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Introduction

The first experimental realizations of a Bose-Einstein condensate (BEC) by
the group of Eric Cornell and Carl Wiemann at JILA (Boulder, Colorado) [1]
and Wolfgang Ketterle at MIT (Cambridge, Massachusetts) [2] in 1995, opened
up a new era in the field of atomic physics. The existence of a quantum state
of matter characterized by bosonic particles macroscopically occupying the same
single-particle quantum state, had been theoretically predicted by Einstein [3], 70
years before its first observation in the lab. In the long quest for the experimental
realization of Bose-Einstein condensation, a major breakthrough is represented by
the huge progresses in laser cooling and trapping techniques of alkali atoms, to-
gether with the estabilishment of evaporative cooling of alkalis, developed in late
1980’s, which have made it possible to reach the extremely low temperatures, on
the order of ∼ 100 nK, and the dilute regime, necessary for Bose-Einstein conden-
sation to occur in a atomic gas. In 2001 Cornell, Wiemann and Ketterle received
the Nobel Prize in physics for their remarkable achievement.

An enormous interest has arised on BECs since their first experimental realiza-
tions. These macroscopic quantum objects have proven, for instance, to exhibit a
superfluid behaviour through the formation of quantized vortices [4], thus allowing
to test theories developed in the context of superfluid helium. Early studies on
BECs (see ref. [5] for a review) include the demonstration of matter-wave interfer-
ence [6]. In the last ten years, an increasing interest has developed in the ultracold
atomic community towards using degenerate gases for quantum simulation of con-
densed matter physics phenomena. Complex Hamiltonians have been engineered
in BECs thanks to the unprecedented control and flexibility of such systems, not
achievable in condensed matter. Among the theories that have been simulated one
finds the Bose-Hubbard model [7], the superfluid to Mott-insulator transition [8],
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and Anderson localization in disordered media [9, 10].

Although BECs are very dilute systems with respect to solid state systems,
most of their properties are governed by interactions between particles. In the
ultracold regime characteristic of quantum gases, typically the only relevant scat-
tering processes are two-body isotropic elastic collisions (s-wave scattering). The
low-energy scattering is fully determined by a single parameter, namely the s-wave
scattering length. Thus, the details of the real interatomic short-range poten-
tial can be ignored and one can replace the true potential by an effective contact
interaction potential, with the coupling given by the s-wave scattering length.
One of the most prominent properties of ultracold atomic systems is that the
s-wave scattering length can be tuned in experiments, by using Feshbach reso-
nances [11], through the simple application of a homogeneous magnetic field to
the system. Thus, depending on an external magnetic field, the atoms can be
made non-interacting or strongly interacting, and even the sign of the interactions
(attractive or repulsive) can be changed across a Feshbach resonance. Beside in-
teractions, many other system parameters can be controlled in experiments. For
instance, the temperature and density of the gas, and the geometry and dimen-
sionality of the system.

After the pioneering experiments on rubidium (Cornell and Wiemann), and
sodium (Ketterle), other alkali atoms, such as lithium [12], cesium [13] and potas-
sium [14] have been brought to degeneracy in the past years. Moreover, thanks to
advances in laser technology and more sophisticated cooling schemes, many other
atomic species than alkalis have been Bose-condensed: spin-polarized hydrogen
[15], metastable helium [16, 17], chromium [18], ytterbium [19], and alkaline earth
elements such as calcium [20] and strontium [21, 22]. More recently, Bose-Einstein
condensation has been also achieved in the strongly magnetic lanthanides dyspro-
sium [23], and erbium [24]. Among the above listed BECs, particularly relevant in
the framework of my thesis are the BEC of alkali potassium 39 atoms, first real-
ized by the group of Giovanni Modugno at LENS in Florence (Italy) [25], and the
BEC of magnetic lanthanide erbium 166, created for the first time by the group of
Francesca Ferlaino at the University of Innsbruck (Austria) [26], that constitute
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the two systems on which I have been working during my PhD.
Each atomic species brings new ingredients in the physics at play, which orig-

inate from the peculiar properties of the internal atomic structure and electron
configuration. Thus, potassium (K) presents very large Feshbach resonances [27],
which provide a broad tunability of the s-wave scattering length over many orders
of magnitude in this system, allowing to transform the gas from attractive to non-
interacting, to strongly repulsive. This property of K makes it particularly suited
for studying phenomena which require a high degree of control of the short-range
interatomic interactions, such as the many-body localization phenomenon of con-
densed matter physics [28]. This phenomenon, which is essentially the generaliza-
tion of the above mentioned Anderson localization (of non-interacting particles)
in disordered potentials, to weakly interacting systems, is a very general issue,
concerning, for instance, thin-film superconductors [29] and superfluid helium in
porous media [30]. Quantum simulation with K BEC could give insights into the
complex interplay of interactions and disorder in such systems. This is precisely
the long-term goal of the experiment with K in which I have been involved during
part of my thesis work.

Erbium (Er), for its part, presents a large magnetic moment in its ground state,
and therefore magnetic dipole-dipole interactions (DDI) occur in addition to con-
tact interactions in Er BECs. The distinguishing features of DDI are their long-
range and anistropic character, which contrasts to the isotropic and short-range
nature of interactions in conventional (non-dipolar) atomic gases. As a conse-
quence, a wealth of novel phenomena can be studied in dipolar systems compared
to experiments with alkali atoms, as reviewed in ref. [31]. Dipolar interactions
account for many physically and biologically significant phenomena, ranging from
novel phases of matter appearing in ultracold quantum many-body systems, such
as the liquid-like quantum droplets, recently observed in dipolar BECs of Dy [32]
and Er [26], or liquid crystals and ferrofluids in soft condensed matter physics [33],
to the mechanism underlaying protein folding [34]. Of fundamental importance in
the context of this thesis is the prediction, of almost 15 years ago, that dipolar
BECs show a roton-maxon low-energy excitation spectrum, reminescent of that in
superfluid helium [35], and originating from the peculiar properties of the DDI.
Observing this phenomenon in a fully controllable system, such as a dipolar BEC,
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could enlighten new aspects of superfluidity in ultracold matter, hardly accessi-
ble with superfluid helium. Part of my PhD thesis work has been devoted to the
experimental observation of the roton mode excitation in a dipolar BEC of Er
atoms.

Thesis overview

My PhD project developes in the framework of a scientific collaboration be-
tween two leading European research groups in the field of experimental ultracold
atomic physics: the group of Prof. Giovanni Modugno at LENS, in Florence, and
the group of Prof. Francesca Ferlaino at the Experimental Physics Institute of the
University of Innsbruck (Innsbruck, Austria). The first part of my PhD (Novem-
ber 2014 - April 2016) has been carried out in the group of Prof. Modugno, while
in the second part (May 2016 - July 2017) I worked in the group of Prof. Ferlaino.

The goal of my PhD work is to exploit tunable atomic interactions of differ-
ent nature, namely short-range and DDI, to investigate many-body phenomena
in ultracold bosonic quantum gases. During my work in Florence, I have been
involved in the construction of a new experiment, aimed at studying the impact
of weak short-range interatomic interactions on a three-dimensional Anderson lo-
calized system in a controllable disordered potential [36]. My contribution to this
experiment has been at the very initial stage, and consisted in the design of a
new vacuum apparatus necessary to produce a Bose-Einstein condensate of 39K
atoms. In Innsbruck I have been working on a fully operating machine, producing
dipolar BECs of 166Er atoms. Here, I have been involved in the first experimental
observation of the roton mode population in a dipolar BEC. My contribution to
the ERBIUM experiment in Innsbruck has been twofold: I partecipated to the
measurements, and performed numerical simulations.

This thesis is organized as follows.

• In Chapter 1 I first briefly review the internal structure of isolated atoms,
and then give a theoretical description of the interaction of atoms with optical
and magnetic fields. These interactions are at the basis of the fundamental
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cooling and trapping techniques used in ultracold atomic experiments to pro-
duce a BEC, that are presented in the chapter. Their knowledge is essential
for the design of a vacuum apparatus. I underline the similarities and differ-
ences between a laboratory apparatus typically used for producing a BEC of
K, and the one used for Er, which depend on the peculiar properties of the
two atomic species.

• Chapter 2 is devoted to the description of interatomic interactions in ultra-
cold quantum gases. Here I introduce experimental and theoretical tools that
will be employed in the investigation described in Chapter 4. Basics of quan-
tum scattering theory are given, demonstrating that low-energy short-range
scattering is fully described by the s-wave scattering length. The mechanism
of Feshbach resonances for tuning the s-wave scattering length in experi-
ments is presented. The long-range and anisotropic dipole-dipole interaction,
playing a fundamental role in strongly magnetic BECs of Er atoms, is then
described. Later, I present the theoretical description of a weakly interacting
BEC in a trap, in a mean-field approximation. In this approximation, the
Gross-Pitaevskii equation describing the dynamics of the condensate state
is derived. A generalized form of the Gross-Pitaevskii equation for dipolar
systems is finally obtained.

• In Chapter 3 I present the design of the vacuum system for the new experi-
mental apparatus for the production of BECs of 39K in Florence. Here, I give
technical descriptions of the various components of the vacuum system. The
experimental steps towards the realization of the BEC that are planned for
this experiment are presented. They fundamentally determine the choices of
design.

• Chapter 4 focuses on the investigation of the roton mode excitation in a
dipolar BEC of 166Er atoms, in which I have been involved during the time
I spent in Innsbruck. After a first historical introduction on rotons in super-
fluid helium, I present the theoretical proposal of 2003 [35], at the basis of
our study, predicting the emergence of a minimum of energy at finite mo-
mentum in the low-energy excitation spectrum of a dipolar BEC confined

5



6

in a anisotropic geometry. The experimental realization of the 166Er BEC is
described. Then, the measurements performed in the lab are presented, and
the results are given, showing the expected population of the roton mode in
our system. The results are compared to theoretical models, specifically de-
veloped for our system parameters. Finally, I present numerical simulations
that I personally performed to have additional insights on the system, in the
regime where the roton physics occurs. Part of the work presented in this
chapter is reported in ref. [37].

Finally, I conclude the thesis and give outlooks on possible future investigations,
following the work presented here.
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Chapter 1

Production and detection of
ultracold bosonic quantum gases

In this chapter, after a short introduction on the phenomenon of Bose-Einstein
condensation in dilute atomic gases, I will briefly review the main properties of
the internal structure of isolated atoms and of atoms interacting with magnetic
and light fields. These interactions are at the basis of the laser cooling and atom
trapping techniques used to produce degenerate gases in a laboratory. The chap-
ter is then devoted to the description of these techniques. Particular attention is
directed towards the specific techniques typically used with K and Er. The knowl-
edge of the techniques used with K is of fundamental importance for the design
of the vacuum apparatus, that will be given in Chapter 3. Finally, the detection
scheme used in the framework of this thesis is described.

