier-Stark stdtessuper-
position yields to interference peaks in the quasi-momentum space. In thi@nsec
we will show that the evolution of such interference peak are the anataafdgioch
oscillations. We now start to remind to the reader which kind of eigenfuncéiods
eigenvalues solve the tilted-lattice problem. Under the influence of an ekstatia
force F', the system maintains properties of invariance with respect to an appgeopria
translation in both energy and z-space (see Sec. 2.4). One finds¢haresxrgy band
splits into a sequence of equally spaced resonances, known as \Watarieladders
which directly depends on the applied force. In the case of a gravitatioma [94],

the ladders are equally spaced by

AE = mg%. (3.4)
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The corresponding single-particle states are the Wannier-Stark fusatibich are
localized in both momentum and z-space. Note that these functions differrim a p
found way from the unperturbed Bloch states which describe particlesalized in
the whole lattice. The spatial extension of a Wannier-Stark state gives gineedef
localization with respect to the lattice height considered. For instance, déhia,

for s = 2, a Wannier-Stark state extends over about ten lattice sites.

In single-band approximation, Wannier-Stark states are eigenfunctiche tilted
potential and a particle loaded in such potential finds itself in a cohereatsng-
tion of &S functions. As reported in the inset of Fig. 3.11, the gravitational poten-
tial tilts the lattice leading to a constant energy difference between atoms loaded
different lattice sites (see Eq. (3.4)). As a consequence, two wanaidns centered

in neighbor sites evolve in time with a phase differedeg= AEt/h:

-AEt
e’ .

TS (2, 8) + WS (2, 1) = U 9(2,0) + TS (2,0) (3.5)
A particle, prepared in a linear combination ®V5(z,t), exhibits therefore an
interference pattern in momentum space which is periodic in time, with a period
Tp=h/AE. InFig. 3.11 we compare the momentum distribution of a single Wannier-
Stark state with a superposition of those states. In the former case, the momentu
distribution fills completely the first Brillouin zone while a superposition of Wannie
Stark states yields to an interference pattern with narrow equally spacedntuzme
peaks. In particular, if the force applied is the gravity, the peaks move in mioime
space with constant velocity, accordinglydgemg. This motion corresponds to the
semiclassical Bloch oscillation. The peaks spacing is the inverse of thel geatiiadl

of the lattice, and can be written ag2 wheregp=h/\ is the Bragg momentum.
Therefore only one or two peaks appear at the same time in the first Brillonm z

of the lattice[—q¢p, +¢p], as shown in Fig 3.11. The above discussion shows the
equivalence between the semiclassical Bloch oscillations and the motion d&inter
ence peak in the momentum space. This twofold description allows us to exploit th
macroscopic Bloch oscillations as an interferometric scheme to measuredenge

will discuss in the next section.

We just mention now that also Zener tunneling can be studied in term of Wannier
Stark functions with some extra specifications. Since Zener tunneling is abante
transition effect, we have to consider the full band spectrum and the i&/aBtark
function are no more eigenfunctions of the tilted lattice. Indeed, out fromges
band approximation, these functions are metastable states, also knowarssees.
One can explicitly the depletion of the first band by adding an imaginary tertineon
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Wannier-Stark ladders Eq. (2.43))

I'n
Enj(k) = en(k) + jFd — i77 (3.6)

wheren is the band index’,, the decay rate anfl € N. The decay rat&',, defines
the lifetime of the Wannier-Stark states, and exhibits a rather nontriviahdepee
on the static force [107]. For a given force and lattice height, we hagensiin
Sec. 2.4.2 that the first band is depleted exponentially with time.

3.6 Atom interferometry with trapped Fermi gas

In this section we will focused on an interferometric scheme exploiting thelived-
Bloch oscillation observed with a trapped Fermi gas. Fermi gases haee loesn
used as an atomic source in such kind of high-precision measuremenits.detop,
we measure the force of gravity acting on the atoms along the lattice from tioel per
of the Bloch oscillations. Our choice of the atomic source goes in the direction to
take advantage from the non-interacting nature of this system: collisiorniscered
suppressed in a sample of identical fermions. It is important to stress thsdiite
Pauli principle that forbids collisions also limits the phase-space densityrafdas

to unity. These two effects arising from the Pauli principle affect in ofipagay the
sensitivity of our interferometer. We will therefore discuss whether thistites
an obstacle to precise measurements.

In the last decade, atom optics and interferometry blend together givantpres
new exciting field of investigatioratom interferometryvhich is mostly based on ma-
nipulation of neutral atoms with laser beams. The development of atom imteréer
try keeps up with the improvement of cooling techniques because of thadi=pee
of the sensitivity from the atomic source used. During the years, intentetrac mea-
surement has been performed using a thermal source of atoms , a foninzder
cooled atoms and finallywaell-collimatedsource of condensed atoms. In particular,
the advent of BECs was expected to produce in atom interferometry thedrame
matic progress faced by photon interferometry after the invention of lASBEC is
the brightest atom source with all the particles in the same quantum state éwhce
ing to an increase of the contrast of the interference signal [62, 42,1109, 110].
However, despite to the largest brightness, condensed bosonstie@rhother and,
how we have already discussed in Sec. 3.4.1. This also could affeniatically
interferometric measurements, giving rise to a shift or decay of the sigha.lif-
itation can be somehow avoided performing measurements with samples inlifree fa



78 Fermi gas in a vertical lattice

where interactions are weaker [109]. Nevertheless, this leads toteisbbservation
times with respect to the one attainable with trapped samples. A alternative route is
to adopt an atomic system free from interaction as a Fermi gas or a canelevith

ap = 0.

We will now start to describe a general scheme of interferometer and toazeritp

with our scheme using a fermionic source.

3.6.1 Scheme for an atom interferometer

The most fruitful applications of interferometric techniques with ultracoldobas
gases concern high-precision measurements of fundamental cons@hts11, 113]
and the detection of rotational properties [112]. Atom interferometerbdaitcally in

two different classes: those exploiting different atoiernalstates [114] and those

in which the interference occurs between different paths of the atomiereef
mass (i.e externalmomentum states) [115]. We will focus mainly on the latter case
where atom-light interaction change the momentum of the atoms without altering
their internal state. Different schemes of interferometer have beeongedpTypical
examples are the atomic analog of an optical Mach-Zender interferom&&sr14]

or a Young’s double-slit [117] or a contrast interferometer [1L09veé\ttheless, in the
working of an atom interferometer, we can always distinguish 3 fundairsefa

e Step 1: Coherent creation of distinguishable atomic states (so-gallBdrom
a single atomic source.

e Step 2: Evolution over some time of these different states.
e Step 3: Recombination and detection of the interference pattern of the atoms.

While in step 1 and 3 we have to manipulate the atomic source to get the desired
states, step 2 is the one of physical interest because, in this phasenticesistes are
subjected to the forces that we would like to measure as the gravitationattiicele
dipole force. From an experimental point of view, most of the work to pceda
meaningful interferometer usually comes from trying to cancel, during stemy2

kind of force different from the one of interest. Note that the use of glsimter-

nal state, instead of multiple states, can reduce several interaction whiatbgehe
system. For instance, ac-Stark shift will not result in the type of systematicse
that occur when interference is measured between different inteéomiastates.
Another important point is related to the choice of a proper way to manipulate the
momentum of our "one-level" system. Optical standing waves can be useditfymo
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Figure 3.12:Scheme of a Mach-Zender interferometer. Three Bragg palsesent to a
free-expanding BEC. Paths 1 and 2 are in stdteg > and|2kk > for equal lenghts of time
T.

momentum states in a very controlled manner and allows to create arbitrargtinterf
ometer geometries (paths). Indeed, when an atom scatters a photonil& dee to

the momentum exchanged with it. This mechanism also set the fundamentat energ
scale of the process: the recoil eneifgy. The manipulation is thus efficient if the
thermal energy: T of atoms is smaller with respect f0z. As already discussed in
Sec.??for Bragg scattering, an optical standing waves (also konw as optiatihgy

is created from a counter-propagating laser beam which constraitsranachange

its momentum in multiples ot#k, wherek is the wavevector associated to a single
photon.

As an example, we now briefly discuss a simple scheme of interferometat base
Bragg process which is known as Mach-Zender configuration. Tloisegiure has
been already used with a thermal beams [118] of atoms and with a BEC [A19].
BEC is initially prepared in a magnetic trap and then released from it. The subse
guent experimental phases are reported in Fig. 3.12:

e Step 1: Beginning with atoms at rest, we apply a firs2-Bragg-pulse which
acts as a beamsplitter. The atomic cloud is thus 50-50 divided into two different
momentum statesOhk > (at rest, path 2) an@hrk > (in motion, path 1).

e Step 2: We let the atoms in different arms to evolve during a fimeith a
relative velocity of 2 photon recaoils.
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e Step 3: After a timeT’, a w-pulse is applied and atoms |Ahk >-state are
transferred into the other momentum-state. The third pulse is needed for the
detection of the contrast signal projecting the phase of the atomic intezéeren
pattern onto the fractional population of the two momentum state.

Any interaction placed differentially on one arm of the interferometer wowd b
picked up by the phase difference between the two paths which givesoribe
interference signal. Thus Mach-Zender interferometer can be usedasuneero-
tational phases, gravitational phases, electric polarizability, or indesfiafation of
gases [120].

While Mach-Zender interferometer uses atoms in free-expansion, inteuferome-
ter scheme fermions are trapped in a optical lattice and, in principle, onekand
the evolution (step 2) for a time comparable to the lifetime of the sample increasing
the sensitivity of our measurement. The basic idea of our scheme is to theriae-
celeration of gravityy by measuring the peridfiz of the periodic motion performed
by the atoms into the lattice. Let now to identify the 3 steps necessary to praduce
interferometer:

e Step 1: Starting with a magnetically trapped Fremi gas, we adiabatically load
the atoms in the tilted lattice Now each atom is in a coherent superposition of
Wannier-Stark states. The interference between such states giviesraseow
peaks in the momentum space.

e Step 2: We let the interference peaks to evolve under the force of gfavity
variable holding times.

e Step 3: We switch off adiabatically the lattice to map the momentum distribu-
tion of atoms into a quasi-momentum distribution which extends over the first
Brillouin zone. After 8 ms of expansion, we probe the cloud by absorption
imaging.