1.1 Bose-Einstein condensation in dilute atomic gases

The phenomenon of Bose-Einstein condensation in an ideal (non-interacting)
gas, proposed by Einstein in 1924 [3] is a paradigm of quantum statistical mechan-
ics. It is based on the indistiguishability and wave nature of particles. Bosons
are particles with integer spin, therefore the wave function for a system of identi-
cal bosons is symmetric under interchange of any two particles. Unlike fermions,
which have half-odd-integer spin and antisymmetric wave functions, bosons may
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1.1 Bose-Einstein condensation in dilute atomic gases 8

occupy the same single-particle state.
In a simplified picture, non-interacting atoms in a gas may be regarded as

quantum-mechanical wavepackets which have an extent on the order of a thermal
de Broglie wavelength, defined as [38]:

λdB =

(
2π~2

mkBT

)1/2

, (1.1)

where ~ is the Planck constant divided by 2π, kB is the Boltzmann constant,
m the mass of the atom and T is the temperature of the gas. λdB expresses the
atom position uncertainty associated with the thermal momentum distribution.
If the temperature of the gas decreases, λdB increases. When atoms are cooled
to the point where λdB is comparable to the mean interatomic separation, the
atomic wavepackets “overlap” and, in the case of bosons, interfere constructively.
At this temperature, the indistinguishability of particles becomes important for the
macroscopic behaviour of the gas: bosons undergo a phase transition and form a
Bose-Einstein condensate (BEC), a coherent cloud of atoms all occupying the same
single-particle ground state [3, 39]. The many-body ground-state wavefunction
is then the product of many identical single-particle ground-state wavefunctions.
This single-particle wavefunction is called the condensate wavefunction or macro-
scopic wavefunction. Introducing the phase space density, defined as ρ = nλ3

dB,
where n is the atomic spatial density of the gas, assumed to be infinite and uni-
form, the Bose-Einstein condensation takes place when ρ = 2.612 [38]. For gases
of alkali atoms at room temperature (Troom ∼ 300 K) and atmospheric pressure,
typical densities are on the order of 1014 cm−3, which lead to a phase space den-
sity of ∼ 10−7. In order to increase the phase space density of at least 7 orders
of magnitude to reach Bose-Einstein condensation, one has either to increase the
density, or to decrease the temperature of the gas. It is worth noticing here that
the Bose-Einstein condensation phase transition occurs in a regime of pressure and
temperature, for which the equilibrium state of matter is the solid state for most
of the elements of the periodic table, with the only exception of helium, which
instead remains liquid even at absolute zero [38]. Since the solid state is the true
ground state of the system, the BEC is in a metastable state. It is clear that, in
this state, neglecting the interactions between the atoms is unrealistic. The main
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1.2 Theoretical background: atomic internal structure and atom-light
interaction 9

processes that lead to the solidification of the gas are the ones in which three atoms
collide: two of them form a molecule and the third one ensures conservation of
momentum. However, if the sample is sufficiently dilute, the probability to find
three atoms close enough to cause a three-body collision can be negligible, and the
lifetime of the metastable BEC state can be long enough to allow its observation
in experiments.

1.2 Theoretical background: atomic internal struc-

ture and atom-light interaction

In this section I will first briefly recall the basic atomic structure and the
atomic properties which play an important role in experiments on cold atomic
gases. Then, I will describe the influence of magnetic and optical fields on atomic
energy levels, and introduce the semiclassical theory of atom-light interaction,
which is at the basis of the main cooling and trapping techniques used to realize
a BEC in ultracold atomic gases.

1.2.1 Energy level structure of isolated atoms

On a gross level of approximation, the description of the atomic energy level
structure is typically based on considering an atom as constituded by one electron
moving in the central Coulomb potential created by the nucleus (hydrogen-like sys-
tem) [40]. The hydrogen-like hamiltonian Ĥ0 = p2

2m
− Ze2

4πε0r
, where Z is the atomic

number, e the electron charge, and ε0 the vacuum permettivity, has a central sym-
metry. Therefore, it commutes with the total angular momentum operator L̂2, and
with its z-component L̂z. The eigenfunctions of Ĥ0 are then characterized by three
quantum numbers, n, l, m, where n is the principal quantum number, which takes
integer values n ≥ 1, l indicates the orbital angular momentum quantum number,
with values l = 0, ..., (n − 1), and m is its z-component, with m = −l, ..., l. The
wavefunctions are of the form ψn,l,m(r) = Rnl(r)Yl,m(θ, φ) 1, and the energy levels

1Rnl(r) contains the radial dependence, and the angular dependence is contained in the spher-
ical harmonics Yl,m(θ, φ) = Pml (cos θ)eimφ, with Pml (cos θ) the associated Legendre polynomial
of degree l and order m.
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1.2 Theoretical background: atomic internal structure and atom-light
interaction 10

are organized in a shell structure, indexed by the quantum number n and charac-
terized by a n2-fold degeneracy.

The first correction to this simple Hamiltonian Ĥ0, comes from relativistic ef-
fects, which lead to lifting of the n2-fold degeneracy. These relativistic corrections
determine a splitting of the energy levels called fine structure. Among this effects,
particularly relevant is the one coming from the coupling of the spin of the elec-
tron s with the electron’s orbital degrees of freedom. Indeed, the interaction of the
electron’s spin with the internal magnetic field of the atom due to the electron or-
biting the nucleus gives rise to the so-called spin-orbit coupling, which contributes
to the total Hamiltonian with a term ĤSO = ASOL̂ · Ŝ, where Ŝ is the electron spin
operator, and ASO is a constant. Under the spin-orbit coupling, Lz (and Sz) are no
longer good quantum numbers, and one introduces the total angular momentum
operator Ĵ , defined by Ĵ = L̂+ Ŝ to label the fine structure states via the quantum
numbers J2, Jz.

A further refinement of the atomic energy level structure comes from the in-
teraction of the nuclear spin Î with the total angular momentum of the electron
Ĵ , defined as the hyperfine interaction. The hyperfine coupling enters the total
Hamiltonian with a term ĤHF = AHF Î · Ĵ , where AHF is a constant. In presence
of both the spin-orbit coupling and the hyperfine interaction, the appropriate con-
served quantum number is the total angular momentum F̂ given by F̂ = Î + Ĵ .
Typically, the energy level splitting in the fine structure is on the order of 10−4 -
10−5 eV, and in the hyperfine structure of 10−7 - 10−8 eV [40].

The above described corrections to the Hamiltonian Ĥ0 have to be taken into
account in order to correctly describe even the single-electron hydrogen atom.
For multi-electron atoms, an additional effect that need to be considered is the
Coulomb interaction between the electrons, leading to a screening of the nuclear
charge by the inner shell electrons. Electronic states further from the nucleus ex-
perience a greater screening effect, and therefore, for a fixed principal quantum
number n, large l states are less deeply bound than small l states, and lie at
higher energy. Thus, each shell, indexed by n, is divided into subshells, indexed
by the orbital angular momentum quantum number l. The electron orbitals in a
subshell are then indexed by the angular momentum projection quantum number
ml = −l, ..., l and, according to the Pauli exclusion principle, at most two electrons

10



1.2 Theoretical background: atomic internal structure and atom-light
interaction 11

Element Electron configuration Isotopes Abundance (%) Nuclear spin Statistics

K 1s22s22p63s23p64s1

39K 93.26 3/2 boson
40K 0.01 4 fermion
41K 6.73 3/2 boson

Er [Xe]4f126s2

162Er 0.14 0 boson
164Er 1.6 0 boson
166Er 33.5 0 boson
167Er 22.86 7/2 fermion
168Er 26.9 0 boson
170Er 15.0 0 boson

Table 1.1: Some relevant properties of K and Er. The two isotopes 39K and 166Er
in bold in the table are the ones used in the work of this thesis. In the electron
configuration of Er, [Xe] indicates the electron configuration of xenon: [Xe] =
1s22s22p63s23p63d104s24p64d105s25p6. Note that for Er, all bosonic isotopes
have zero nuclear spin, therefore they do not possess a hyperfine structure.
The data for the isotopic composition and relative abundances for the two
species are taken from [41].

with opposite spin projection quantum number ms can occupy the same orbital.
The distribution of the electrons among the electron orbitals (i.e. the electron con-
figuration) of an atomic element in its ground state is determined by the Aufbau
principle, which regulates the order of filling of the orbitals, starting from the one
with lowest energy.

Let us consider specifically the two atomic elements of interest for this thesis:
potassium (K) and erbium (Er). The ground-state electron configuration of K
and Er are reported in Table 1.1, together with other relevant atomic properties.
There, the standard spectroscopic notation nle for the electron configuration has
been used, where n is the principal quantum number, the orbital quantum number
l is denoted by the letter s if l = 0, p if l = 1, d if l = 2, f if l = 3, ..., and finally
e indicates the number of electrons in the nl subshell.

Potassium (K) [42] Potassium is an alkali-metal atom, with atomic number
ZK = 19, and an atomic mass of ≈ 39 amu, with 1 amu ' 1.66 × 10−27 kg. Its
ground-state electronic structure is characterized by all electrons but one occupying
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1.2 Theoretical background: atomic internal structure and atom-light
interaction 12

closed shells, and the remaining valence electron occupying an s orbital in a higher
shell. Since the core is a closed shell, the only contribution to the total orbital
angular momentum comes from the valence electron, whose state is completely
determined by the orbital quantum number L and the spin quantum number S.
In the ground state L = 0, and the nuclear spin I is coupled to the electronic spin
by the hyperfine interaction. Since S = 1/2, the hyperfine coupling yelds the two
possibilities F = I ± 1/2 for the quantum number F for the total spin. For alkali-
metal atoms the electronic states are typically specified in the Russel-Saunders
notation, as n(2S+1)LJ , where n is the principal quantum number of the valence
electron. The ground state of K is then written as

K ground state: 42S1/2 (L = 0, S = 1/2, J = 1/2). (1.2)

For an excited state with L = 1, and S = 1/2, one has J = 1/2 or J =

3/2, corresponding to the states 42P1/2 or 42P3/2, respectively. The fine structure
interaction lifts the degeneracy of the 42P1/2 and 42P3/2 levels, splitting the spectral
lines in the so-called D1 line (42S1/2 → 42P1/2), with a wavelength of the transition
of 770 nm, and D2 line (42S1/2 → 42P3/2), with a wavelength of 767 nm, which are
typically used for laser cooling in experiments (see below and Chapter 3).

Erbium (Er) [43] Erbium is a rare-earth element belonging to the lanthanide
series of the periodic table. It has an atomic number ZEr = 68, and atomic mass
of ≈ 167 amu. Its ground-state electron configuration (see Table 1.1) forms a
so-called submerged-shell structure, with all orbitals, except the 4f , completely
filled. In the case of erbium, there are two electron vacancies in the 4f orbitals,
immersed in a completely filled outer-lying 6s shell, and they have an angular
momentum projection quantum number of ml = +2 and +3. Due to their large
orbital angular momentum quantum number l = 3, the 4f orbitals are highly
anisotropic. This anisotropy is at the origin of strongly anisotropic van der Waals
interaction potentials (see section 2.1) between Er atoms, which are not observed
with alkali atoms. This has consequences on their scattering properties, and in
particular on the Feshbach resonances, as will be discussed in Chapter 2.4.

In the case of Er, and in general for heavy atoms, the coupling of electrons is

12



1.2 Theoretical background: atomic internal structure and atom-light
interaction 13

more complicated than for K, or lighter atoms. The reason is that the spin-orbit
interaction becomes comparable or even stronger than the Coulomb interaction
for electrons in higher orbitals. Thus, the previously described spin-orbit coupling
scheme of electrons is not applicable any more and one has to use the so-called
jj-coupling scheme, where the total atomic Hamiltonian commutes both with Ĵ2

(as in the standard spin-orbit coupling), and with Ĵ2
i for each electron i. In this

case the electronic states are usually specified in the (2S+1)LJ notation, and the
ground state of Er is given by:

Er ground state: 3H6 (L = 5, S = 1, J = 6). (1.3)

Note the large orbital angular momentum quantum number L = 5, due to the
spin-orbit coupling of all electrons, with respect to the L = 0 of K in its ground
state. The large angular momentum of Er, originating from the characteristic
electron configuration, determines a peculiar property of this atomic species, that
is a high magnetic moment of 7 Bohr magneton (compared to a magnetic moment
of ≈ 1 Bohr magneton for alkali). This property of Er opens the possibility of
studying effects of the magnetic dipole-dipole interaction experimentally with this
system, as will be shown in Chapter 4.

Laser cooling of Er atoms is typically performed on atomic transitions from the
ground state J = 6 to an excited state J = 7 [44]. In the experiment described
in Chapter 4, two such transitions are used: [Xe]4f 12(3H6) → 6s6p(1P1), at a
wavelength of 401 nm, and [Xe]4f 12(3H6)→ 6s6p(3P1) at 583 nm [43].

1.2.2 Interaction with static external magnetic fields

In the presence of an external magnetic field B, the atomic energy levels shift
according to the Zeeman effect. This effect arises from the interaction of the
magnetic moments of the electron and the nucleus with the magnetic field. For
low values of the magnetic field, for which the Zeeman effect can be treated as
a perturbation of the fine and hyperfine interactions, F and mF are still good
quantum numbers, and the total Hamiltonian acquires a term of the form ĤB =

µBgF F̂ · B. Here, µB is the Bohr magneton, and gF is the Landé-g factor for an
atom with a non-zero nuclear spin, given by:
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gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
, (1.4)

with

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(1.5)

the Landé-g factor associated with the electron spin [40]. Assuming that the
magnetic field is oriented along the z direction, the Zeeman energy shift ∆Ez is
proportional to the applied magnetic field according to the relation:

∆Ez = µBgFmFBz. (1.6)

Eq.(1.6) holds in typical ultracold atomic experiments, where the Zeeman en-
ergy splitting is much smaller than the hyperfine splitting. If stronger magnetic
fields are applied, in first approximation the energy shift turns out to be quadratic
in the magnetic field (quadratic Zeeman effect, see ref. [40]).