Repeating the measurement for different holding time in the lattice, we obaerve
vertical motion of the peak of the distribution i.e. the Bloch oscillation driven by th
gravity (seeFig. 3.8). As we will discuss in the next section, this schemesailewio
extract a value of.

2We remind to the reader that the optical potential in tilted due to the presettoe giavity.
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3.6.2 Measurement ofy

We have already shown the vertical motion of the interference peaks theoperiod
of the Bloch oscillations we measure the force of gravity acting on the atomg alon

the lattic€ as
2h

- TBm)\ '

g (3.7)

We fit the experimental data of Fig. 3.8 with a sawtooth function and we findehBlo
period75=2.32789(22) ms. If we assume that the only uniform force acting on the
atomic sample is gravity, we immediately determine a local gravitational acceleration
asg=9.7372(9) m/&. Note that, at this level of sensitivity, the relative uncertainty on

g is just the same as diiz, since bothh andm are known with a high accuracy and
also A\ can be accurately determined [121]. The evolution of the interfereralespe
develops on a micrometrical scale and thus our interferometer based pedrajems
opens the possibility of probing forces with a high spatial resolution.

We note that the vertical size of the sample in the present experiment isrsiddsta
determined by the initial size in the magnetic trap, which in principle can be rdduce
by increasing the vertical confinement. The minimum possible size is instehy set
the extension of a single Wannier-Stark state, which also correspondsamisiitude

of the Bloch oscillations in real space. At=2FR this amounts to about4n, and
decreases further for increasing depths &2 where 2 is the width in energy of

the first Bloch band of the lattice.

As already pointed out, the usefulness of an interferometer is strictly ctathéo

the possibility to cancel any kind of undesired additional forces acting teaimple.
Clearly, the use of a tight optical lattice to trap the sample might affect theawmcur

of a measurement of forces. In particular, any axial gradient in thedityeof the
lattice beams will result in an additional force on the sample. In the experiment w
have checked the absence of a dipole force at the level of our preeEsitivity, by
repeating the experiment with a 50% larger intensity of the lattice beams. This did
not produce a noticeable change of the Bloch period.

Another possible source of systematic error is connected to the presfesparious
magnetic fields. Indeed, since the fermions have a magnetic moment, the Bloch
period is sensitive also to magnetic forces

F =mg+ grmpupB, (3.8)

3In general one can measure any kind of force applied on the systénydtep 2. Thus the force
is F=2h/Tg\.
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Figure 3.13:Comparison between Bloch oscillation driven by gravityfpamed by a cloud
of condensed Rubidium atoms with respect to the one obséoved~ermi gas of Potassium
atoms. The two measurgcare compatible within an accuracy of—3.

wheregr is the Landé factom i labels the hyperfine level angs is the Bohr mag-
neton. On the one hand Eg. (3.8) indicates that our interferometric scheamigec
used to estimate magnetic force acting on the atoms during step2, while, on the othe
hand, it shows that undesired fieltlaffects the measurement @f Furthermore, in-
homogeneities in the magnetic field can also produce residual forcesénagjeone
can control this effect by repeating the measurement with two atomic statesifwith d
ferent magnetic moment. Thanks to our experimental apparatus, we cgrBsbeti
oscillation using different atomic species which have a different mass agdetia
moment. We repeat the measurement of Fig. 3.8 with both potassium and rubidium
atoms. As shown in Fig. 3.13, the valuesgimeasured in the two case for same
conditions are compatible. This result demonstrates the absence of eximatinag
forces at the level of 6. This accuracy is limited by the short measurement time
achievable for bosons (see Sec. 3.4.1). Note that during the meastirepemned
Fig. 3.8, we kept a small and known homogeneous magnetic field (abouttd G)
avoid spin-flips, which would produce distinguishable particles which coaoliite
each other. Data of Fig. 3.13 are instead free from this additional magreddic fi

The sensitivity reached with our apparatus is limited to“fainly by the 250-
ms time interval available for the measurement. Fig. 3.14 together with Fig. 3.9 a
clearly demonstrate the degradation of our interference measuremenq &he. In
Fig. 3.14 we plot the relative height of the two peaks; as a function of time which
decreases with time. Since the atom number is constant during the measutkiment,
behavior corresponds to a broadening of the atomic distribution. The tifeeg¢his
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Figure 3.14:Relative height of the two interference peaks at short (grifngles) and
long time (filled triangles). Since the atom number remawarly constant, the data clearly
show a broadening of the peaks which reduces the contras¢ aftbmic signal.

broadening is much shorter than the characteristic timg4oave collisions [122]
which exceeds 100 s for our experimental conditions. Thus we carsaadba this ef-

fect to a collisional mechanism. The main sources of the broadening aenpably
intensity and phase noise in the lattice beams. Also ergodic mixing of the radial an
axial motions, a finite axial curvature of the lattice intensity and a residutibsicey

of the lattice photons could contribute to the observed broadening. All #f&ses

could be reduced by using active stabilization of the lattice, a proper beamegry

and a larger detuning. This improvement should allow to extend the obsertiati®

to several seconds, with a corresponding increase of the sensitivitys@nsitivity

can be increased also by using a larger atom number and/or a longdengitefor

the lattice. Both operations tend to broaden the momentum distribution with respect
to ¢p: on the one hand in a Fermi gas the momentum spread increases with the atom
numberN according todq « N'/¢, and on the other the Brillouin zone shrinks for
increasing wavelengths ag « 1/\. One could however compensate for both these
effects by using a looser radial confinement of the atoms, which woulttecthe
momentum spread without affecting the axial size of the cloud.

Possible applications of our interferometric scheme can be the study etfolmse

to surfaces and at the sub-millimeter scale, recently motivated by the possibility o
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new physics related to gravity [123].



Chapter 4

Localization in a combined
periodic and harmonic potential

Oscilla o0 non oscilla ?
A me oscilla ...
FFEelL. P

As discussed in Chap.3, a Fermi gas in a pure optical lattice exhibits a Blech os
cillation as soon as a linear potentidl & F'z) is applied. The observation of such
phenomena establishes a tight connection with usual system of solid-syaiesph
such as electrons in a crystal when an uniform static electric field is ap@igd [
Note that one can strictly speaks about Bloch oscillations only if the applied-ex
nal force turn out to be constant both in space and time. In generalpasasahe
translational invariance of the system is destroyed or modified, localizaffiecte
take place depending on the perturbation applied. One can change tlattcaal
properties both adding an external force or by introducing some impierfiedo the
lattice. For instance, in presence of a constant fdfcelelocalized Bloch particles
are mapped into Wannier-Stark states (Sec. 2.4.3) which extend overa isparval
§/F. Another kind of localization observed in metal is the Anderson localization
which is observed when a ion crystal exhibits a disorder, for instanes Wte spac-
ing between the atoms is slightly irregular with small, random perturbations. In the
field of atomic gases, a localization due to the presence of an extra potertaiés
achievable since one can manipulate the gases by applying magnetic fields. Sin
atomic gases are usually harmonically trapped (see Sec. 1.2-1.3.2), tmafiinsl
extension with respect to the linear case is to study a gas subjected to a admbine

Phil Anderson won the Nobel prize in 1977 for his investigations into thisissu
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periodic and parabolic potential.

In this Chapter, we report on the behavior of both a Fermi and Bose gasdm-
bined periodic and harmonic potential which we have observed in ouriengme.
We summarize below the major results of this investigation.

4.1 Outline

In this Chapter, we move from a quantum gas trapped in a pure optical |&ttieg(3)

to a gas loaded in a combined parabolic and periodic potential. We find that the
guadratic external potential introduces a localization in the system whigttsitioth

the density of states and the transport properties of our unperturbesirsyln par-
ticular, we observes that localized particles are nailed on the sides of ithieotia
potential, and can not reach the minimum of the potential. We study this efiagt us
both a theoretical and experimental approach. For sake of clarity, poetriérst on

the theoretical description of our system which provides the single-paeideyy
spectrum of the combined parabolic and periodic potential (Sec. 4.2). speis
trum admits two classes of solutions, corresponding to particles delocalizegl a
the lattice and to particles localized on the sides of the potential. We are able to ad-
dress experimentally atoms in localized states by using a novel method based on
rf-spectroscopy (Sec. 4.3). This technique is selective in energythanks to the
fact that delocalized particles occupy the bottom of the energy spectrarcamre-
move only atoms in this class of states. In this way, we can thus study just latalize
atoms which reveal highly non-classical features both in their energybdittm and

in their expansion dynamics. We then study the dynamical response of &xtaliz
fermions to a dipolar excitation . The center-of-mass motion reveals that ledaliz
fermions act as aimsulator under a driven potential. On the contrary, the trans-
port properties of delocalized atoms indicate the conducting nature ofstatds
(Sec. 4.5). We can directly study the motion of delocalized states by usinge Bo
Einstein condensate. Due the their narrow energy distribution, cordleosens can
indeed occupy only low-energetic delocalized states (Sec. 4.5).

The reader can find most of the results presented here in our redsicgpions listed
below:

e Radio Frequency Selective Addressing of Localized Particles in a Pefadic
tential, H. Ott, E. de Mirandes, F. Ferlaino, G. Roati, V. Turck, G. Modugno,
and M. Inguscio, cond-mat/0404201 (2004).
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¢ Insulating Behavior of a Trapped Ideal Fermi Ga&. Pezzé, L. Pitaevskii,
A. Smerzi, S. Stringari, G. Modugno, E. de Mirandes, F. Ferlaino, H. Ott,
G. Roati, and M. Inguscio, accepted in Phys. Rev. Lett. , cond-mat/@8016
(2004).

e Production of a Fermi gas of atoms in an optical latticé. Modugno, F. Fer-
laino, R. Heidemann, G. Roati, and M. Inguscio, Phys. Re88A011601(R)
(2003).

e Collective Excitations of a Trapped Bose-Einstein Condensate in the Rresen
of a 1D Optical LatticeC. Fort, F. S. Cataliotti, L. Fallani, F. Ferlaino, P. Mad-
daloni, and M. Inguscio, Phys. Rev. Le8i0, 140405 (2003).

4.2 Periodic plus harmonic potential: A new problem

In our experiment, bosons and/or fermions are trapped in a 3-D harmotgntfal
with a cylindrical symmetry. The 1D optical lattice is superimposed along the weak
axis of the parabolic potential (the axial directiorxjs The total Hamiltonia is thus

21 S+, 1
H= <é’0—;® + Emwga:Z + gEr(l - cos47m/>\)> + (1?22—77? + Emwf(f + y2)>
(4.2)

Note that the 3-D problem turns out to be decoupled along the three direetimh
can thus be separated in three one-dimensional problems. We focusroiie o
stationary single-particle Schrédinger equation along the lattice direction:

1
— —— 4+ —mw?2® + gEr(l — cosdmz/N\)| v = Epib. 4.2)

We remaind to the reader thatlenotes the depth of the optical potential in units of
the recoil energye, = h?k?/2m.