1.2.3 Atom-light interaction

Let us consider now the interaction of an atom with a light field. To describe
the atom-light interaction I will make use of a well estabilished semi-classical de-
scription [45], where the internal state of the atom is treated in a fully quantum
mechanical way, while the external degrees of freedom of the atom (its position
and momentum), as well as the light field, are treated classically. Moreover, the
atom is approximated to have only two-levels. This is valid when the external field
is weak and nearly resonant with a single atomic transition. Indeed, in this case
only the ground state and the near-resonant excited level, indicated by |g〉 and
|e〉, respectively, have a relevant probability of occupation. Let ~ω be the energy
difference between |g〉 and |e〉. We consider the evolution of this system when
illuminated by a classical nearly-monochromatic laser beam with electic field E of
the form:

E(r, t) = ε(r)
E(r)

2
e−i(ωLt−φ(r)) + c.c., (1.7)
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where ε is the polarization unit vector, E the field amplitude, ωL the angular
frequency and φ the phase.

The interaction Hamiltonian can be expressed in the so-called dipole approxi-
mation, as:

V̂AL = −D̂ · E(r, t), (1.8)

where D̂ is the atomic dipole moment operator, given by:

D̂ = deg(|e〉〈g|+ |g〉〈e|) (1.9)

with deg the dipole transition matrix element beetween the ground and ex-
cited states. By inserting Eq.(1.7) into Eq.(1.8), one obtains two contributions to
the interaction Hamiltonian. The first one oscillates at a frequency equal to the
difference between the laser frequnecy ωL and the atomic transition frequency ω,
defined as the laser detuning, and indicated by

δ = ωL − ω, (1.10)

and its amplitude is proportional to 1/δ. The second contribution oscillates
at a frequency which equals the sum of ωL and ω, with an amplitude inversely
proportional to that sum. In most situations encountered in the experiments,
the laser fields are near resonant with the atomic transitions under consideration,
and one can safely ignore the rapidly oscillating, or "counterrotating", term with
frequency ∼ (ωL + ω). This is the so-called rotating-wave approximation (RWA).
Under the RWA, the interaction Hamiltonian (1.8) takes the form:

V̂AL '
~
2

ΩR(r)
(
e−iφ(r)−iωLt|e〉〈g|+ h.c.

)
, (1.11)

where ΩR is the Rabi frequency, defined as:

ΩR(r) ≡ −E(r)deg · ε(r)
~

. (1.12)

The internal two-level atom dynamics under the effect of V̂AL can be prop-
erly described by the optical Bloch equations (OBEs) for the atomic density ma-
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trix operator ρ̂ (see, for instance, ref. [40]). For a nearly-resonant laser field, it
can be demonstrated that the state of the atom oscillates in between |g〉 and a
superposition of |g〉 and |e〉, at a rate given by the generalized Rabi frequency
Ω ≡

√
Ω2
R + δ2. To correctly describe the dynamics of the internal state of the

atom, in the OBEs one has to add to the interaction Hamiltonian (1.11) a phe-
nomenological relaxation term describing the spontaneous emission process from
the excited to the ground state, occurring at a rate [40]

Γspont =
Γ

2

s(r)

1 + s(r)
, (1.13)

where Γ = 2π/τ is the decay rate of the excited state |e〉, whose radiative
lifetime is indicated by τ , and s(r) is the saturation parameter, defined as:

s(r) =
Ω2
R(r)/2

δ2 + Γ2/4
. (1.14)

Mean forces exerted by light on an atom at rest The concept of a mean
light force F(r) acting on an atom at position r, due to transfer of momentum (F =

〈dp/dt〉), is valid only if the atomic wavepacket is well-localized in position and
momentum space during the interaction with light, compatibly with Heisenberg
uncertainty principle [45]. The two constraints on atomic position and momentum
reads, respectively: ∆x� λL, where ∆x is given in the ultracold regime by the De
Broglie wavelength, and λL = 2π/kL is the laser wavelength, and kL∆p/m � Γ.
By writing the Heisenberg uncertainty principle for the conjugated variables of the
atomic motion and making use of the above conditions, one obtains the following
relation:

~Γ

2
� ~2k2

L

2m
. (1.15)

The right-hand side of Eq.(1.15) expresses the so-called kinetic recoil energy
Erec = ~2k2

L/2m, associated with the transfer of momentum that an atom gets
from the light field in an absorption event. Eq.(1.15) is also known as the "large
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linewidth condition" [45], and insures that the interaction with the light field does
not change significantly the atomic energy over many absorption-emission cycles.
For instance, for the cooling transition typically used with 39K, the ratio Γ~/2Erec
is about 350, and the large linewidth condition is satisfied.

Under this condition, the mean force exerted on an atom at position r by a
nearly-resonant laser field can be calculated as:

F(r, t) = −〈∇V̂AL(r, t)〉 ≡ −Tr {ρ̂st∇V̂AL(r, t)}, (1.16)

where ρ̂st represents the steady state solution of the OBEs for the density
matrix ρ̂. In the simple case of a two-level atom at rest, the mean force has two
contributions: a dissipative, or radiation pressure force and a reactive, or dipole
force. The radiation pressure force is expressed by:

Frad(r) = −~Γ

2

s(r)

1 + s(r)
∇φ(r). (1.17)

It is proportional to the phase gradient of the laser field. The dipole force is
instead given by:

Fdip(r) = −~δ s(r)

1 + s(r)

∇ΩR(r)

ΩR(r)
, (1.18)

and is proportional to the amplitude gradient of the laser field.
Let us discuss these two forces in more details. If the light field is a single plane

wave, with φ = −kL · r, and constant field amplitude, the radiation pressure force
takes the form:

Frad(r) = ~kL
Γ

2

s(r)

1 + s(r)
. (1.19)

For very high intensity of the laser field, s� 1, Frad → ~kLΓ/2. This force can
be interpreted as due to scattering of photons at a rate Γ

2
s(r)

1+s(r)
, which is exactly the

spontaneous emission rate Γspont introduced in Eq.(1.13). The radiation pressure
force thus accounts for absorption-spontaneous emission cycles. When a photon is
absorbed, it changes the atom momentum by ~kL in the direction of the incoming
photon. After the absorption of a photon, the energy of the atom is almost entirely
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converted into internal energy, therefore the atom ends up in an excited state.
Then, the atom returns to the ground state by spontaneously emitting a photon.
The conservation of momentum in this process causes the atom to recoil again, but
this time, the direction is opposite to that of the emitted photon. However, since
spontaneous emission occurs in a random direction, it does not contribute to the
net change in the momentum of the atom when averaged over many absorption-
spontaneous emission cycles. The radiation pressure force plays a fundamental
role in the Doppler cooling of atomic samples, as will be discussed in section 1.3.2.

In contrast to the dissipative force, the dipole force is zero for an incident
plane wave, since it does not present any field amplitude gradient. To have a non-
zero dipole force, it is necessary to have a spatially varying field amplitude. This
force originates from the interaction of the induced atomic electric dipole moment
with the intensity gradient of a light field, and it can be interpreted as due to the
exchange and redistribution of momentum between the atom and the various plane
waves composing the laser field, that an atom can operate by absorbing a photon
from one plane wave and emitting it by stimulated emission in another one. The
dipole force (1.18) can be derived from a potential of the form:

Udip(r) =
~δ
2

ln(1 + s(r)). (1.20)

This force is thus conservative, and can be used for atom trapping in a so-called
optical dipole trap, which will be discussed in section 1.3.4. For a negative detuning
δ (red-detuned laser field), the dipole potential (1.20) attracts the atoms towards
the maxima of the laser field intensity, instead for a positive δ (blue-detuned laser
field), the atoms are repelled from the region of maximum intensity of the field,
and they are instead attracted towards the intensity minima.

1.3 Experimental techniques to realize Bose-Einstein

condensation in dilute gases

In order to create a Bose-Einstein condensate in a dilute gas, atoms must be
cooled and compressed in a trap until their thermal de Broglie wavelength is on
the order of the interatomic distance. In addition, the atoms must be thermally
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isolated from all material walls. This is done by trapping atoms with laser light or
magnetic fields inside ultrahigh vacuum chambers, where the background pressure
can be made as low as ∼ 10−11 mbar . Such traps can store atoms for seconds or
even minutes, which is enough time to cool them.

The two basic techniques used to reach low temperatures in dilute atomic gases
are laser cooling and evaporative cooling. Laser cooling allows to cool a gas from
room temperature down to a few µK, and it is typically used as a pre-cooling
stage. Evaporative cooling is instead used to reach the few hundreds of nK that
are necessary to achieve the BEC transition.

In typical ultracold atomic experiments, the starting point is an atomic vapour,
from which an atomic beam in produced, and pre-cooled by using laser cooling
techniques. The pre-cooled atoms are then confined in conservative traps, where
evaporative cooling allows to reach degeneracy. In the following I will present the
fundamental techniques used to produce a quantum gas in the laboratory. A full
account of these techniques can be found, for instance, in [46].

1.3.1 Atom sources

The most common atom sources for ultracold atom experiments are vapour cells
and effusive ovens. In a vapour cell, an atomic trap is loaded from background gas.
Higher background gas pressures result in faster loading rates, but above a certain
optimum pressure, losses due to collisions with the background gas increase as fast
as the loading rate. Effusive ovens consist of a reservoir vacuum chamber in which
the desired species is stored in solid or liquid form, and is in equilibrium with
its vapour. The vapour effuses through a small opening toward the experiment.
The atomic flux can be controlled by changing the oven temperature and thus the
equilibrium vapour pressure in the reservoir.

The choice of the atom source depends essentially on the properties of the used
atomic species, in particular the melting point. For Er, which has a high melting
point at 1529 ◦C, a high-temperature oven is used as atom source (see Chapter 4),
while for K, with a much lower melting point at around 64 ◦C, vapour cells are
typically used. The atomic vapour is either released from current driven dispensers
mounted inside the vacuum apparatus, or it can be obtained by simply heating
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a solid sample, also placed under vacuum (see, for instance, [47]). This latter
strategy is the one we want to adopt in the new experimental apparatus described
in Chapter 3.

1.3.2 Laser cooling

The radiation pressure force exerted by a nearly-resonant laser field on a two-
level atom at rest at position r has been introduced in section 1.2.3. By substituting
the definition of the saturation intensity (1.14) into Eq.(1.17), one obtains an
expression for the radiation pressure force in terms of the laser detuning δ = ωL−ω,
of the form:

Frad(r) = ~kL
Γ

2

(
Ω2
R(r)/2

δ2 + Γ2/4 + Ω2
R(r)/2

)
. (1.21)

Now, if the atom is moving with velocity v, the effective frequency of the
light field that the atom sees is modified by the Doppler effect. Therefore, the
detuning entering in the expression of the radiation pressure force is Doppler shifted
according to:

δ′ = δ − kL · v.

The radiation pressure force now depends on the atomic velocity through δ′:

Frad(v) = ~kL
Γ

2

(
Ω2
R/2

δ′2 + Γ2/4 + Ω2
R/2

)
. (1.22)

In the low velocity limit, that is if |2δkL · v| � δ2 + Γ2/4 + Ω2
R/2, terms in v2

can be neglected, and the expression of the force can be linearized around v = 0:

Frad(v) ' ~kL

(
Γ

2

Ω2
R/2

δ2 + Γ2/4 + Ω2
R/2

)
+ ~(kL · v)kLδΓ

(
Ω2
R/2

(δ + Γ2/4 + Ω2
R/2)2

)
.

(1.23)
The first term is the force for zero velocity. The second term is proportional to

the component of the velocity in the direction of the laser.
Let us now consider the simple one-dimensional (1D) scenario where the laser
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beam is counterpropagating with respect to the atomic motion. This means (kL ·
v)kL = −k2

Lv. Therefore, in the linear approximation, the radiative pressure force
is given by:

Frad(v) ' Frad(v = 0)− αv, (1.24)

with

α = −~k2
LΓ

[
δΩ2

R/2

(δ2 + Γ2/4 + Ω2
R/2)2

]
. (1.25)

The last term in the expression of the force (1.24) is a friction force, opposite to
the direction of the atomic velocity, as long as the friction coefficient α is positive.
According to Eq.(1.25), α > 0 for δ < 0, that is for a red-detuned laser light. As
the Doppler effect plays a central role, this cooling scheme is typically referred to
as Doppler cooling.

Zeeman slower In the previous section we have seen that a red-detuned laser
light can decelerate an atom moving towards it. This is the principle at the basis of
the operation of a Zeeman slower. A Zeeman slower is typically used in ultracold
atomic experiments to reduce the longitudinal velocity of an atomic beam coming
from the atom source. A laser beam is shined collinearly to the atomic beam,
in the counterpropagating direction with respect to it. The Doppler shift of the
atoms changes as the velocity of the atoms is reduced during the slowing process.
In order to keep the atoms constantly on resonance with the light, one exploits
the Zeeman shift of the energy levels in a magnetic field (see section 1.2.2). In-
deed, a proper configuration of magnetic coils creates an inhomogeneous magnetic
field leading to a position-dependent Zeeman shift of the atomic resonances, which
compensates the position-dependent Doppler shift. The Zeeman slower provides
an efficient reduction of the longitudinal velocity of the atoms if their initial ve-
locity is below a maximum value, known as capture velocity. The capture velocity
of a Zeeman slower depends on the actual deceleration acting on the atoms while
travelling the Zeeman slower, and on the length of the Zeeman slower itself, that is
the spatial extension of the region where the moving atoms are kept on resonance
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with the counterpropagating light field. In the ERBIUM experiment described in
Chapter 4, erbium atoms with an initial velocity smaller than 325 m/s are slowed
down to a velocity of about 8 m/s in the Zeeman slower [43].

Optical molasses Eq.(1.24) shows that a single laser beam directed oppositely
to an atomic beam, can not cool the atoms as the main component of the force
is given by the zero order term Frad(v = 0), which accelerates the atoms in the
direction of the laser, regardless of the (small) atomic velocity. For neutral atoms,
the idea for eliminating the velocity-independent term consists of using two coun-
terpropagating laser beams, instead of a single one, with wavevectors kL and
k
′
L = −kL, both with the same frequency, tuned slightly below an atomic ab-

sorption line (red-detuned light)[48]. Because of the Doppler effect, the atom sees
the light it moves towards Doppler shifted closer to resonance, whereas the light
it moves away appears further from resonance. Thus, the atom predominantly
scatters photons from the counter-propagating laser, which exerts a stronger force
with respect to the co-propagating wave. This situation is sketched in Fig.1.1(b).
For weak intensities of the laser fields (s(r)� 1), the two radiation pressure forces
of the two lasers add independently. In the 1D case, the total radiation pressure
force thus reads:

Frad(v) ' −2αv. (1.26)

Eq.(1.26) describes the motion of a particle in a viscous medium, which was
reasonably called optical molasses. This configuration can be generalized to three
dimensions by using three mutually orthogonal, intersecting pairs of counterprop-
agating laser beams. In the intersection region, the atoms feel a laser cooling
damping force in all directions (3D optical molasses, see Fig.1.1(c)). The velocity
range over which the linear approximation of the radiation pressure force remains
valid (velocity capture range) is given by |kL · v| � Γ/2, that is satisfied if the
semiclassical picture is applicable (i.e. if Eq.(1.15) is valid).
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(a) (b)

(c)

Figure 1.1: Optical molasses. In 1D, an atom at rest, subjected to two counterprop-
agating laser beams, red-detuned with respect to an atomic resonance, does
not feel any force due to the cancellation of the radiation pressure forces
exterted by the two laser fields (a). |g〉 and |e〉 are the ground and excited
state, respectively. (b) If the atom has a finite velocity v 6= 0, the Doppler
effect leads to a dominant strength of the radiation pressure force exerted
by the laser propagating in the direction opposite to the atom. This gives
rise to a friction force which slows down the atom (1D optical molasses). In
the figure, δ′± = δ ± kLv indicate the effective laser detunings of the two
beams, which are Doppler shifted. The situation is represented in the refer-
ence frame of the atom moving with velocity v. (c) 3D configuration of an
optical molasses. The laser beams intersect at the centre of the coordinate
axes, creating a viscous medium for the atoms. Due to the random nature
of the absorption and re-emission processes characteristic of laser cooling,
the atoms can still diffuse around, and eventually escape from the molasses.
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1.3.3 Magneto-optical trap

The optical molasses introduced in the previous section does not constitute a
trap, but rather a viscous medium. It allows to gather a sample of cold atoms
in the intersection region of the counterpropagating laser beams, but the atoms
are free to diffuse around: they eventually reach the surface of the intersection
region of the lasers, and escape. In order to confine the atoms in a certain spatial
region, it is necessary to have a position dependent force, directed towards the
center of the trap. The required restoring force can be obtained by combining
a optical molasses configuration with a magnetic field gradient. This is realized
in the so-called magneto-optical trap (MOT), where an inhomogeneous magnetic
field modifies the radiation pressure force through the Zeeman effect. In a MOT,
a magnetic field gradient created by a pair of magnetic coils in anti-Helmohltz
configuration (i.e. with the current circulating in opposite directions) causes an
imbalance between the radiation pressure forces due to two counterpropagating
laser beams. The imbalance depends on the position of the atom with respect to
the magnetic center of the trap (where the magnetic field is zero).

Fig.1.2 shows the working principle of a 1D MOT, with the counterpropagating
laser beams and the axis of the pair of coils both along the z-axis. Here we consider
an atomic transition J = 0 → J = 1, as an example. At the center of the coils,
the magnetic fields produced by the two coils cancel out, therefore B(z = 0) = 0.
Close to the center, the inhomogeneity of the magnetic field B(z) = bz gives rise
to a uniform magnetic field gradient b = dB(z)/dz.

The Zeeman shift for the three sublevels mJ = 0,±1 of the excited state J = 1

is linear along z and given by ∆E(z) = gJmJµBB(z) (see section 1.2.2). Thus,
the state mJ = +1 is shifted upwards for z > 0, and downwards for z < 0, since
the magnetic field is in the opposite direction. The situation is inverted for the
mJ = −1 state. The relative shift of the resonance frequency is given by:

ω(z) = ω(z = 0) +
∆E(z)

~
= ω +

∆E(z)

~
. (1.27)

Two counterpropagating laser beams with opposite circular polarizations σ+

and σ−, both red-detuned by the same amount with respect to the atomic reso-
nance at the center of the trap, are in resonance with the atom at different places
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Figure 1.2: Working principle of a 1D MOT on a J = 0→ J = 1 transition. The
picture is not in scale: the Zeeman shift is typically much smaller than the
energy of the atomic transition.

along z. Indeed, for an atom at a position z′ > 0 along the z-axis, the magnetic
field causes a shift of the ∆mJ = −1 transition closer to resonance, while the
∆mJ = +1 is shifted farther from resonance, compared to the situation experi-
enced by an atom at the trap center z = 0. This means that the atom absorbs more
likely a photon from the laser beam coming from right, which is σ− polarized, than
from the σ+-polarized laser beam coming from left. Therefore the net radiation
pressure force for an atom at position z′ > 0 pushes the atom towards the center
of the trap. For an atom at a position z′ < 0, the shift of the states mJ = ±1

is reversed, and the atom interact more likely with the laser beam coming from
left, such that the resulting force also points towards the center. One therefore
achieves a stable trapping around z = 0.

In 1D the calculation of the force experienced by an atom in a MOT is carried
out in the same manner as in section 1.3.2 for the frictional force in a 1D optical
molasses configuration, taking into account the Zeeman shift of the atomic levels.
Let us consider the radiation pressure force given in Eq.(1.22). The total force on
an atom moving along the z-axis is given by the sum of the forces exerted by the
two laser beams:
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FMOT = F σ+

rad(δ−) + F σ−

rad(δ+), (1.28)

where the detuning δ± for the σ∓-polarized laser beams, respectively, is now a
function of z:

δ± = δ ± kLv ±
gJµBbz

~
, (1.29)

with δ defined as usual, δ = ωL − ω. The δ+ term is the detuning with respect
to the δmJ = +1 transition, and the δ− is the one for the δmJ = +1 transition.

When both the Doppler shift and the Zeeman shift are small compared to the
detuning δ (kLv, gJµBbz/~ � δ), the force can be expanded around v = 0 and
z = 0. Thus Eq.(1.28) becomes:

FMOT ' −2
∂Frad
∂ωL

kLv + 2
∂Frad
∂ω

gJµBbz

~
. (1.30)

Since ∂Frad/∂ωL = −∂Frad/∂ω, it is possible to express the force exerted in a
MOT as follows:

FMOT ' −α′v − κz, (1.31)

where α′ = 2α, with α the friction coefficient defined in Eq.(1.25), and κ

representes the elastic costant, given by:

κ =
gJµBb

~kL
α′. (1.32)

From Eq.(1.31) one clearly sees that, in addition to the friction term, a restoring
force arises from the Zeeman shift contribution. The red-detuning of the laser
beams also provides cooling of the trapped atoms. Therefore, in a MOT the
atoms can be simultaneously cooled and trapped.

Such a scheme can be extended to three dimensions, provided that other two
pairs of mutually orthogonal counterpropagating laser beams are added, as shown
in Fig.1.3. The magnetic quadrupole field produced by the coils in anti-Helmholtz
configuration is zero at the centre of the trap, and its amplitude increases linearly
for small distances to the centre. From Maxwell equation ∇ ·B = 0, one gets:
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dBx

dx
=
dBy

dy
= −1

2

dBz

dz
. (1.33)

The magnetic field gradient in each radial direction is half the one along the
axis of the coils [?]. Thus, the previously described trapping mechanism also works
in each radial direction.

Figure 1.3: Sketch of a 3D MOT. A 3D MOT is composed of three pairs of mutually
orthogonal counterpropagating laser beams, which intersecate at the cen-
tre of a pair of coils in anti-Helmholtz configuration. In each pair of laser
beams, the two counterpropagating laser fields have a different circular po-
larization. The magnetic field is zero at the intersection point, and increases
linearly in all spatial directions for small distances from the centre. In such
a configuration of optical and magnetic fields, the atoms (not drown in the
picture) feel a restoring force in all directions which pushes them towards
the centre of the system, in addition to the friction force typical of an optical
molasses. Thus, both cooling and trapping of the atoms are realized in this
configuration.
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2D MOT The two-dimensional magneto-optical trap configuration (2D MOT)
deserves particular attention, since it is often used as a preliminar cooling and
trapping stage in experiments using vapour cells as atom sources. In these systems,
a 2D MOT is typically loaded from the background gas in order to produce an
atomic beam out of the atomic vapour coming from the source. In fact, in a 2D
MOT, the atoms are cooled and trapped in two orthogonal spatial directions, and
are free to move in the third direction, thus forming an atomic beam. The atomic
beam is then directed towards a region of the vacuum apparatus where a 3D MOT
is performed. This technique is typically used in alternative to the Zeeman slower,
to increase the efficiency of the loading in a 3D MOT. The use of the Zeeman slower
or the 2D MOT depends crucially on the atomic species under consideration, and
therefore on the type of atom source. In the case of Er, for instance, a Zeeman
slower is necessary to decelerate the high speed atomic flux coming from the oven.
In experiments with K, instead, the 2D MOT configuration is adopted, since a
vapour cell is used as atom source (see also Chapter 3).