Although many experimental studies have been performed in this combinadipbte
during the last years, the solution of Eq. (4.2) is attracting big attention jusein th
last months [124, 125, 126]. This missed attention to Eq. (4.2) is mainly due to
the properties of the atomic sample usually used in such kind of problem. dndee
most of the experiments with optical lattice are made on a trapped Bose-Einstein
condensate, which exhibits a very narrow distribution both in the coordaade
momentum space. Since condensed bosons occupy just a narrowattiefottom

of the first energy band, one can still describe the system by introdaciredfective
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Figure 4.1: (a) Spectrum of the Hamiltonian: representation of the 1Bcspm of the

single particle Schrédinger equation for a combined pérciadd parabolic potential. Each
line represents one eigenstate of the system, which iseglais density profile in grayscale
(see (b)). The vertical position of the profile corresporudhe energy of the eigenstate. The

potential parameters were chosen tabe 27 x 16 Hz, A = 830 nm ands = 3 and the mass
is that of®”Rb.
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Figure 4.2:Delocalized functions together with their density disttibn |¢|? for s =3. The
eigenfunctions calculated from Eq. 4.2 are relative to thst {g), second (b) and third (c)
energy level of the combined potential. Note that the shdleeowave-functions is due to
the harmonic confinement while the fast modulation is du@éooiptical potential.

massn* which takes fully into account the different inertia of the conderfsalge to
the lattice [40, 128, 129]. The scenario changes completely when wevidbal gas
of particles occupying several excited states of the system. In this conditierhas
to take into account also the harmonic trap which brings new features to daslyalr
interested pure-periodic potential. This is the case of a cloud of thermal atiodns
of a Fermi gas which exhibit a broad energy distribution. For instance gitatker
system, the Pauli principle enforces indeed fermions to occupy one liheeaergy
levels and higher energetic state are reached.

4.2.1 Localized vs delocalized states

An atomic gas in the combined potential looses its translational invariance due to
the quadratically trapping potential necessary to confine the gas. Asssgéstin
Chap. 2-3, a change in the translation property of the system is alwegspanied

to the appearance of localized states. For instance, a particle in a latticeribees

by localized Wannier-Stark states as soon as a linear driven potentigdliscaplt

turns out natural to expect localization phenomena also in presenceasbafic

2This model is appropriated to study the dynamics of a condensate onlylimthef small external
perturbation, as discussed in our work [40, 127]
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Figure 4.3:Density distributior:|? for s =3 of the 121th (a), 122th (b) localized states and
(c) first delocalized state in the second band.

potential. To test this expectation one has to solve Eq. (4.2). Without amgxapp
mation, Eq. (4.2) can not be solved analytically and a numerical approaeeded.
The Hamiltonian (4.2) has been recently studied in tight binding approximation in
[124, 125]. In particular, these works lie in a single-band approximatiaifevin our
system also higher band can be occupied.
We solve numerically the eigenvalue problem (4.2) for our typical expetahea-
rameters. Starting from Eq. (4.2), the numerical procedure is basediscratization
of the Hamiltonian along the-axis (~ 1000 spatial-step). The second derivative in
the kinetic term can thus be replaced by the differential increment. At this pe&in
diagonalize the discrete Hamiltonian to find the eigenvalues of the problem, which
are used to get the eigenfunctions directly from the eigenvalue problera.fullh
energy spectrum found is reported in Fig. 4.1a which shows a densitgflu first
1000 eigenfunctions. Each line in Fig. 4.1a corresponds to a densityfple o/ave
function in coordinate space, as sketched in Fig. 4.1b. This spectrumaibyad-
ferent from the one obtained with a pure harmonic trap or with a pure opditiak.

The shape of the single-particle energy spectrum reveals the exisfanaeds-
tinct class of solutions. For low energies we find delocalized states tresidspym-
metrically around the potential minimum. These states are the analogous of Bloch
states, introduced in Sec. 2.3. Typical delocalized functions are shawig.ii.2 to-
gether with their density distributiony|?. Note that the shape of the wave-functions
is similar to the corresponding eigenstates of a pure harmonic oscillator whfkesthe
modulation is due to the optical potential. Above a threshold energy, thedelass
of solution appears. These eigenstates go to zero around the trap miniswin re
ing in a localization over just few lattice sites. Typical localized states arerdmaw
Fig. 4.3(a)-(b). These eigenstates are no more symmetric with respectderttes
of the trap and become localized on both sides of the potential. Particles ldaeslin
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maximum probability to be in the left (Fig. 4.3(a)) or in the right (Fig. 4.3(b)jhaf
potential. These localized states are the analogous of the Wannier-Stagdstand

in presence of a linear force (see Sec. 2.4.3).

If we look at even higher energies, a second group of eigenfundajgpsars, centered
again around the trap minimum. These states correspond to particles detbcalize
the bottom of the second band where they experience again an harmenioién-
tial (see Fig. 4.3(c)). By further increasing the energy, we will agaid licalized
states but now related to the second band. The spectrum of Fig. 4.1 exlehity

a shell-like structure and from the first to the last energy level we casgréze a
sequence of delocalized and localized state. It is straightforward to igénigfspec-
trum with the well known band picture for a pure periodic poteftias comes out
from the energy spectrum reported in Fig. 4.1. Despite of the analogy vetbahd
structure, oubent-tubespectrum exhibits new important features. For a given posi-
tion, not all the energy are allowed because a spatially varying gap oppresence
of a parabolic confinement. The accessible energy values stay in aralitgrwith

an extension equal to the bandwi@thcalculated for a pure sinusoidal potential. We
also found a one-to-one correspondence between the forbiddegyenesrval and
the usual band gapf,.,. As a consequence, in presence of a harmonic potential,
we can no more speak about an absolute energy gap but we haver tio refegpatial
energy gap. The behavior of our new energy spectrum suggest®shkbifity to
investigate, in a selective way, localized states which are never beewvetse far.

4.2.2 Experimental setup

We start to describe our experimental procedure to produce an ultratmotdc gas

in a combined parabolic and periodic potential [48].

As reported in Chap. 1, our apparatus allows to prepare either a fernsamiple

of K atoms, either a bosonic one &fRb atoms. After the laser cooling phase
(pre-cooling stage), the atomic sample is initially loaded into a harmonic trap with
cylindrical symmetry along the-axis (axial direction). We perform on trapped Rb
atoms a selective evaporative cooling using radio-frequency radidti@oms are
instead sympathetically cooled through elastic interspecies collisions. Batlespe
are trapped in their doubly polarized spin statés,= 9/2, mp = 9/2) for K and

12, 2) for Rb. In these states, the two samples experience the same trapping potentia
with axial and radial harmonic frequencies = 27 x 24 s~! andw, = 27 x 317 s~ !

3Note that, the band spectrum is usually referred to the quasi-momentu® wpile our energy
spectrum is obtained in the reslspace.
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Figure 4.4:Sketch of the 1D harmonic plus periodic potential expermehby the atoms.
The harmonic magnetic potential is produced by means of tile i quadrupole-loffe con-
figuration and one pinch coil. The periodic potential is é&ast optically produced by two
counter-propagating laser beams in standing wave configara

for K, while those for Rb are a factgi\z;, /My )'/? ~ 1.47 smaller. Typically we
can producé x 10* fermions at about 0.3 (1'»=430 nK) and a condensate of Rb
with a similar atom number & < 7,.=150 nK. In general, we stop the evaporation
when the desired temperature is reached. When the evaporation is mostigdinie
superimpose along a 1D optical lattice the axial direction. To optimize the loading,
the lattice power is raised adiabatically in about 500 ms reaches its final vdhe a
end of the evaporative cooling stage.nThe total potential experiencie lsyoms is
drawn in Fig. 4.4. The lattice is produced by a far-detuned, retrorefiéaser beam
with a typical beam waist of 500m. The wavelength of our laser beam is chosen to
be far detuned with respect to all the optical transitions of K and Rb atom®td av
heating mechanism of the sample. For instance, if the laser light is blue-dethee
lattice potential is repulsive with maxima at the antinodes of the standing wave (fo
red-detuned is the viceversa). The potential height of the optical sgmdine can

be adjusted betwedah < s < 10, wheres is the lattice height in unit of the recoil
energyEr = h?k?/2m with k = 27\ andm is the atomic mass.

4.3 rf-Spectroscopy of localized states

As shown in Fig. 4.1, particles with energy lower than the bandwiggh = 26

(20 ~ 0-80nK for s =3) are delocalized in the bottom of the first band. To study
localization, we need to load in such combined potential an ultracold atomic gas with
energies up t@). Good candidates to address particles in such localized states are a



4.3 rf-Spectroscopy of localized states 93

Figure 4.5:0bservation of localized states. (a) Cloud of bosons withidield and (b) with
rf field after 1.5 ms time of flight.

Oms 400 ms 700ms  1000ms 1300 ms 150ms7

Figure 4.6:Decay of localization due to interatomic collisions. Algstaon images of bosons

left in the combined trap for different holding time. Loaad bosons slowly move toward
the center of the magnetic trap on a time scale of the ordérsf The measurements are
taken with an optical depth of= 6.

thermal cloud of bosons or a degenerate Fermi gas, because of tregmbomentum
distribution. For definiteness, we concentrate our effort on a bosoasimdi cloud,
although the spectral features are equally valid for fermions.

4.3.1 Experimental technique

To fulfill the requirement ofE > 2§, we stop the evaporation of Rb atoms when
the sample reaches a temperature which ranges from 500 to 0WNote that this
temperature is well above the critical temperature for Bose-Einstein ceatiem.
The optical lattice used for these set of measurements has a waveleagtBO nm.
We choose an optical heightwhich leads to a bandwidt?y much smaller than the
average energy of the atoms, thus providing a high population in localizest.sta
Since the periodic potential affects only axially the system, the particles paup
harmonic oscillator states in the two radial directions.