Limit temperature in Doppler cooling The minimum temperature of the
atoms that can be achieved in a MOT, using Doppler cooling, can be estimated
through the following argument. The equation describing the evolution of the
atomic velocity in time within the semiclassical approach is Newton equation,
given by:

m
dv

dt
= −2αv =⇒ v(t) = v(0)e−γt, (1.34)

where γ = 2α/m. In principle, after a time long as compared to γ−1 , the
velocity should vanish, and the final temperature reach T = 0. However, this sim-
ple model neglects the random nature of the absorption and spontaneos emission
processes, which cause fluctuations of the radiation pressure force in time. These
fluctuations give rise to a diffusion in momentum space, and thus to heating of
the atomic sample. The competition between cooling due to the friction force and
this heating process due to fluctuations of the radiative force sets a lower limit on
the width of the atomic velocity distribution, and consequently, a minimum finite
temperature achievable with Doppler cooling.
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In the simple 1D case, the damping force leads to a decreasing of the momentum
dispersion:

dp

dt
= −2α

m
p =⇒

(
d(∆p)2

dt

)
cool

= −2γ(∆p)2. (1.35)

Since we search for the minimum temperature, let us assume that the friction
coefficient is maximum: according to Eq.(1.25), αmax = 2~k2

Ls (obtained for ∆ =

−Γ/2). Then, γ = 2αmax/m = 4~k2
Ls/m. The diffusion of the atomic momentum

along the laser beam axis originates from both the fluctuations in the number
of absorbed photons during a given time interval, and from the fluctuations of
the recoil momentum transferred by the fluorescence photons that are emitted in
random directions: since the spontaneous emission occurs in a random direction,
the atom experiences a random walk of step size ~kL in momentum space. Taking
into account these two contributions, the fluctuation-dissipation theorem allows
to write the rate of increase of the momentum dispersion due to heating in the
following way: (

d(∆p)2

dt

)
heat

= 2D. (1.36)

where D is the diffusion coefficient. It can be demonstrated (see, for instance,
[45]) that for two identical counterpropagating waves in the weak intensity regime
(s� 1), the diffusion coefficient takes the value D = ~2k2

LΓs.
The equilibrium condition for (∆p)2 results from a trade-off between cooling

and heating mechanism:(
d(∆p)2

dt

)
cool

+

(
d(∆p)2

dt

)
heat

= 0. (1.37)

From Eq.(1.37) one finds: (∆p)2
eq = ~Γm/2. Since the equilibrium temperature

is defined as 1
2
kBT = 1

2

(∆p)2eq
m

, where kB is the Boltzmann constant, it is possible to
determine the minimum temperature TD achievable with Doppler cooling, which
is called Doppler temperature:

kBTD =
~Γ

2
. (1.38)
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As one can see from Eq.(1.38), the Doppler temperature depends on the linewidth
of the atomic transition employed for cooling, and it is lower for a narrower tran-
sition. For instance, the typical transition used for cooling K in the MOT, the
D2 line, has a linewidth of ≈ 2π×6 MHz, which gives a Doppler temperature
of TD(K) ' 145µK [47]. In the case of Er, the MOT is operated on a transi-
tion with a narrow linewidth of 2π×190 kHz, providing a Doppler temperature of
TD(Er) = 4.6µK [49].

It is worth noticing that the Doppler temperature is not the lowest temperature
achievable in a MOT. Atomic samples with a multilevel ground state can be cooled
below the Doppler limit in presence of a non homogeneous polarization of the light
field [50]. This technique, named Sysiphus cooling, allows to reach the ultimate
limit, given by the recoil temperature Trec, defined as:

1

2
kBTrec = Erec, (1.39)

where Erec is the recoil kinetic energy introduced in Eq.(1.15).

1.3.4 Optical dipole trap

As already discussed in section 1.2.3, the force acting on an atom interacting
with a light field in the semiclassical picture includes a contribution coming from
the interaction of the induced atomic electric dipole moment with the intensity
gradient of the light field, which is called dipole force (see Eq.(1.18)). The dipole
force is conservative and derives from a potential, given in Eq.(1.20), which is
typically exploited in experiments to trap the atoms in a so-called optical dipole
trap [51]. Usually the light used for optical dipole trapping is far-detuned from
the atomic resonance, so that the optical excitation is very low and the radiation
pressure force on the atoms, due to photon scattering, is negligible as compared
to the dipole force. Indeed, the absorptive part of the dipole interaction in far-
detuned light leads to residual photon scattering of the trapping light, which sets
the limits to the performance of an optical dipole trap.

The basic equations for the dipole potential and the scattering rate in a far-
detuned optical dipole trap can be expressed in a convenient form as follows:
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Udip(r) ' −
3πc2

2ω3

Γ

δ
I(r), (1.40)

Γsc(r) '
3πc2

2~ω3

(ωL
ω

)3
(

Γ

δ

)2

I(r). (1.41)

where the field intensity I(r) = 2ε0c|E(r)|2 has been introduced, with ε0 the
dielectric constant and c the speed of light in vacuum. The derivation of these
equations requires the use of the atomic complex polarizability ᾱ, relating the in-
duced atomic dipole moment D to the electric field E via D = ᾱE, and is fully
explained in ref. [52]. Equations (1.40) and (1.41) show the two essential prop-
erties of optical dipole trapping in far-detuned laser fields. First, the sign of the
dipole potential depends on the sign of the detuning: if the light is red-detuned
(δ < 0) the dipole potential is negative and attracts atoms in the light field. Thus,
potential minima are found at positions with maximum intensity. On the contrary,
if the laser light is blue-detuned (δ > 0), the dipole potential repel the atoms out
of the field, and therefore potential minima correspond to minima of the intensity.
Second, since the dipole potential scales as I/δ, while the scattering rate scales as
I/δ2, it becomes clear that using laser fields with large detunings allows to keep
the scattering rate as low as possible at a certain potential depth.

During my PhD project I have worked only with red-detuned optical dipole
traps, therefore in the following I will review the main features of this kind of
dipole traps. A comprehensive description of blue-detuned optical dipole traps
can be found in [52].

The simplest realization of a red-detuned optical dipole trap is to focus onto
the atoms a single laser beam with a frequency far below the atomic resonance
frequency (see Fig.1.4(a)). In Gaussian optics [53], the spatial intensity distribu-
tion of a focused laser beam propagating along the z-axis with radial symmetry r
is described by:

I(r, z) =
2P

πw(z)2
exp

(
−2

r2

w(z)2

)
, (1.42)

where P indicates the total power of the beam, which can be obtained by
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integrating the intensity I(r, z) over the whole area in polar coordinates, and w(z)

is the 1/e2 beam radius:

w(z) = w0

√
1 +

(
z

zR

)2

. (1.43)

Here, w0 = w(z = 0) is called beam waist and denotes the minimum radius of
the Gaussian beam, corresponding to the focus position (z = 0), and zR = πw2

0/λ

is the Rayleigh range, that is the distance along z over which the waist of the
beam has increased to

√
2w0 (λ is the laser wavelength). Eq.(1.42) shows that the

intensity is maximal at the focal point at the center of the beam, and is given by:

I0 = I(0, 0) =
2P

πw2
0

. (1.44)

From the intensity distribution one can derive the optical potential U(r, z) ∝
I(r, z) using Eq.(1.40). In particular, the peak intensity I0 defines the trap depth
Û as:

Û = |U(r = 0, z = 0)| ≈ −3πc2

2ω3

Γ

δ
I0. (1.45)

If the thermal energy kBT of an atomic ensemble is much smaller than the
potential depth Û , the extension of the atomic sample is radially small compared
to the beam waist and axially small compared to the Rayleigh range. In this case
the atoms populate only the bottom of the trap (see Fig.1.4(b)), and the optical
dipole potential can be well approximated by a cylindrically symmetric harmonic
oscillator potential:

U(r, z)harmonic ≈
1

2

∂2Udip
∂r2

(0)r2 +
1

2

∂2Udip
∂z2

(0)z2 = −Û
(

1− 2
r2

w2
0

− z2

z2
R

)
. (1.46)

By comparing Eq.(1.46) to the classical harmonic potential 1
2
m(ω2

rr
2 + ω2

zz
2),

it is possible to derive the trapping frequencies, i.e. the oscillation frequencies of
a trapped atom, in radial and axial direction:
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(a) (b)

Figure 1.4: Red-detuned optical dipole trap. (a) Spatial intensity distribution of
a focused laser beam (Eq.(1.42)) (upper figure) and corresponding optical
dipole potential U(r) (lower figure). Figure courtesy of Ultracold group in
Innsbruck. (b) If kBT � Û , the atoms only populate the bottom of the
trap, where the dipole potential can be approximated as harmonic. Figure
adapted from [54].

ωr ≡

√
4Û

mw2
0

, (1.47)

ωz ≡

√
2Û

mz2
R

. (1.48)

Since the Rayleigh range zR is larger than the beam waist w0 by a factor of
πw0/λ, the axial confinement is much weaker than the radial one. Therefore, the
potential in the axial direction is much less steep than in the radial direction. An
important point that one has to take into consideration in order to provide stable
trapping in a optical dipole trap is to ensure that the gravitational force does
not exceed the confining dipole force. Focused-beam traps are therefore mostly
aligned along the horizontal axis. In this case, the strong radial force minimizes the
perturbing effects of gravity. Moreover, crossed optical dipole trap configurations,
where two focused laser beams are crossed at their respective focii, and/or magnetic
field gradients are typically used in experiments to compensate this effect.

Because Û ∝ P/w2
0 and zR ∝ w2

0, one can derive the following expressions
of practical use for the dependence of the trapping frequencies on the power and
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waist of the focused laser beam:

ωr ∝
√
P

w2
0

, ωz ∝
√
P

w3
0

. (1.49)

It is worth to emphasize that the trap depths that can be achieved in a tightly
focused beam are typically in the millikelvin range, orders of magnitude smaller
than the thermal energy of room-temperature atoms. This means that in order
to efficiently trap an atomic sample in a optical dipole trap, the atoms have to be
preliminarly cooled via laser cooling methods. The standard way to load a dipole
trap in ultracold atomic experiments is to start from a MOT. The dipole trap is
filled by focusing the trap laser beam onto the centre of the atomic cloud in the
MOT, before the latter is turned off. In the dipole trap, the atoms can be further
cooled down to temperatures far below the ones achievable with laser cooling, by
using a technique called evaporative cooling, which is described in the next section.

1.3.5 Evaporative cooling

Cooling by evaporation is a known phenomenon in daily life: it happens every-
time we blow on a cup of coffee in order to cool it. In the context of trapped atomic
gases, it is done by continuously removing the most energetic particles from the
trap [55]. These particles occupy the high-energy tail of the thermal distribution.
When, because of elastic collisions, they leave the trap, they carry away more than
the average thermal energy, which means that the temperature of the remaining
atoms, after rethermalization, is lower than before. Due to the lower temperature,
the evaporation process slows down, unless evaporation is forced by modifying the
system in such a way that particles with smaller and smaller energies can escape
from the trap, thus sustaining the cooling process. Even though atoms are lost,
the decrease of the temperature can be so large that the phase space density of the
atomic cloud increases, and the system eventually reaches the condensation point.

The first experiments on evaporative cooling of alkali atoms have been done in
magnetic traps. Magnetic traps are conservative traps where the trapping mech-
anism rely on the coupling of the atomic permanent or induced magnetic dipole
moment to magnetic field gradients [45]. In these traps only atoms in certain spin
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states can be trapped. In such system the evaporation of atoms is controlled by
radio frequency (rf) radiation [56], which flips the spin of the atoms. As a result,
the attractive trapping force turns into a repulsive force and expels the atoms
from the trap. This scheme is energy-selective because the resonance frequency
is proportional to the magnetic field and therefore to the potential energy of the
atoms. The rf frequency can be chosen in such a way that only atoms with a
given potential energy (i.e. the highest) will be resonant. The evaporation is then
forced by progressively reducing the rf frequency, thus allowing atoms with lower
and lower potential energy to escape.

Later, evaporative cooling has been realized also in optical dipole traps [57].
In these traps, if the depth Û (defined in Eq.(1.45)) is fixed, the evaporation slows
down when the temperature of the trapped sample decreases to values such that
kBT � Û , since elastic collisions can no longer transfer enough energy to allow
atoms to leave the trap. At this point, the evaporation process can be forced by
reducing the depth of the trapping potential, thus allowing less energetic atoms to
escape (Fig.1.5). In practice, this corresponds to progressively reduce the power
of the dipole trap laser beam.

Figure 1.5: Mechanism of forced evaporative cooling in a optical dipole trap.
By progressively reducing the intensity I of the laser beam used to create
the optical dipole trap, the depth of the trap is decreased accordingly. This
allows less and less energetic atoms to escape from the trap, thus letting
the remaining atoms to thermalize at lower and lower temperatures. In the
picture, the atoms drown in red are the hottest ones, whereas the atoms in
light blue are the coldest. Figure courtesy of Ultracold group in Innsbruck.

Evaporative cooling constitutes a fundamental step in the realization of a BEC,
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allowing to increase the phase space density of a laser cooled atomic cloud by sev-
eral (typically 6-7) orders of magnitude. The essential condition for an efficient
evaporative cooling is a long lifetime of the atomic sample compared to the col-
lisional thermalization time. Since the sample lifetime is essentially limited by
inelastic collisions (with the background gas, two- or three-body collisions, techni-
cal noise on the trapping potential,...) while, on the contrary, elastic collisions are
essential for the thermalization of the sample, it is the ratio of elastic to inelastic
collisions that eventually sets the maximum gain in phase space density achievable
with evaporative cooling.

1.4 Imaging of an ultracold quantum gas

Once a BEC has been created, we want to observe it. This is made by shining a
probe laser beam onto the atoms. In general, the interaction of atoms with a light
beam involves three processes: absorption of photons, spontaneous re-emission of
photons, and shifting the phase of the transmitted light. These properties are
used in absorptive, fluorescence, and dispersive imaging methods, respectively.
Moreover, a BEC can be observed either in a trap (in-situ imaging) or in ballistic
expansion (time-of flight (TOF) imaging). In TOF imaging, the trapping potential
is switched off and the atoms are let free to drop under the effect of gravity and
expand because of their non-zero temperature, for a certain amount of time, before
being probed (Fig.1.6). In the following section I will only describe the main
features of absorption imaging, since this is the technique I have used during
my PhD work. Fluorescence and dispersive imaging techniques are extensively
discussed in ref.[58].

1.4.1 Absorption imaging

Absorption imaging is done by illuminating the atoms with a resonant laser
beam and imaging the shadow cast by the atoms onto a CCD camera, due to the
absorption of the resonant light (Fig.1.6).

Reliable information on the atoms can not be extracted from a single absorp-
tion image (A), since usually the probe field is inhomogeneous due to diffraction
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Figure 1.6: Time-of-flight absorption imaging of an ultracold atomic gas. The
cloud is imaged during its free expansion, after being released from a trap.
The resonant laser light used for imaging is absorbed by the atoms, which
cast a shadow onto a CCD sensor. The shadow allows to reconstruct the 2D
atomic density distribution in the plane perpendicular to the propagation
direction of the imaging beam, at the time the image is taken (see text).
In the picture, g indicates the gravitational acceleration constant. Figure
adapted from [5].

fringes and the Gaussian beam profile. Therefore, other two subsequent images
are typically acquired: a "bright-field" image (B), where the probe intensity is
recorded with no absorbing atoms, and a "dark-field" image (D) with no atoms
and no probe light, which is used to remove any stray light and CCD dark counts
from the absorption image. With these three images it is possible to reconstruct
the two-dimentional (2D) density distribution of the atoms in the plane perpendic-
ular to the propagation direction of the imaging beam, according to the following
procedure.

Let us indicate by Iin the intensity of the incident probe light, and by Iout the
intensity of the outgoing probe beam after the absorption from the atoms. By
subtracting the dark-field image both from the absorption image and from the
bright-field image it is possible to calculate the optical density (OD) of the atomic
cloud, defined as OD = −log(Iout/Iin). Since Iout

Iin
∝ A−D

B−D , a 2D optical density
image can be obtained as:
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OD = −log
(
A−D
B −D

)
. (1.50)

If one assumes that the imaging light propagates along the z-axis, then the
optical density of the atomic cloud is directly proportional to the 2D atomic den-
sity distribution in the (x, y) plane. The so-called column density n2D(x, y) =∫∞
−∞ n(x, y, z)dz can in fact be calculated as:

n2D(x, y) =
OD

σ
, (1.51)

where

σ =
σ0

1 + 4∆2

Γ2 + Iin
Isat

. (1.52)

is the absorption cross section for the imaging light. Here, σ0 = 3λ2/2π is the
two-level absorption cross section for a resonant light (with λ the imaging laser
wavelength), ∆ is the detuning of the laser light from the atomic resonance, Γ is
the natural linewidth of the excited state, and Isat is the saturation intensity of
the atomic transition (in typical experimental conditions Iin/Isat � 1).
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Chapter 2

Atomic interactions in ultracold
gases

This chapter gives a theoretical description of interatomic interactions in dilute
atomic gases. Understanding how atoms interact in quantum gases is important
for two main reasons. First, elastic collisions play a key role in evaporative cool-
ing, which is essential to reach Bose-Einstein condensation. Second, interactions
turned out to be fully controllable in experiments, by using Feshbach resonances.

I will first review the basic concepts of quantum scattering theory, demon-
strating that the scattering at low energy can be described in terms of a single
parameter, the s-wave scattering length, which determines the strength and sign
of the interatomic interactions. Thus, one can replace the exact short-range (van
der Waals) interaction potential, whose details may be difficult to know, by a
contact effective potential, giving the same s-wave scattering length as the exact
potential. I will show that this effective potential is chosen in such a way that it
gives the correct value of the s-wave scattering length in the Born approximation, a
property which is important for the mean-field description of a gaseous BEC, given
later in this chapter. Feshbach resonances are then introduced, and their working
principle is described. After a brief review of the most important inelastic collision
processes in a degenerate gas, I will introduce the dipole-dipole interaction, and
describe its main properties. This kind of interaction is of fundamental importance
in a BEC of Er atoms, because of the high permanent magnetic moment of these
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atoms in their ground state.
Later, I will present a theoretical description of a weakly interacting BEC in a

trap, in a mean-field approximation. In this approximation, the Gross-Pitaevskii
equation describing the dynamics of the condensate state is derived. From the
stationary solution of this equation, the static properties of a dilute BEC can
be obtained. In particular, I will derive the BEC ground state solution in the
so-called Thomas-Fermi limit (large repulsive interactions), where the mean-field
prediction takes a simple analytic form. Finally, I will present a generalized form
of the Gross-Pitaevskii equation which includes the dipole-dipole interaction con-
tribution to the mean-field energy, and I will show the effects of this contribution
on the stationary solution of a dilute BEC, again in the Thomas-Fermi limit.

The concepts presented in this chapter will be used throughout the experimen-
tal work and the numerical simulations reported in Chapter 4.

2.1 Basics of quantum scattering theory

In a ultracold atomic gas the mean interparticle distance 〈r〉 is usually much
larger than the interaction range b (typical numbers are 〈r〉 ∼ 102 nm, b ∼ nm).
Because of this dilutness, two-body interactions between atoms dominate, and
three- and higher-body interactions are negligible. In this diluteness condition,
collisions in atomic gases are well described through quantum scattering theory
[45]. Here we consider an elementary collision process between two identical par-
ticles with the same mass m and same internal state. The two particles interact
via an interaction potential V (r) that depends on the distance r between the two
particles. The scattering theory shows that the collision dynamics is entirely con-
tained in the description of the relative motion of the two particles and correspond
to the scattering of a fictitious particle of mass µr = m/2 in the the potential V .
This is expressed by the hamiltonian:

H =
p2

2µr
+ V (r), (2.1)

where r and p are the position and momentum of the reduced particle.
For neutral atoms, the interaction potential V (r) is characterized by a strong
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repulsion at small distances, due to the overlapping of the electronic clouds of each
atom, which prevents the nuclei to come too close to each other (Fermi pressure),
and it is weakly attractive at large distances because of the van der Waals inter-
action. This latter is a short-range interaction which falls off with the interatomic
distance r as −1/r6. Depending on the atomic species (and more specifically on
the electron configuration) other interactions may come into play, such as magnetic
dipole-dipole interactions or quadrupole-quadrupole forces. In the case of alkali
atoms, the van der Waals interaction dominates and is isotropic at large distance,
due to the simplicity of the electron configuration. This is not the case for more
complex atomic species, such as chromium, dysprosium or erbium [59].

The scattering problem with Hamiltonian (2.1) can be solved by solving the
following Schrödinger equation:(

− ~2

2µr
∆ + V (r)

)
ψ(r) = Eψ(r), (2.2)

with E = ~2k2
2µr

. Thanks to the diluteness condition, collision in ultracold gases
can be correctly described by considering the asymptopic behaviour (r →∞) of ψ.
In this limit, the solution of Eq.(2.2) can be written as a sum of a plane wave, cor-
responding to the unperturbed free particles, and a spherical wave, corresponding
to the scattered particles:

ψk(r) = eik·r + f(k, n, n′)
eikr

r
, (2.3)

where n = k/k, n′ = r/r, and f(k, n, n′) is the scattering amplitude in the
direction defined by the unit vector n′. At a given position r within the asymptotic
limit, the scattering amplitude f does not depend on the distance r, and is given
by:

f(k, n, n′) = − µr
2π~2

∫
d3r′e−ik

′·r′V (r′)ψk(r′), (2.4)

where k′ = kn′. This implicit expression of the scattering state links the
value of the wavefunction far from the scattering region (f) to its values inside the
scattering region (through the potential V ). Its complete analysis requires to solve
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the Schrödinger equation (2.2). The so-called Born approximation offers a zeroth
order estimate of the scattering amplitude, valid for a weak interaction potential.
Thus, to lowest order in V , one can neglect the scattered part in the integral and
replace ψk(r′) by the unperturbed wavefunction eik·r′ . This gives:

f(k, n, n′) ' − µr
2π~2

∫
d3r′ei(k−k

′)·r′V (r′), (2.5)

which is simply the Fourier transform of the scattering potential V in (k− k′).
The knowledge of the scattering amplitude f gives a direct access to the dif-

ferential and total scattering cross sections, respectively given by:

dσ(k)

dΩ
= |f(k, n, n′)|2, (2.6)

and

σ(k) =

∫
|f(k, n, n′)|2d2n′. (2.7)

For identical particles the two scattering diagrams of Fig.2.1 can not be distin-
guished, and the wavefunction ψk(r) of Eq.(2.3) must be symmetrized (antisym-
metrized) with respect to changing the sign of the relative coordinate r → −r, if
the particles are bosons (fermions). The (anti-)symmetrization of the wave func-
tion is done by replacing:

f(k, n, n′)→ f(k, n, n′)± f(k, n,−n′) (2.8)

where the +(-) sign applies to bosons (fermions).

2.1.1 Partial wave expansion

In many cases, and in particular in the case of alkali atoms, the scattering
potential can be considered as spherically symmetric, that is V (r) = V (r). This
consideration simplifies greatly the scattering problem. First, by symmetry argu-
ment, f only dependends on the angle θ between n and n′: f(k, n, n′) ≡ f(k, θ).
Second, the Hamiltonian (2.1) commutes with L2 and Lz, where L is the relative
angular momentum, so that the wave function ψk is conveniently expanded on the
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Figure 2.1: Two collisional processes which are indistinguishable for two iden-
tical particles, indicated by 1 and 2. The two processes yeld the same
final state, therefore their amplitude probability has to be symmetrized if
the particles are bosons.

spherical-wave basis, taking z as the direction of the incident wave (i.e. n). Even
in absence of spherical symmetry, such a partial-wave expansion is typically used
and reads:

ψk(r) =
∞∑
l=0

l∑
m=−l

Y m
l (θ, φ)

uk,l,m(r)

r
, (2.9)

where φ is the azimutal angle around the z-axis, and Y m
l (θ, φ) are the spherical

harmonic functions. Each term of the sum (2.9) corresponds to a partial wave
with angular momentum norm ~

√
l(l + 1) and projection m~. In the spherically

symmetric case, since the incident wave is an eigenstate of Lz with eigenvalue
m = 0, and due to the conservation of flux, only the sperical harmonics with
m = 0 contribute in (2.9). That is, the only contribution to the scattering is given
by Y 0

l (θ, φ) ∝ Pl(cos θ), where Pl(x) are the Legendre polynomials.
Each radial wavefunction uk,l(r) satisfies a 1D Schrödinger equation with an

effective potential

Ve(r) = V (r) +
~2l(l + 1)

2µrr2
(2.10)

where the second term is the centrifugal barrier (for l > 0). It can be demon-
strated (see ref. [45]) that at large distances (kr � 1) the radial wave functions
uk,l(r) can be expressed in terms of phase shifts δl(k) according to the following
equation:
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uk,l(r) ' sin(kr − lπ
2

+ δl(k)) (2.11)

where δl(k) are real and depend on the incident wave vector modulus. There-
fore, in the limit of large r, the radial wave function uk,l(r) behave as a free wave
(V = 0), except for a possible phase shift for the reflected outgoing wave.