To study localized states we use a spectroscopic technique based otettiivese
removal of delocalized bosons from the trap. After the end of the eatiparand the
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adiabatic switch on of the optical potential, we apply a radio frequencyiéi) in
order to induce spin flip transitions between trapped and untrapped dBsesuse
of the magnetic radial confinement this removes all atoms whose wavefuhetsan
spatial overlap with the magnetic field shell where the resonance condition

hv = ugB(r)/2 (4.3)

is fulfilled. In a pure quantum mechanical description the resonancatimontbr

the involved Zeeman transitions is given by,,._, ., = En._, — Em._,, and
hVme_, o = Emp_,, WhereEy,,_, , are the energies of the single particle states in
the |F' = 2, mp=g, > state (we have set the energy of tiié¢ = 2, mp—, > state

to zero). The radio frequency is periodically modulated (1 kHz) within ammate

Av = vyp — viow (S€e again Fig. 4.1) to address a spatial region in which the atoms
are removed from the potential. After 100 ms of rf field we image the atoms which
are left in the potential.

In Fig. 4.5 we show an absorption image of the atomic cloud aftems od expan-
sion without and with rf field. In the latter case we remain with two clouds, located
at the edges of the original cloud. Looking at the energy spectrum, thiyyreorre-
sponds to a removal of atoms with energy lower thanWe are thus able, using this
spectroscopic method, to transfer just delocalized atoms in untrapped Z ¢sraks
I Figure 4.5(b) shows the new equilibrium distribution of our system conpoew
only by localized bosons. Note that even if we leave on the rf field for enersd we
still end with two separated clouds. After switching off the rf field, we holddis
in the combined potential for a variable time to check the timescale of localization
process. For high lattice height (>3), we have observed long-lived localization
with the peculiar two peaks pinned on the sides of the combined potential. On the
contrary, if we perform the same measurement with atoms in a pure harmaeeic po
tial, we observe a complete removal from the trap due to the applied rf-fidlcsk T
removal takes place on a timescale comparable to the re-thermalization time (some
ten of ms). In presence of a tight lattice, the two peaks remain instead on the two
sides of the potential for a very long time. In Fig. 4.6, we show absorptionémaf)
bosons at = 6 for different holding times. Bosons decay toward the trap center on a
time scale ofl s. This decay is due to collisions between bosons which allow a hop-
ping between different states, as will be discussed in detail in Chap. WeWo, if
we repeat the measurement using a shallow lattice we observe a substartalsg
of the two-peak lifetime. Note that if we repeat the same experiment using @ afou
spin-polarized fermions this effect is obviously absent.

The usefulness of our spectroscopic method is connected to our abilityntivee
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Figure 4.7:Energy distribution of localized states. Scan of the rf figltbugh the cloud
of thermal bosons. The indicated frequencies are the upgguéncyy, of the rf field, the
bandwidth of the field is 3 kHz. The images are taken after Js%ime of flight.
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Figure 4.8:Momentum distribution of the localized states. Fouriensfarm of the eigen-
states of Fig. 4.1. The red states lie within the first banel gtteen state is the lowest state of
the first excited band. The blue curves describe localizagst

selectively the undesired states with the rf-knife. In Fig.4.7 we repoeriass of
absorption images where we have scanned the rf field fixing the freglirtecval

Av = 3kHz. Increasing the rf frequency we start to remove atoms from theroeite
the trap. The hole in the spatial distribution deepens, until the lower fregumund

is higher than the resonance frequency at the trap bottom: atoms in the aenter
longer removed from the potential and we observe three clouds. Thelceloud
corresponds to delocalized atoms in the bottom of the first band while thel latera
cloud are due to particles localized in the higher energy state. By furthexaisiog

the frequencies, the displaced peaks disappear and the cloud is agtieciad by

the rf-knife.

These measurements clearly prove that the atoms in the two clouds are tnapped
localized states and that the rf field addresses the atoms in a defined sgadal r
As we will discuss in next sections, we are also able to detect the localizdtiba o
atoms by looking at the center of mass of the whole cloud [50, 51, 48].

So far we have investigated the spatial distribution of atoms. Equation 4.8 give
also the possibility to study the momentum distribution of the localized states which
provide useful information on the system. For a potential depth-ef3 we have cal-
culated the Fourier transform of the eigenstatés). Our findings are summarized in
Fig. 4.8 which shows the momentum distribution for selected eigenstates within the
first and second band. The lowest eigenstate shows the well knowrdjsti@bution
at multiples of twice the Bragg momentum. As shown in Fig. 4.9, this momentum
distribution can be directly observed using an expanding Bose-Einsteifensaté

“After a long expansion time, the imaged profile corresponds to the momatistribution of the
cloud in trap.
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Figure 4.9:Interferogram of a Bose-Einstein condensate loaded indhthined potential
with a lattice heights = 5. A) Absorption image of the cloud aft&9.5 ms of expansion.
B) Experimental momentum distribution (crosses) obtaiinenh the absorption image. The
wings of the central peak result from a small thermal compan&he continuous line cor-
responds to the calculated density profile for the expandedensate for the experimental
parameters [130].

Indeed condensed patrticles fulfills the requirement of macroscopi@ation of the
lowest energy state which is clearly delocalized. The width of each peakgerla
with respect to the one expected from Fig. 4.8 because of the boson-tmesan filed
interaction which spread the distribution in momentum space.

Coming back to Fig. 4.8, as soon as atoms occupy upper energy leveks, thes
peaks broaden and develop a substructure. For even higher digenvae found
again localized states, whose distribution in momentum space spreads ofiestthe
Brillouin zone pg). All localized states arrange themselves in a similar way, re-
gardless the energy of the state. Eigenfunction at the bottom of the skanddare
again delocalized and their Fourier transform exhibits narrow peaks imtmaen-
tum space shifted by the Bragg momentum with respect to the ones foundefor th
ground state (349 eigenstate in Fig. 4.8).

The optical lattice provides to the system an extra confining energy only axibe
direction while in the the radial direction the cloud has a pure harmonic momentum
distribution. Consequently, localized clouds are expected to exhibit anteopg
expansion. In Fig. 4.8 (b) we show an absorption image of a localized elfted
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2p, 2p,

Figure 4.10:Absorption image of a cloud of atoms which was prepared withritechnique
after 10 ms time of flight (a) fos = 3 (b) for s = 9.

10ms time of flight fors = 3 ands = 9. Fors = 3, we measure a radial-to-axial
aspect ratio oR.5 which is notably different from the one found for a harmonically
trapped cloudR, /R, ~ 1). This value confirms the high anisotropy of the system in
presence of an optical lattice and indicates the nonclassical momentum diistribu
of the localized states. Fer= 9 the cloud expands much faster in the direction along
the lattice (horizontal direction) revealing the larger ground state enbrdged we
calculate a 2 times larger momentum distribution §o= 9 with respect tos = 3
which leads to a nearly isotropic expansion.

4.3.2 Localization and addressability

The degree of localization of particles is a crucial point for the possitpécgtions
of our spectroscopic method. This kind of information can be extracteddkjrig
directly at the extension of such localized states. In general, the extethe@mds
both on the local gradient provided by the parabolic confinement andeolattice
height. Since our theoretical model gives the possibility to scan a largeahtditat-
tice heights, we can investigate the behavior of bosons/fermions starting from a weak
binding regime up to a Mott insulator one. In Fig. 4.11a, we plot the behai/guah
extension as a function of the lattice height for three different enerdmshveorre-
spond to three different potential gradients. For low lattice, our stateloeabkzed
in space over several lattice sites (the size of a lattice site is ab@ut- 0.4 pum).
Increasings, the number of sites involved decreases until just one site is occupied.
Fig. 4.11 (a) also shows that localization is enhanced at high temperahisae$ult
is somehow counterintuitive if one misses the knowledge of the energy spectr

Note that interband transitions reduce the degree of localization of ous.state
particular, tunneling process between bands are strongly enhandeallowslattice.
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Figure 4.11:(a) Extension of the localized states in the first band in ddpece on the
lattice height for three energiek x 100 nK, k5 x 200 nK, andk g x 300 nK). (b) Tunneling
between the bands: density distribution of the 594th eigé@$or a potential witls =0.3.
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As an example, we report in Fig. 4.11 (b) the density distribution of an exsitad

for s =0.3. It turn out that a particle in such a state exhibits substantially contribu-
tions from both the first and the second band. On the one hand indeedtticdep
has a finite probability to be localized on the right side of the first band while on
the other hand it also has a probability to be delocalized in the bottom of the sec-
ond band. The latter effect yields to an increase the extension of ous.s&tites

like the one reported in Fig. 4.11 (b) can no more be identified with those of the tw
classes reported above, and one should run back to the concegbolnees (see
Sec. 2.4.3). These results provide a tight link with Wannier-Stark resesamhich

are completely localized until the probability of transition to higher band carebe n
glected and stretch themselves for high interband tunneling rate (low s)tliNabter
even weaker lattices, the eigenstates become one of a pure harmonic ascillato
Increasing the depth of the optical lattice, the extension of the localized btaiks
(Fig. 4.11a) and the smallest possible extension is given by the groundnsésteh
lattice site. For our parameters we find that fot 30 the eigenstates are mainly lo-
cated within a single lattice site. This result is of particular interest becausevitss
that a localization of the particles within one lattice site is possible without a repul-
sive interaction which was need in the Mott insulator experiment [45] .dddi an
atomic Fermi gas is loaded in this combined potential an occupancy with exaetly on
atom per lattice site can be achieved due to the localization imposed by the harmonic
potential [53].

Another intriguing consequence of the localization is the addressability giedist-

tice sites. The gradient of the parabolic potential let to different resmneonditions

for an atomic transition in dependence of the lattice site considered. In topr the
magnetic potential leads to a spatially varying Zeeman splitting withinfhe 2 >—
manyfold and thus a very weak radio frequency should allow — in princifbe the
manipulation of the atoms within one lattice site. To get a reasonable discrimination
and a sufficiently high Rabi frequency, the resonance condition batadgcent
lattice sites should be shifted by something about 10 kHz which would reqgiee a
dient of 300 G/crP. Thereby a linear potential is more favorable than a parabolic
one where the frequency shift is changing along the lattice. For wellateBrper-
imental conditions it would be also desirable to have an optical confinemeng in th
radial direction because otherwise particles with lower axial but highialranergy
might also be resonant with the radio frequency.