By comparing equations (2.9) and (2.11) with (2.3), and expanding the plane
wave eik·r = eikz in Legendre polynomials, one obtains the scattering amplitude in
the form of a partial wave expansion:

f(k, θ) =
1

2ik

∞∑
l=0

(2l + 1)(e2iδl(k) − 1)Pl(cos θ). (2.12)

As a consequence, also the cross section can be expressed as a partial wave
expansion using Eq.(2.7), thanks to the orthogonality of the spherical waves. The
expression for the total cross section is then given by:

σtotk =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl(k). (2.13)

The symmetrization condition (2.8) causes the cancellation of the odd partial
waves for bosons and of the even ones for fermions. One thus obtains:

for bosons: σtot,Bk =
8π

k2

∑
2l

(2l + 1) sin2 δl(k), (2.14)

for fermions: σtot,Fk =
8π

k2

∑
2l+1

(2l + 1) sin2 δl(k). (2.15)

2.1.2 Scattering length

Let us consider the centrifugal barrier ~2l(l+1)
2µrr2

entering in the effective potential
(2.10) felt by the radial partial wave uk,l with l > 0. A relative particle with an
energy E = ~2k2/2µr much smaller than the resulting barrier height does not feel
the short-range potential V (r), as it will be reflected on the barrier. One thus
qualitatively expects that scattering amplitudes (or equivalently the phase shifts
δl(k)) vanish when k → 0 for all partial wave with l > 0. Therefore, the only

44



2.1 Basics of quantum scattering theory 45

partial wave contributing to the scattering in the low energy limit is the one with
l = 0 (s-wave), for which there is no energy barrier.

Note that this low energy limit describes well collisions which verify kb � 1

(equivalently E � ~2/2µrb
2), where b is the interaction range. In a gas, this

condition is satified for kBT � ~2/2µrb
2 (equivalently λdB � b).

As a consequence, the total low-energy cross section for bosons reads:

σtot,Bk =
8π

k2
sin2 δ0(k), (2.16)

whereas, since only odd partial waves contribute to the cross section for iden-
tical fermions, at low temperature a fermionic gas behaves as an ideal, non inter-
acting, gas.

Finally, one can define the s-wave scattering length a:

a = − lim
k→0

tan δ0(k)

k
, or equivalently lim

k→0
δ0(k) = −ka, (2.17)

such that the low-energy limit of the scattering amplitude and scattering cross
section for identical bosons tend to constant values:

lim
k→0

f(k) = −a, (2.18)

lim
k→0

σtot,Bk = 8πa2. (2.19)

Equations (2.18) and (2.19) show that in a ultracold bosonic gas, a is the only
relevant parameter which characterizes the short-range collisions at low energy.
It is important to note that this argument is in fact true if V (r) decreases fast
enought to zero for increasing r (so-called short-range interaction potential). This
is the case for the Van der Waals potential, for which the scattering at low energy
is isotropic. Instead, for V (r) decreasing as r−3 or slower (so-called long-range
interaction potential), all partial wave would contribute in the low energy limit.
This comes from a general result of low-energy scattering (see, for instance [?])
stating that for a central potential falling off at large distances like 1/rn, the
scattering phase shifts δl(k) scale, for k → 0, like k2l+1 if l < (n − 3)/2, and like
kn−2 otherwise.
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In the following, for convenience, I will simply use the term "scattering length"
to indicate the "s-wave scattering length".

2.1.3 Effective contact potential

In the previous section it has been demonstrated that the scattering of a pair
of identical particles with small total energy via a short-range interaction potential
(such as the van-der-Waals) is dominated by the s-wave contribution to the wave
function, and it is described entirely in terms of a single parameter, the scattering
length a. This is a fundamental point, as it can be shown that, in the ultracold
regime, the macroscopic properties of dilute gases do not depend on the details
of the interatomic potential V (r), which in general has a complicated dependence
on the interparticle distance and can be difficult to determine, but simply on
a. In contrast, a is usually much easier to predict as well as readily accessible
in experiments [45]. Therefore, for the purpose of calculating the many-body
properties of an ultracold and dilute gas, one can replace the true interatomic
potential by an effective potential Veff (r) that gives the same scattering length as
V (r). The idea is then to use the simplest effective potential possible, namely a
contact potential of the form:

Veff (r) = gδ(r), (2.20)

where δ(r) denotes the Dirac delta function, and the coupling constant g should
be taken such that Veff and V correspond to the same scattering length. The
scattering amplitude due to Veff can be calculated in the Born approximation
(Eq. (2.5)), and reads:

f(k, θ) = − µrg

2π~2
. (2.21)

Then, using equations (2.21) and (2.18), one finds:

g =
2π~2a

µr
=

4π~2a

m
. (2.22)

Equations (2.20) and (2.22) show that the scattering length also determines the

46



2.2 Tuning the interactions: Feshbach resonances 47

sign of the effective short-range interatomic potential: if a > 0, Veff is repulsive,
if a < 0, Veff is attractive. This effective potential will be used in section 2.5
that is devoted to the theoretical description of a weakly interacting Bose-Einstein
condensate.

2.2 Tuning the interactions: Feshbach resonances

One of the most fascinating features of cold atom physics is the possibility of
controlling the interactions between the atoms. Indeed, the value and the sign
of the scattering length a which determine the ultracold collision process, can be
controlled in the experiments by simply tuning an external parameter, such as a
uniform magnetic field applied on the atomic sample. The physical mechanisms
responsible for the variation of a are the so-called Feshbach resonances, that appear
when, during a collision process, the two colliding atoms pass through a resonant
intermediate state where they are temporarily bound, before separating again.

Feshbach resonances have been initially investigated in the context of nuclear
physics [63] and atomic physics [64], and later they have become important in cold
atomic physics [65] since they constitute the essential tool to tune the strength
of the effective interatomic interaction, passing from non-interacting, to weakly
interacting to strongly interacting regimes (by varying the strength of a), and also
changing the sign of the interactions from repulsive to attractive and viceversa (by
changing the sign of a).

Here I will outline the basic physics of magnetically-tunable Feshbach reso-
nances, following ref. [5]. A detailed description of Feshbach resonances can be
found, for instance, in the review [11].

Let us consider the collision of two atoms respectively in the internal states of
quantum numbers f1, mf1 and f2, mf2 , characterizing the total angular momentum
norm and projection. At very low energy, one can consider that the atoms approach
each other with a orbital angular momentum l = 0. The initial collision state of
the two ultracold atoms is thus characterized by the quantum numbers:

α : {f1,mf1 , f2,mf2 , l = 0} (2.23)
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indicated by the simplified notation α. This set of quantum numbers defines a
collision channel, here the so-called entrance channel or open channel. Of course,
there are other channels defined by other sets β of quantum numbers.

One important point leading to the Feshbach resonances is that, taking into ac-
count the internal states of the atoms, the previously introduced scattering Hamil-
tonian (2.1) can show a coupling of the different channels. This can come from
the mere anisotropy of the scattering potential V (r), as it is the case for Er, for
example (see below). It can also come from the dependence of V on the total
electronic spin of the atom pair. This will couple the channels if the nuclear spin is
not zero (and is thus related to the existence of an hyperfine structure, see section
1.2.1). An important additional term in (2.1) when accounting for the internal
state of the atoms, is the Zeeman effect (section 1.2.2).

Two-channel model Let us consider a simplified model that takes only two
channels into account: the open channel, which contains the entering collision
state, with a very small energy E ' 0, and a second channel containing a resonant
bound state, whose energy Eres is very close to E. This latter is called closed
channel if its dissociation threshold is above E, so that the two colliding atoms
can not access the continuum of this channel (see Fig.2.2).

The state of the system can be written as a vector whose components refer to
each channel: (

|φop〉
|φcl〉

)
(2.24)

where the indices op and cl refer to the quantum numbers (for instance the
spin states) in each channel. In this two-state basis, the two-channel Hamiltonian
H2 reads:

H2 =

(
−~2∆

2µr
+ Vop(r) W (r)

W (r) −~2∆
2µr

+ Vcl(r)

)
, (2.25)

where Vop and Vcl are the interaction potentials operators in the open and closed
channels, respectively, and W describes the coupling between the two channels.
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Figure 2.2: Two-channel model for a Feshbach resonance. Two atoms prepared
in the open channel undergo a collision at an energy E which is typically
close to zero in the ultracold domain. In the course of the collision the open
channel is coupled to the closed channel, which supports a bound molecular
state at energy Eres. When Eres ' 0 a scattering resonance occurs. If the
magnetic moments of the closed and open channels differ, resonant coupling
can be conveniently realized by tuning the position of the closed channel
with respect to the open one through the variation of an external magnetic
field. Figure adapted from [5].

In absence of coupling (W = 0), The potential Vop gives rise to the so called
background scattering length, indicated by abg. A Feshbach resonance occurs when
there exists one bound state |φres〉 in the potential Vcl which has an energy close to
E and in presence of a non zero couplingW (r). In the following, all the eigenstates
of the Hamiltonian projected in the closed channel other than the resonant bound
state can be neglected, since they negligibly contribute to the scattering. Assuming
that the spin configurations of the open and closed channels have different magnetic
moments, the energies of the colliding states in these channels vary differently
when a static magnetic field B is applied and scanned, because of a different
Zeeman shift. By properly tuning B, it is possible to bring the bound state of
the closed channel potential on resonance with the entrance collision state in the
open channel, that is Eres = E ' 0. When the energy difference between the
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two channels vanishes, one expects a divergence of the scattering amplitude, and
therefore a divergence of the scattering length a. This is the basic mechanism of
a Feshbach resonance in a ultracold atomic gas.

The variation of the scattering length with the applied magnetic field close to
a Feshbach resonance reads [66]:

a(B) = abg

(
1− ∆

(B −B0)

)
. (2.26)

where ∆ denotes the resonance width in units of magnetic field, and B0 is the
resonance position, that is the value of the magnetic field where the scattering
length diverges (a(B0) → ±∞). The background scattering length abg represents
the scattering length far from the resonance. Another important quantity is the
zero crossing of the scattering length associated with a Feshbach resonance: it
occurs at a magnetic field Bzc = B0 +∆. Note that both abg and ∆ can be positive
or negative, and that the sign of a changes when B is scanned around B0. The
relation (2.26) is depicted in Fig.2.3.

Figure 2.3: Variation of the scattering length a with the magnetic field B near
a Feshbach resonance. abg is the value of the off-resonance scattering
length, ∆ is the resonance width and B0 the resonant magnetic field. Figure
adapted from [11].

Within the two channel model, one can find that the resonance width ∆ relates
to the coupling strength via [5]:

δµabg∆ =
~2

2µrr∗
, (2.27)
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where δµ is the difference between the magnetic moments of the open and
closed channels in absence of coupling, and r∗ is a characteristic length defined by:

〈φcl|W |φop〉 =
~2

2µr

√
4π

r∗
. (2.28)

Eq.(2.28) shows that 1/r∗ is a measure of how strongly the open and closed
channels are coupled. Since ∆ ∝ 1/r∗, then the stronger is the coupling, the wider
is the resonance.