SFor this gradient, the required lattice height for a localization within one latticesilea simulta-
neous suppression of Zener tunnelling is- 10.
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4.4 Insulating behavior of fermionic localized state

So far we have investigated both experimentally and theoretically the statstasey

of an atomic gas trapped in a combined parabolic and periodic potential. Irethis s
tion, we will instead study the response of such a system to an extertaizion.

In particular, we look at the center-of-mass oscillation of a Fermi gas whiejected

to a sudden displacement of the harmonic trap. To describe the time-evolfition o
our delocalized/localized states, we adopt a semiclassical approach pvbigties

a more physical insight on the problem. All the measurements reported bedow a
referred to a spin-polarized Fermi gas, well beldw. Whereas the statistical na-
ture of our atomic sample would not introduce modification on the single-particle
energy spectrum, the dynamical properties are strongly affected lsjbjpter-
species collisions acting as a dissipative channel which could carry stensput of
localization, as we will show in Chap.5.

For sake of clarity, we will introduce at first the semiclassical model usdddoribe

the system and then our experimental procedure and finding.

4.4.1 Semiclassical model

As already stressed, a spin-polarized Fermi gas is a completely noretiigrays-
tem. The many-body Hamiltonian can be thus simply written as a sum of single-
particle Hamiltonians (see Sec.4.2). As usual, we restrict ourself to the HD ax
problem to study the dynamics along the lattice. In a semiclassical apptotiuh
effects of the periodic potential can be taken into account just by amediaation of
the atomic mass»¢ — m™* and thus% — &(pz)) while the harmonic confinement
generates a driving field. Using this one-dimensional semiclassical maqlgy &)
becomes

Hy=c(ps) + %mwsz. (4.4)
Starting from Eq. (4.4), we are interested on the response of a Ferru gasidden
displacement of the harmonic trap center. The new Hamiltonian with the displaced
harmonic trap is thus

1

H =¢e(ps) + §mw2(m —z4)2 (4.5)

®This approach can be used provided that the harmonic oscillator lengthdis karger than the
lattice spacingl = \/2



102 Localization in a combined periodic and harmonic potential

- 3

—m/2
p X a2

/4

=

o

—T/4]

—n/2
2

Figure 4.12:Phase trajectories for a trapped 1-D Fermi gas in a latti#e-at0, just before
and after the displacement of the trap (figs. A and B, resgedg)i and their dynamical
evolution (figs. C and D). The ordinate and abscissa are its wfip, = P,d/2h and

X = /mwiz?/49.

If the displacement; is small compared to the size of the atomic cloud, we can
neglect the quadratic term i. In the linear regime of perturbation

1 1

§mw2(:c —24)? ~ §mw2x2 — mw3zzy, (4.6)
and the total Hamiltonian can be written as a sum of the unperturbed andogektur
Hamiltonian:

H(xvplvt) = HO(ajvp:C) + Hpe?“t(x7t)' (47)

Since we suddenly switch on the perturbatiort at 0, the perturbed Hamiltonian
Hyert(z,t) corresponding to this excitation is:

Hpert(2,t) = mw2O(t)zz,, (4.8)

whereO(t) is the unit step function. As soon as the parabolic trap is displaced, the
center-of- mass$z(t)) of our gas starts to oscillate in the combined potential. The
equation of motion forz(¢)) can be derived by applying a first order perturbation
theory (i.e. linear perturbation) to the well-known Liouville equation

8f +{H,f} =0, (4.9)

wheref = f(x, p., t) is the distribution function of our Fermi gas.

If we consider the unperturbed system, Eqg. (4.9) leads to an equilibriuribdison
function fo(z, p;). In the linear regime of perturbation, we can consider solution of
the type:

f(-rapmat) :f0($>px)+g(xapxat)v (410)
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whereg(x, p,, t) is a small time-dependent correction to the equilibrium distribution
fo- By introducing the ansatz (4.10) in the Liouville equation (4.9) and expandin
the Poisson bracket, one finally finds [131]

ag(w,px,t)Jr@é(px) 9(z, pg,t)
ot Ops ox

0 t
—i—mng% —mw20(t)zg
xT

The Liouville equation becomes thus a differential equation whose solutodes
the perturbed density distribution Once f(z, p,, t) is found, one can study the
center-of-mass motion of the gas according to the equation

+oo +oo
GOy = [ o [ dpay (o) (4.12)

The problem is clearly simplified if we deal with a single-band system in tightibgnd
approximation. In this limit, the energy dispersion for a pure periodic potetatiak
the simply expression

e(ps) = 25%#(%), (4.13)

whered = \/2 and26 is, as usual, the bandwidth. If one introduces Eq. 4.13 in
the Liouville equation, it is possible to finflx, p., t) and thus the evolution of the
center-of-mass. However, one can also extract several useduafriafion by looking

at the energyy of the system. In particular, one can get the isoenergetic trajectory
diagram in phase space. In presence of the parabolic potential, thgy ener

E = 25sm2(%l) + %mwixz (4.14)
is a constant of motion, i.e. no dissipative mechanism is present in our teradting
system. One can thus draw the isoenergetic orbits inithe )X plane. Such a sin-
gle particle orbits are reported in Fig. 4.12, for our experimental paramelde
can distinguish two different kinds of trajectories corresponding to thectasses of
states found by solving numerically the full-Hamiltonian (4.2). These two kirids o
orbits are separated by the dashed orbit with enérgy 2§. A particle with energy
within the first band £ < 26) occupies alosedorbit in the phase space. A fermion,
moving in such a trajectory, starts to oscillatezitspace around the trap minimum
as soon as the harmonic trap is shifted. Indeed, in closed orbits, the kinetigye
can be fully converted in potential energy and viceversa. In the full riaaly ap-
proach (see Sec. 4.2.1), a particle in a closed orbit corresponds teltealkized
particle, described above. On the contraryFif< 26 a localization take place and
particles move in phase space alamgenorbits which are the semiclassical analo-
gous of localized states. Particles in these open orbits can just oscillate siderof
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the potential without passing through= 0. The kinetic energy can never be com-
pletely converted in potential energy. Localized oscillations are equivaddsloch
oscillations observed when a linear driven potential is applied, as weshawen in
Chap. 3.

Note that, in general the oscillation frequency of both kinds of orbits stzostsong
dispersion with energy.

As shown in Fig. 4.12A, the Fermi gas’At= 0 uniformly fills the phase space re-
gion with energy belowFr. A sudden displacement of the center of the harmonic
potential corresponds to a shift of the center of the phase spaceigsdel2B). The
blue region contains particles that are still in equilibrium in the new configuratio
the trapping field. The red and yellow regions, containing particles movirdoze
and open orbits respectively, are instead out of equilibrium and gigdaia collec-
tive dipole motion. The phase space region opens and melts during the dgrasmic
a consequence of the energy dependence of the single particle osciitatjoaency
(see figs. 4.12 C, D), yet leaving constant the phase space volunsugeeof the
Liouville theorem) and therefore preserving the Pauli principle.

As we will discuss in next section, the center-of-mass motion of the Fermisgas
damped due to dephasing between atoms. In particular, red orbits dephase
longer time scale with respect to the yellow ones. Therefore, the relaxatibtha
frequency of the oscillation mode are dominated by the particles moving atband
center of the phase space, in the red region. Note that yellow orbits repirdoir-
ing all the system evolution. This leads to a trapping the center of mass ofstesrsy
on one side of the harmonic potential.

In the one-dimensional semiclassical model, the damping of the oscillation disap-
pears in the linear limit (small initial displacement)Zat0. To describe the dynam-
ics of the Fermi gas produced in our experiment, we need a three dimdmsiodel
[50]. The step described above to derive the center-of-mass motidmecaxtended
to the 3D case. A full description can be found in [131].

4.4.2 Center-of-mass dipolar oscillation

We now report on the observed behavior of a Fermi gas when the herrmap
minimum is shifted in the direction of the lattice. We also compare our finding with
the 3D semiclassical model developed by S. Stringari and coworkey $031
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Figure 4.13: Sketch of the experimental procedure to induce a dipolaitlasen in the
combined periodic and harmonic potential.

Experimental procedure

All the measurements reported below are performed with a Fermi gas in thénsanb
harmonic and periodic potential. Our sample is composed typicallg. by 10*
atoms of*’K at a temperature that can be varied betwe@i andT, where the
Fermi temperature i$r =~ 300 nK. The lattice has here a wavelength8sf3 nm.
The lattice height can be adjusted in the rabige: 0.1 — 8Er, whereER /kp = 317

nK. To excite a dipolar mode, we displace the harmonic trap minimum along the axial
direction [132], as illustrated in Fig. 4.13. The cloud is thus out of equilibriund
start to oscillate. The typical displacementjs=15 ;m which is much smaller than
the 1£2 radius of the cloud (11@m). After a variable evolution time in the trap the
atoms are released from the combined potential. We detect the position ohtee ce
of mass of the cloud by absorption imaging after a ballistic expansion of 8 ms.
The figure (4.14) shows the dipolar oscillation of the Fermi gas both in pcessaf

a lattice withs=3 (solid circles) and with a pure harmonic trap (open circles). To-
gether with our experimental data, we also report the theoretical predititre
semiclassical theory (solid line) which well describes our finding. The ewis@n
between these two set of measurements reveals the strongly modified beffidvé
system when an optical lattice is switched on. In presence of the latticefsat of
appears in the oscillations. According to the above discussion on the ppase,
we ascribe this offset to the significant fraction of particles moving aloren ap-
bits. For the given parameters the Fermi energy is indeed larger thanrteidsh

20 ~ 0.4EF. This localized fraction of fermions behaves macroscopically as an in-
sulator, because its center of mass does not move under the harmoaibtibstays
trapped on one side. The fraction of the gas occupying closed orbiiast@ad os-
cillate in the harmonic potential, and has therefore a conducting nature. Airgmp
appears as expected because of the dephasing between difféientAlso, the os-
cillation frequency is reduced because of the larger effective masseaitdms in
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Figure 4.14:Dipole oscillations of the Fermi gas 6fK atoms atl’ = 0.3 T in presence

(filled circles and full line) and in absence (empty circlesl @otted line) of a lattice with

heights =3. The lines are the theoretical predictions, the circledtae experimental results.
The horizontal dot-dashed line represents the trap minimum

the lattice. As discussed in Sec. 4.4.1, a fermion can oscillate or stays trapped
one side of the potential whether its energy is smaller or larger2baBkxperimen-
tally we can adjus2d by changing the height of the optical potential. In this way
the Fermi energy moves within the energy gap between the first and seanddf
the lattice. We have therefore performed a series of measurements bgdkéep
atom number and temperature of the Fermi gas constant, and varying jlestitee
height. In Figs. 4.15-4.16 we plot the measured dependencies of tie¢, difsnping
rate and oscillation frequency from the lattice heighin particular, Fig. 4.15 shows
the crossover from a conducting behavior in low lattices (most of the festias

an energyF < 246F) to an almost completely insulating behavior in higher lattices
(E > 20E). The relative oscillation offset defined as,./xo, wherex,. is the cen-
ter of oscillation of the system in the lattice, increases by increasing the latigig.he
Note how the relative offset, which represents the insulating fraction éfehai gas,
stays small as long a9 2 Er, and then raises quite rapidly towards unity. Since in
the present experimeitr ~ Er, an insulating fraction appears already with low lat-
tices; the theory however shows that the threshold for the insulation mowéghier
lattices in case of smaller Fermi energies (dashed line in Fig. 4.15). Theeisagnt
between experiment and theory at low lattice heights, 3, can arise from the pop-
ulation of higher bands due to the finite temperature and/or Landau-Zemailing.
Indeed, the semiclassical model is built up in single-band approximatioredsiog

s, the energy gap between bands increases, and the single band calsldatome
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Figure 4.15: Relative offset of the oscillations of a Fermi gas in thei¢at{normalized to
the initial displacement) as a function of the lattice heigfhe circles are the experimental
data and the continuous line is the theoretical predictioi3% 10* atoms afl’ =100 nK. The
dashed line is the prediction for a Fermi gas of218% atoms af’=0.

more realistic. In Fig. 4.16 we instead show the observed features of rideiciing
fraction of the gas. The damping rate of the oscillation (Fig. 4.16a) alsoasese
with the lattice height, because of an increased dispersion of the oscillagiqunein-
cies of atoms in closed orbitsIn Fig. 4.16b, we report the oscillation frequency of
this oscillating which is close to that expected for a particle moving at the bottom of
the band with a renormalized mass.

As a consequence of the Pauli principle, which keeps the energy digiribu
broad, a spin-polarized Fermi gas exhibits an insulating behavior evéntatNote
that the phenomenology observed with a Fermi gas only weakly depena: gash
temperature, at least in the region 0.Z*d that we have explored so far in both exper-
iment and theory, and in general we observe an increase of both affdelamping
for increasing temperatures, as expected because of the broadpr éis&ribution.
As we will see in Chap. 5, this behavior is somehow opposite to the one exhibited
by thermal bosons in which interparticle collisions enhance the conductiomhiato
system.

45 Delocalized states: Bose-Einstein condensate

The Pauli principle keeps the energy distribution of spin-polarized fersriimoads
in the combined potential even at zero temperature. As a consequencét iviridy

"fermions are in several closed orbits corresponding to differeiiltatgm frequencies which con-
tribute to the dipole motion in different way
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Figure 4.16:A) Comparison between theory (line) and experiments @#jdior the damping
rate of the dipole oscillations of the Fermi gas as a funatifdhe lattice height. B) Oscillation
frequency of the Fermi gas as a function of the lattice heighe line is the expectation for
a particle oscillating at the band bottom.

ing regime, a fraction of fermions will always occupy localized states whilether
fraction will remain in delocalized ones. The dynamics of the whole system $s thu
affected by both components which behave differently, as discussed prekious
section. To investigate the transport properties of just delocalized stat®, peobe

the renormalization-mass theory, a good approach is to use a Bose-Eaustdan-
sate as atomic sample. Indeed, due to its narrow distribution in both momentum and
coordinate space, condensed bosons occupy only energy level& witl2§ (delo-
calized states) experiencing a harmonic potential with a frequency modifigteb
presence of the lattice [128, 129].

To confirm this expectation we have studied the maodification of the low-lying col-
lective modes of a harmonically trapped BEC due to the presence of a iddiper
potential. In particular, we examine the axial dipole and quadrupole modiee bm-
perturbed system, these excitations correspond respectively to théreigemcies

wp = w, andwg = \/gwa [14], as comes out from the hydrodynamics equation
of a superfluid [133]. Stringari and coworkers have shown that ylokeddynamics
equation can be still applied also in presence of an optical lattice. This éttens
is possible by substituting the atomic masswith an effective mass:* which ac-
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Figure 4.171nthe upper part we show absorption images taken afteliegtfte quadrupole
mode of a condensate in the combined trap With, = 3.4 E, and waiting different evo-
lution times (10,40,60,80 and 100 ms) before switching o trap and letting the cloud
expand for 29 ms. In the lower part we show the evolution ofAkpect Ratio &, /R, ) of
the condensate obtained from the absorption images tageitiea sinusoidal fit to extract
the frequency of the mode.

counts for the modified inertia of the gas due to the lattice. In the linear regime of
small amplitude oscillations, the new frequencies in presence of an opticas katéc
simply obtained by replacing the axial magnetic trap frequencwith w,/m/m*:

wp = ), (4.15)
m

wg = —Wg.-

Note that, modes occurring in the direction perpendicular to the one of theabptic
lattice are clearly unaffected by the lattice. In our experiment, we can ditestithis
theory by measuring the frequency of the dipole and quadrupole modkiasten

of the optical potential depth

Dipole and quadrupole mode

To perform measurements on these low-lying excitations, we employ a Bosteib
condensate 6f'Rb atoms inF = 1, mp = —1. The axial and radial frequencies of
the harmonic trap are now, = 27 x 8.70 Hz andw, = 27 x 85.7 Hz, respectively.
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Figure 4.18:Frequency of the quadrupole mode of a condensate trappée icombined
potential (harmonic magnetic trap + 1D optical lattice) aiuaction of the dipole mode
frequency measured for different values of the opticaidattiepth from QF,. to 4.1 E,.. The
frequencies of both the modes, characterized by a dynarung #he optical lattice, show
a marked dependence from the optical potential depth. Teeréipresent a linear fit with a
slope of1.57 4 0.01.

The wavelength of the optical lattice is chosen to be far detuned with respalit

the atomic transitionX = 757 nm).

We induce a dipolar oscillation, by suddenly displacing the position of the trap min
imum alongz and observing the center-of-mass motion as a function of time [39].
Typical initial displacement used is 30 yum. The quadrupole mode is instead ex-
cited by perturbing the magnetic bias field [134]. This is done by applyingfigks

of resonant sinusoidal modulation at a frequency closg/@up. The quadrupole
mode is a zero angular momentum mode corresponding to an in-phase oscillation
of the width along the radial direction and an out-of-phase one atongypical
quadrupole oscillation is represented in Fig. 4.17 where, in the uppemgshow
images of the expanded condensate taken at different times after theierqita-
cedure and in the lower part we report the measured aspect ratio togathe¢he
sinusoidal fit. Since’p andy are expected to scale in the same way with the optical
potential depth (see Egs. (4.15)), we report in Fig. 4.18 the quadrupotke fre-
guency as a function of the dipole mode frequency varying the lattice heigitam

a linear fit of the data we obtain a slopelo§7 + 0.01 in very good agreement with
the theoretical prediction of/5/2 = 1.58. These measurements demonstrate that
the transport properties of a trapped BEC in the presence of a periot@ict@al can
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Figure 4.19:Effective mass values extracted from the dipole mode frequéopen circle)
and from the quadrupole mode frequency (closed circle) ametibn of the optical lattice
height. The continuous line represent the theoreticalecfnym [128] obtained neglecting
the role of the mean field interactions, while dashed andeddihes corresponds to the
values obtained in [135] numerically solving the Gross&\iskii equation and evaluating
the effective mass from the quadrupole and the dipole madgiéncies.

be described generalizing the hydrodynamic equations of superfluids.

Following Egs. (4.15), from our data we can also extract the value offfeetige
massn* as a function of/,,;. The results obtained from both the dipole mode and the
guadrupole mode frequencies are reported in Fig. 4.19, together withetbestical
predictions reported in [128] (continuous line). Even if this theoreticales have
been obtained neglecting the mean field interaction and the magnetic confinement,
the agreement with our data is very good. In fact, in the regimeégfexplored in
our experiment, the effect of interactions is negligible as also confirmedeyirtbct
solution of the Gross-Pitaevskii equation (dashed and dotted line in Fig.[433).

For "large" amplitude oscillation, the system shown an instability resulting frem th
interplay between dispersion and nonlinearity [127, 136, 137].






Chapter 5

Conduction of a Fermi gas in the
combined potential

Analogy denotes a resemblance not between
thinks but between the relation of things.
W. S. Javons

In the previous Chapter, we have investigated the features of a noadtibey
atomic Fermi gas in a combined periodic and harmonic potential. In particular, we
have demonstrated both experimentally and theoretically that such combitezd po
tial admits two different classes of solutions, named delocalized and localaess.
Under an external driven force, fermions in localized states act asalator system.
This result provides a straightforward link with the well-known theory afdaction
in metals. Indeed, electrons subjected to a linear potential occupy localizedi&-
Stark states (see Chap.2) and this localization yields again to an insulatingdseha
In the absence of interactions, electrons in Wannier-Stark state camauge their
guantum state and the whole system behaves like an insulator for DCtsutreny-
ever, this scenario is far from the real physical situation encounteretetals in
which electrons strongly interact with lattice phonons and impurities. Indbed,
localization is somehow "destroyed" by collisional mechanism and a magiosco
current is established. In particular, at the onset of interactions, asaisiog colli-
sional rate is expected to favor a current through the lattice wheremghatdilisional
rate the current is hindered by collisions. The latter regime is the usuaboselids
where the conductivity decreases linearly with increasing collisional vatde the
limit of low collisonal rate, where the role of collisions is reversed, is expertaily
not accessible in solids. Nevertheless, this regime can be achieved byyamgplo
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semiconductor superlattices which exhibits the spectacular phenomengaivae
electric conductivity [138, 139, 140, 141].

The aim of our experimental work reported here is to study the transparEermi

gas subjected to an external force when collisional channel is pré@senbosons).

This investigation allows us on the one hand to go further in the comparisour of 0
atomic system with a solid state one and on the other hand gives the possibility to
reach low-collisional regime not accessible in the physics of solids. kerafeclar-

ity, we summarize below our main results while a detailed discussion can be found
in the sections.

5.1 Outline

In this Chapter, we move from an ideal Fermi gas, already describedap.Ch
to a cloud of fermions interacting with a Bose gas (Sec. 5.2.1). We obsextvéhth
behavior of our Fermi gas changes dramatically in presence of the digsipiaannel
provided by collisions with bosons. In particular we will show that, undexdarnal
driven force, a dc fermionic current can be established only in peesafrinteractions
(Sec. 5.2.2). Furthermore, the dependence of the transport veloditg @ollisional
rate gives evidence of the two regimes of negative and positive conitiyetiready
expected but never observed in metals. Finally, we also report the csopaf our
findings with a model first introduced for electrons in superlattices whiobals the
importance of dissipative mechanism on the transport (Sec. 5.2.3).

The main results reported here can be found in our publication:

e "Collisionally Induced Transport in Periodic Potentiald. Ott, E. de Miran-
des, F. Ferlaino, G. Roati, G. Modugno, and M. Inguscio, Phys. Rsit. 92,
160601 (2004).

5.2 Transport of localized states assisted by collisions

5.2.1 Experimental procedure

The experimental procedure to produce a mixture of ultra cold fermitticand
bosonic®”Rb atoms in a combined periodic and harmonic potential has been already
described in Sec. 1.3.1 and 4.2.2.

All the measurement reported below are carried out with mixture of fermiods a
bosons at temperatures betw@ef and400 nK. The number fermions can be varied
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betweer2 x 10* and10° which corresponds to a Fermi temperatur8@f — 400 nK.
Since we want to add interspecies collisions in a controllable way, we neeljlist a

the number of bosons in the mixture by changing the final ramp of the radjodrey
evaporation. We can also remove bosons using a sweep below the trap.bdgtite

that the temperature of the mixture is always above the critical temperatuBeder
Einstein condensation. We use a laser light to produce the lattice with a wagtrelen

A = 830 nm, corresponding to a recoil ener@y = h%k?/2m ~160nkK, in unit of

kp. Since we want to study the evolution of localized states in presence of a colli-
sional mechanism, the temperature of the samples is chosen to be comparadle to th
recoil energy which yields a significant occupation of the localized stdtes.typ-

ical 1/e2-radius of the cloud in the direction of the latticeli0 zm corresponding

to roughly 250 lattice sites. We remind that, in the two radial directions, the atoms
occupy the radial harmonic oscillator states.

In order to study the transport of the particles along the lattice, we exciteotadip
mode in the Fermi gas. The magnetic trap is thus suddenly shifted in the direction
of the lattice by a fraction of the extension of the cloud (displacemgnt As al-
ready discussed in Sec. 4.4, the harmonic confinement acts like an tigiddréng
potential (see Fig. 4.13). Finally, we monitor the dynamic of the Fermi gas leytak
absorption images of the cloud for different holding times in the combined paten
and we obtain the center-of mass (CM) position of the cloud by fitting the whder
atomic distribution.

5.2.2 Center-of-mass dipole oscillations

The evolution of the CM for an initial displacement of = 35 um is shown in
Fig. 5.1b. The open circles show the motion of a pure fermionic sample. Ttek fille
squares show the evolution of the fermionic sample in the preseri@é bbsons. As
showed in Sec. 4.4, non-interacting fermions in a combined potential belseae
insulator (open circles) and their evolution is characterized by the follofeiaiyres:

1. Offset The offset is due to fermions in localized states (open orbits) which
stay trapped in one side of the potential after the displacement. These fermion
can not change their quantum state since any dissipative mechanismris abse

2. Damping The damping is due to fermions which still occupy delocalized states
(closed orbits) and can thus oscillate until dephasing mechanism waghies ou
motion. The dephasing, which set the timescale of the damping, arise from the
different frequencies of fermions in different orbits.
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Figure 5.1:Evolution of the center of mass (CM) position of a cloud ofrfisans. A pure
fermionic sample (circles) does not move to the trap cemtieereas an identical sample with
an admixture of bosons reveals a current through the patdstjuares). The data are fitted
with a sum of an exponential decay and an initial damped|lasicih as described in the text
(continuous lines). The expansion time of the cloud s and the lattice height is = 3.
The temperature and the atom number of the fermion&ase300 nK andN = 5 x 10*, the
number of admixed bosonsiés = 1 x 10°.

3. FrequencyThe oscillation frequency of delocalized fermions is reduced with
respect to the trap frequency due to the large effective mass expaibgc
atoms in the lattice.

Note that for such a non-interacting system, only Landau-Zener tunnelbogd be
able to modify the behavior of localized atoms. Nevertheless, for our iexpetal
parameter, this effect is negligible. The offset cannot vanish and #terayis insu-
lating.

As soon as we introduce in the system a mechanism which allows fermionsigecha
their quantum state, the dynamical behavior of the gas strays dramaticatiytHeo
one just illustrated. We add to the system a cloud of bosons which interat-attr
tively with the Fermi gas. Interspecies collisions allow the fermions to hop legtwe
different localized states. The fermions rapidly move towards the equilibpiosi
tion of the potential. This macroscopic transport corresponds to a DC current. To
quantify this current, we fit an exponential decay to the long time tail of the &ata
fermions in the mixture we find a decay timeof= 260 + 30 ms, whereas for the

!Due to a heating of the radial degrees of freedom the axial extensiore aiahd in the mixed
system increases. Because an existing anharmonicity of the trappimgiglagifts the center of mass
for increasing temperatures, the cloud remains slightly above the equitilpasition.
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Figure 5.2:Decay timer of a cloud of fermions in a mixture with bosons in dependence
on the collisional rate (dots). The number of fermionsVis= 50 000 with a temperature

of 350nK. The number of bosons was changed over more than one ordeagfitude.
The lattice height for the two species was = 3 andsgry = 9, the initial displacement was
x4 = 35 pm. The solid line is a drift time, calculated from Eq. (5.1) &inear potential with
Bloch oscillation frequencywg = 27 x 355! (see text). For comparison, the theoretical
curve is multiplied with a factor of three.

pure fermionic sample the decay time is longer thanwhich is comparable to the
lifetime of the atoms in the optical potential. This experiment proofs that in a per-
fect lattice interactions between the particles are needed to establish a coparos
current under an external force.

5.2.3 The Esaki and Tsu theory works here ?

Fig. 5.1 clearly shows that collisions with bosons drive the Fermi gas toavéwmel

cal equilibrium into the minimum of the potential. To investigate this mechanism in
more detail, we can repeat the same experiment for different numbesohsa the
mixture which also yields to a change in the collisional rate. In Fig. 5.2 we trepor
the decay time of the offset of the fermionic cloud as a function of the collisiona
rate. The number of bosons is changed frbfx 10* to 3 x 10° corresponding to a
change in the interspecies collisional rate betwg@s ' and550s~!. The average
collisional rate is calculated taking into account the spatial overlap of botidslo

in the combined potential. Increasing collisional rate, we observe a fastay af

the offset which corresponds to a decrease of the decay time. This {sonba&x-
pects if the collisions assist the hopping between different localized sttesigh
collisional rates, the experimental data show a slight increase of the tismawith
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increasing collisional rate. In this regime the number of bosons is much Higgaer
the number of fermions and the bosons can be regarded as a thermabibtth f
fermions. The fermions exhibit a drift motion and the collisions with the bosons im-
pede the current through the potential like in a electric conductor.

A similar behavior has been observed in semiconductor superlatticesl3%8 Dif-
ferently from usual metals, the period of a superlattice turn out to be smaietlile
electron mean field path. One may expect to observe in these systems sieogyg e
dispersion effects which are hidden by collisional mechanisms in common metals.
In semiconductor superlattices, the current through the potential desradoen the
applied voltage is increased and the system exhibits a negative differeoridlic-
tivity (NDC). This is due to the tighter localization of the electron wave function
which reduces the transition probability of a hopping event between thézieda
states [142, 143]. In our experiment, we do not change the transitidyalpitiy
between quantum states but the rate of transition inducing collisions. Despi#-th
ferent physical mechanism, the drift velocity depends only the produbedloch
frequencywp, i.e. the transition probability, and the collisional rate determines the
final hopping rate. This formal identity allows us to compare our experimeatal
with the theoretical model that was introduced by Esaki and Tsu [138] dorithe
NDC. The authors calculate the drift velocity of electrons in a periodic piaieim-

der a constant external force. They introduce a phenomenologeisog ratey
(relaxation-time approximation) and show that the drift velocity dependseratio

of the Bloch oscillation frequency in the linear potentigl and the scattering rate

ws/Y
_ 51
1+ (wg/v)* &

with vg = MAE/h being the tunnelling speed through the potential A being

the width of the first band. A direct adaptation of the above equation toymardics

is rather complicated because we have a spatially varying Bloch oscillatipneiney
wp(z) and an inhomogeneous system. Note that the spatial dependence of the Bloc
frequency arises from the driven force applied which is linear in spatter than
constant f = mw?z andwg(z) = F(x)d/h). However, we can compare the initial
velocity v; of the center of mass observed in the experiment with the drift velocity
calculated from Eg. (5.1) for a uniform system in a linear potential. To oeter

the Bloch oscillation frequency in this potential, we take the force that initially acts
on the center of mass after the displacement and we identify the scattering rate
with the average collisional rate between the fermions and the bosonsudgeitee
initial velocity of the center of mass is connected to the decay time of the offset b

vd = vo/4
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Figure 5.3:Decay time of a cloud of bosons for different lattice heigftse initial displace-
ment waszq = 10 um. The continuous line is an exponential fit to the data. Thergpt is
given bye /16,

T = x4/v; we can also compare the decay timeith the inverse of the drift velocity

vg. The curve arising from Eq. 5.1 is shown in Fig. 5.2 (solid line).

The issue of the identification of our damping mechanism with the one condidere
in the Esaki and Tsu model deserves some discussion. In semicondujptolas
tices, the phenomenological scattering ratelescribes dissipative scattering pro-
cesses, where the electrons can arbitrarily exchange energy and taomeith an
external thermal bath, such as a bath of lattice phonons. In our systeropnlthe
scattering process present is due to collisions between fermions anisbdsdeed

no energy exchange with the lattice is possible because our optical latties ieffr
impurities or excitations and momentum can only be transferred to the lattice in mul-
tiples of the Bragg momentum via umklapp scattering processes. Nevertheless
the limit Nz > Np, bosons can be regarded as a thermal bath providing a dissipa-
tive scattering channel. For small numbers of admixed bosons and #®bpsbnic
samples, where the assumption of having a thermal bath is questionable,dwe fin
however the same phenomenology predicted by the NDC model. This indicates th
also in this case a dissipative mechanism is still present, possibly related wuthe c
pling to the two radial degrees of freedom. We can conclude that, in spitesof th
simplifications and differences, the Esaki-Tsu model for semiconducperisttices
reproduces well our experimental finding for an atomic Fermi gas intecpwiith a

Bose gas in a combined periodic and parabolic potential.
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5.2.4 Decay and localization

From the above discussion comes out that the transport properties BEoui gas

are determined by the competition between localization and collisions. In Se¢.4.3.2
we have shown that the degree of localization increase with the lattice hejgbe

Fig. 4.11). We now demonstrate that, for a given sample of bosons, trsptnén

of fermions into the combined potential, is slowed down by increasingt this
purpose, we have measured the dependence of the decay time on the &gfite h
s. Our finding are reported in Fig. 5.3. The data show a rapid increases afeth
cay time with increasing lattice height. This can be explained with a reduction of
the tunnelling probability between neighboring lattice sites with increasing lattice
height. In expression (5.1) the tunnelling speed appears as a scaliogftacthe

drift velocity. Even if one takes into account a spatially varying Bloch ogimita
frequencyws (z) and an inhomogeneous scattering rate), the role ofvy does not
change. Thus, we can write for each single particle a differential equatithhe form

/vy = f(ws(zx),v(x)), whose solution scales in the time domain with Conse-
guently, also the behavior of the center of mass scales ayiind the decay time
must be proportional to the inverse of the bandwidth. For a sinusoidahpighe
bandwidth can be expressed in terms of Mathieu functions and we finathatf 10

the bandwidth is well described (the maximum error is smaller than 10 percigmt) w
an exponential drop of the ford E = E;e /38, One therefore expects an expo-
nential increase of the decay time with increasing lattice height. The expdrféntia
in Fig. 5.3 demonstrates well that this dependence is accomplished. We fimaeg-n

ical value for the factor in the exponent of the fitlo6. For other experimental data
sets with different temperatures and initial displacements we derive vaungsg
from 1.5 t0 4.5.

All the results reported in this Chapter allow us to conclude that two cruaal pr
cesses are needed for the macroscopic transport through a periteitigl in the
presence of an external force. The first one is the tunnelling fromlaitiee site
to the next one. However, the coherent nature of the tunnelling préeads to a
localization of the particle. Therefore an additional dissipative processdded to
destroy the localization of the particle wave function. If one of these two arésims
is missing, the system is insulating, as we observe it for non-interacting fesrad
in the limit of deep lattices.
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In this thesis, we concentrate our attention on the behavior of a non-ititgratomic
Fermi gas in presence of an one-dimensional optical lattice. A Fermi ghelg
interesting in its own right, including an optical lattice makes the system evenaeac
Our domain of investigation ranges indeed from single-particle cohereffeets
such as Bloch oscillations to localization effects, and transport phencimggered
by collisional mechanisms.

Two sets of experimental studies have been reported in the thesis. Tlwofirs
cerns the development of a new atomic interferometer scheme which exploits the
absence of interactions in a spin-polarized Fermi gas. The secondésvbl study
of localization effects arising when the periodicity of the lattice is modified besup
imposing a parabolic confinement, and the destruction of such localizatiomtivee
Fermi gas is coupled with a collisional channel.

We have demonstrated an atom interferometer using identical fermionsaxnfin
by a one-dimensional optical lattice aligned along the gravity. We have stiwatn
the evolution of the interference pattern is the analogous of the semiclaBkichl
oscillation. The forces applied on the atomic sample can be directly determined by
the frequencyp of such oscillation. The novelty of our scheme consists in employ-
ing a non-interacting Fermi gas. The absence of interactions allows to fdtlew
time-evolution of the interference for a long time (more than 100 periods);eake
in a condensate the interference is very rapidly washed out by the itbeICAS
an example, we have determined the local gravitational acceleratiming both
a Fermi gas and a Bose-Einstein condensate. The comparison betwserivibe
values reveals at list a one order of magnitude higher precision usingnéofec
sample, which could be however improved in future experiment. Our measuts
demonstrate an interferometric scheme based on trapped fermions whidtepra
high-precision accessible just with Bose-Einstein condensate in frgesion. As
a consequence, our method gives the unique possibility to achieve avsedsier-
mination of forces with high spatial resolution. Possible applications are tdg stu
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of forces close to surfaces and at the sub-millimeter scale where a modificdtio
newtonian gravity could be present [123].

In the second part of the thesis, we have investigated both the grouncisthate
the transport properties of our Fermi gas in presence of a combinéxtljgeand
parabolic potential. We have observed that an inhomogeneous perigditipbex-
hibits a qualitatively different phenomenology compared to a homogengstens
As soon as the translational invariance is destroyed by adding the parnabien-
tial, the atoms can stay localized out of the minimum of the combined potential. In
particular, we have shown that two different classes of states existcalieled and
localized states. We have developed a technique based on a radionfredistd
which induces spatially resolved transitions to remove selectively delocadentid
cle. This technique allowed us on the one hand to get an evidence of acedizde
tion mechanism which is independent from the interaction, and on the othdrtba
demonstrate a scheme to spatially address particles. Going further with eatiinv
gation, we have induced a center-of-mass dipolar motion on the systenplgoitig)
the parabolic potential. We have observed a dramatic difference betweedprtam-
ical response of delocalized and localized atoms which behave as actondod
as an insulator, respectively. The conducting-delocalized fermiorisrpedipolar
oscillations around the trap minima, while the insulating-localized ones stay trappe
on one side of the combined potential. Indeed, localized fermions can mowhénto
combined potential just by changing their energy level. In absence oaatiens,
fermions can not hop between different states due to the conservatimeafy and
the center-of-mass of the cloud remains pinned out of the equilibrium pasiisn
soon as an interaction is introduced in the system, we have observed a B¢ ato
current of localized fermions mediated by collisions. In particular, we bagerved
that fermions rapidly move towards the equilibrium position of the potential. We ha
investigated the dependence of the transport velocity on the collisionalrdien the
lattice height. A comparison with the semiclassical Esaki and Tsu model [1188] in
duced for electrons in superlattices reveals a good qualitative agrealtienigh the
microscopic dissipative mechanism is different.

Our experimental investigation represents the first study on a Fermi gasim-a
bined parabolic and periodic potential. Our results could open diffeersppctives
for future investigations and applications. First of all, recent theoredicalies pre-
dict the existence of aexotic quantum phases diagram which involve interacting
fermions in a three-dimensional lattice [144, 145]. A Mott insulator scheraalsa
been recently proposed by using such a interacting system [45]. Fudhe the
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existence of a localization in a non-interacting Fermi gas suggests the ipystib
create a single lattice occupancy which has important implications in the field of
guantum computing for the implementation of a qubit register [53]. Our spectro
scopic technique to address selectively localized particles could alsddoalexr to
manipulate particles in single lattice sites which would constitute a major progress
in "quantum engineering" with ultra cold atoms. Moreover our studies on dims-tr
port of a non-interacting Fermi gas constitutes above all the foundatiorigrther
investigations on interacting Fermi gas in an optical lattice. Using fermions in two
different spin states and Feshbach resonances to tune their interacioeould in-
deed reach both normal and superfluid phase. The achievement oftirisdgime is
exactly our main goal for future experiments !. In the superfluid phasejmeed ex-
pects a clear modification on the transport along the lattice in analogy withfleugber
Josephson-like oscillations already observed with a Bose-Einstein nsetee[39].

The optical lattice could thus play the important role of probe for the sujpditfiu
[146, 147].






Appendix A

Calibration of the optical lattice

From an experimental point of view, the calibration of the lattice constitutes an im-
portant and ticklish question since most of the measurable quantities depehe o
lattice depth. A precise tool to measure the effective optical potential isqadby
Bragg diffraction of atoms from a grating of laser light. Usually, Bragdtsciag

is referred to the diffraction of an electromagnetic wave interacting with stalrpf
ions. The underlying physical mechanism of Bragg diffraction embed waatige
transfer of the momentum between a photon and a ion of the crystal. A phaton ¢
indeed transfer to the crystal just a momentum which satisfies the followirtgrela

n\ = 2dsin(0), (A.1)

whered is the distance between different plane of the crystalaisthe order of the
diffraction.

In our case the roles are somehow reversed: we study the momentunenraghsf
between a matter wave (for instance a BEC or a Fermi gas) and a gratindgof lig
Due to its optical nature, Bragg diffraction can be also viewed in term of a two
photons transition from a initial ground state to a final ground state with depos
momentumt. This provides a close connection with a Raman transition where an
atom oscillates between this two momentum states with an effective Rabi figquen

0109
Qi = , A2
Rab % (A.2)

where{2; ~ Qs are the frequencies of the two transitions antthe detuning with
respect to the atomic resonance. It is possible to show that from Eq. ¢A€2¢an

A n-order Bragg diffraction corresponds to a ghotons transition.
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Figure A.1l: Calibration procedure of the optical potential based oruged Bragg tran-
sition between a state of momentuthg and one with—hkg. The relative population of
the diffracted peak is plotted as a function of the Bragg eualgration. The effective Rabi
frequency is extracted by fitting the experimental points.

experimentally determine the lattice height

| Udip ‘
QRapi = .
Rabi 2

(A.3)

In unit of the recoil energyl{y = sERr), the lattice deptls can be expressed as

_ 2hQ Rabi

e (A.4)

S

Experimentally we measure the Rabi frequency using the following proeediter
producing a condensate in the center of the magnetic trap, we suddencdisipe
trap along the:-direction by a distancAz = h/(mAw,) which provide a maximum
momentum to the atoms resonant with the Bragg momeritiumA. 1. At this point,

we switch off the magnetic confinement and we turn on the optical standing wav
for a timer. We then image the atoms after a fixed expansion time. As shown in
Fig. A.1, the relative populatioVi /(N + Np) is then recorded as a function of the
pulse duratiorr, where N is the number of atoms which have absorbed the Bragg
momentum2hkp. By fitting the experimental data, we extract the Rabi frequency
and then the depth of the optical lattice, accordingly with Eq. (A.4).

As an example, we also report a typical image of a 2D-Bragg diffractiomgnA:2.
Here we turn on two Bragg pulses both in theandz-directions.
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Figure A.2: Absorption image of a two-dimensional Bragg diffractiompess. The Bragg
pulse is sent simultaneously along theandz-directions.
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