The ability to tune the scattering length close to the zero crossing (where a = 0)
is measured by the quantity: (

da

dB

)
a'0

' abg
∆
. (2.29)

This means that a small abg and a large ∆ are desirable conditions to get a
high degree of tunability of the scattering length. Moreover, typically in the lab
the magnetic noise can be of the order of a few tens of mG and, therefore, tuning
the interactions on sharp resonances can be challenging. Exceptionally favourable
cases are represented by several alkali atoms, and in particular by 39K, for which
Feshbach resonances can be as wide as 10-100 G, and take place at values of the
magnetic field experimentally easy to access. Indeed, the high degree of tunability
of the scattering length via Feshbach resonances constitutes the most attracting
feature of 39K. A completely different scenario opens up in the case of the more
complex lanthanide Er, for which the width of the Feshbach resonances can be
as low as 10 mG. This requires a very high precision in the determination of the
magnetic field in the lab in order to be able to tune the interactions.

2.3 Inelastic collisions

Inelastic scattering processes lead to a change in the internal states of the
atoms. The most relevant inelastic collisions in ultracold atomic gases are of three
types: collisions with the background gas, two-body processes with spin-exchange,
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and three-body collisions. All these processes can cause losses of atoms from the
trap. Collisions with the background gas can be minimized in experiments by
reaching ultra-high vacuum pressures of ∼ 10−11 mbar in the vacuum chamber.
Two-body spin-exchange processes are the main cause of atom losses in magnetic
traps, since in these traps only certain spin states can be trapped. In three-body
collisions, two atoms form a molecule and the third one ensures conservation of
momentum. The binding energy of the molecule gets converted into kinetic energy,
leading to the loss of all the three atoms from the trap. Three-body recombination
limits the maximum density that can be achieved in a trap, being strongly density-
dependent. If the atomic sample is dilute the probability to find three atoms, close
enough to determine a three-body loss, can be negligible. The rate of three-body
collisions in a gas is given by [67]:

dn

dt
= −L3n

3, (2.30)

where n is the atomic density, and L3 the three-body recombination parameter.
Both for alkali-metal atoms and for lanthanides L3 is on the order of 10−41 m6/s
[68, 26]. Thus, for a typical BEC density of ∼ 1014 cm−3, Eq.(2.30) predicts a
lifetime of the condensate of ∼ 10 s.

2.4 Dipole-dipole interaction

In ultracold gases of atomic species which possess a permanent magnetic dipole
moment, the interparticle interaction does not only include the short-range effec-
tive potential described in section 2.1.3, but also the so-called dipole-dipole inter-
action (DDI). The treatment of the DDI below is based on the reviews [69] and
[70].

For two atoms 1 and 2 with a permanent magnetic dipole moment µm along
the unit vectors e1 and e2 and relative position r, as represented in Fig.2.4(a), the
DDI energy reads:

Vdd(r) =
µ0µ

2
m

4π

(e1 · e2)r2 − 3(e1 · r)(e2 · r)
r5

. (2.31)

where µ0 is the permeability of vacuum. When an external magnetic field is
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present, all the dipoles point in the same direction, parallel to the field, and the
DDI energy simplifies to:

Vdd(r, θ) =
µ0µ

2
m

4π

1− 3 cos2 θ

r3
, (2.32)

where θ is the angle between the relative position of the particles r and the
direction of polarization, here assumed to be the z-axis (Fig.2.4(b)).

(a) (b)

Figure 2.4: Two particles interacting via dipole-dipole interaction. (a) Non-
polarized dipoles. (b) Polarized dipoles. e1 and e2 are the unit vectors
of the dipole moments for particles 1 and 2 respectively, r is the distance
between the dipoles and θ in b indicates the angle between the relative
position of the dipoles and their direction of polarization.

The potential Vdd has two important features: it is long-range, scaling with the
interpartcile distance as ∼ 1/r3 (see discussion in 2.1.2), and anisotropic, due to
the cos2 θ-dependence. As θ varies between 0 and π/2, the factor (1 − 3 cos2 θ)
varies between -2 and 1, and thus the DDI is repulsive for particles sitting side-
by-side (θ = π/2), while it is attractive (with twice the strength of the repulsive
interaction) for dipoles in the so-called head-to-tail configuration (θ = 0), see
Fig.2.5. There exists also a "magic angle" θm = arccos(1/

√
3) ' 54.7◦ for which

the DDI vanishes.
The long-range character and the anisotropy of the DDI have both very im-

portant consequences on all the variety of properties of an ultracold gas. They
affect the scattering properties, the stability of the system, the thermodynamics
and many-body properties. A striking effect of the DDI on the many-body physics
of an ultracold bosonic quantum gas will be presented in chapter 4. Here I will
focus on the consequences of the DDI on the scattering properties.

As already discussed in section 2.1.2, usually the interaction potential between
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Figure 2.5: Anisotropy of the dipole-dipole interaction. On the left: two polarized
dipoles side-by-side repel each other. On the right: two polarized dipoles in
a head-to-tail configuration attract each other.

two atoms separated by a distance r behaves as −1/r6 at large distances. For such
a van der Waals potential, it has been demonstrated that in the limit of a van-
ishing collision energy, only the s-wave scattering plays a role. In the case of the
dipole-dipole interaction, the long-range behaviour, characterized by a slow decay
∼ 1/r3 at large distances, implies that all partial waves contribute to the scatter-
ing amplitude, in contrast to the case of a short-range interaction. Moreover, the
anisotropy of the interaction means that the orbital angular momentum L is not
conserved during the scattering: the DDI mixes all even (odd) orbital angular mo-
menta scattering channels in the scattering of two bosons (fermions). Therefore,
one cannot replace the true interaction potential simply by a short-range, isotropic
contact potential, but needs to use (in Born approximation, see section 2.1.3) an
effective potential of the form [70]:

V (r, θ) =
4π~2a

m
δ(r) +

µ0µ
2
m

4π

1− 3 cos2 θ

r3
, (2.33)

where the first term on the right-hand side is the effective contact potential
(2.20) accounting for the short-range interaction, and the second term is the long-
range and anisotropic DDI potential.

The strength of the DDI can be quantified by the so-called dipolar length,
defined as:
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add ≡
µ0µ

2
mm

12π~2
. (2.34)

This length scale expresses the characteristic range of the DDI, and it can be
demonstrated that it determines the low-energy limit of the dipole-dipole scattering
amplitudes [70]. In this sense, add can be considered as the analogous of the
scattering length a for the DDI. It is very useful to introduce here the ratio of the
dipolar length to the scattering length, denoted by εdd:

εdd ≡
add
a

=
µ0µ

2
m

3g
, (2.35)

where g = 4π~2a/m is the coupling constant of the effective contact potential
(see section 2.1.3). In most cases, it is this ratio, comparing the relative strength
of the dipolar and contact interactions, which determines the physical properties
of a dipolar system. Indeed, εdd > 1 defines the dipolar-dominated regime in which
the DDI rules the behaviour of the system. An example will be given in Chapter 4.

Dipolar systems Atoms can have a permanent magnetic moment in their elec-
tronic ground state, due to the spin and the orbital angular momentum of the
electrons, and the strength of the magnetic dipole moment varies from element to
element. In alkali atoms, typically µ ≤ 1µB, and thus the magnetic dipolar effects
are very weak. However, there are other atomic species, like chromium, erbium,
europium, holmium, dysprosium and terbium, which possess a large magnetic mo-
ment of several Borh magneton in their ground state, and thus experience signifi-
cant magnetic DDI. Among them, only three elements have been Bose-condensed
up to now: chromium (with a magnetic moment µCr = 6µB) [18], dysprosium
(µDy = 10µB) [23] and erbium (µEr = 7µB) [24]. For these species, far from any
Feshbach resonance (that is, when the scattering length equals the background
scattering length), εdd ranges from ∼ 0.1 in the case of chromium, to ∼ 1 for
dysprosium and erbium. In chromium, an εdd ' 0.16 has been enough to observe
a perturbative effect of the dipolar interaction on the expansion dynamics of the
cloud [71]. Moreover, close to a Feshbach resonance, one can decrease the value of
the scattering length a, in order to increase εdd, and thus obtain enhanced dipolar
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effects (see, for instance [72], [32], [26], and chapter 4 of this thesis).
Note in passing that other dipolar quantum system than magnetic atoms

have been of interest for the experimentalists. These include heteronuclear po-
lar molecules in their electronic molecular ground state, and Rydberg atoms, i.e.
atoms with one electron promoted to a high energetic state. This systems have a
much larger dipolar coupling constant with respect to magnetic dipoles, but they
are difficult to investigate experimentally. In fact, quantum degenerate gases of po-
lar molecules have not been realized yet. Progresses have been made in recent years
in the cooling of molecules, but the densities and temperatures achieved so far are
still orders of magnitude away from the quantum degenerate regime. A promising
approach towards degeneracy, pursued by several groups in experimental molecular
physics around the world, is to start from already ultracold atomic mixtures, and
then use a Feshbach resonance to create heteronuclear molecules [73]. In the case
of Rydberg atoms, the main limitation is given by the short lifetime of the excited
state [74]. Electric dipoles could also be induced in atoms, however, due to the
typically very small electric polarizability of ground state atoms, extremely high
electric field strengths would be necessary to induce a relevant dipolar interaction
in this case.

Feshbach resonances in dipolar systems The anisotropy of the DDI has
been demonstrated to be at the origin of a rich spectrum of Feshbach resonances
in the strongly magnetic lanthanide Er and Dy atoms [59, 75]. It is interesting
to compare Feshbach resonances in Er, for instance, with those in alkali-metal
atoms. First, in alkalis Feshbach resonances are typically induced by a difference
in the magnetic moment of different molecular hyperfine states, where multiple
l = 0 (s-wave) channels are present, and thus s-wave Feshbach resonances exist.
For bosonic Er, where the hyperfine structure is absent, Feshbach resonances are
instead due to the coupling of rotational bound states. This coupling is achieved
through the anisotropic DDI, which couple bound states with non-zero orbital
angular momentum l. Experimentally, an extremely large density of Feshbach res-
onances, of about three per Gauss for the bosonic 166Er and 168Er isotopes, and
about 25 per Gauss for the fermionic 167Er (which, additionally, has an hyperfine
structure) has been measured (see ref. [76]). This density, is about 2 orders of
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magnitude larger than the one observed in ultracold alkali-metal atoms [77]. As
a consequence, Feshbach resonances in lanthanides are typically much narrower
than the one in alkalis (see discussion at the end of section 2.2).

Tuning of the dipole-dipole interaction An approach to tune the DDI was
proposed in ref. [78]. It is based on a combination of a static magnetic field
along the z-axis and a fast rotating magnetic field in the perpendicular xy-plane,
such that the dipoles adiabatically follow the time-dependent external field. This
is valid provided that the rotating frequency of the field Ω is much smaller than
the Larmor frequency ωLarmor = µmB/~, and much higher compared to the typical
frequencies of the atomic motion, given by the trapping frequencies of the potential
which confines the dipolar gas. In this limit, the particles feel a time-average of
the DDI (2.32) over a period 2π/Ω, which reads:

〈Vdd(r, θ, φ)〉 =
µ0µ

2
m

4π

1− 3 cos2 θ

r3

(
3 cos2 φ− 1

2

)
. (2.36)

The averaged energy (2.36) differs from the interaction energy of aligned dipoles
(2.32) by a factor (3 cos2 φ−1)/2. By varying the angle φ from 0 to π/2, this factor
can be changed continuosly from 1 to -1/2, thus allowing to invert the sign of the
DDI, and even cancel it completely when φ is equal to the magic angle θm. Note
that when φ > θm, the averaged DDI turns out to be attractive for particles sitting
side-by-side.

2.5 Mean field description of a trapped Bose-Einstein

condensate

In this section I will give a theoretical description of the main properties of a
weakly interacting trapped BEC, following the treatment of ref. [79]. In particu-
lar, I will discuss properties such as the shape and size of the density distribution
in a trapped condensate. Other properties, like elemenatry excitations will be dis-
cussed in chapter 4.
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The many-body Hamiltonian operator describingN interacting bosons confined
by an external potential Vext is given, in second quantization, by:

Ĥ =

∫
drΨ̂†(r)[− ~2

2m
∇2 + Vext(r)]Ψ̂(r)+

1

2

∫ ∫
drdr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r),

(2.37)

where Ψ̂(r) and Ψ̂†(r) are the boson field operators that annihilate and create
a particle at the position r, respectively, and V (r−r′) is the two-body interatomic
potential. A weakly-interacting dilute Bose gas in which Bose-Einstein conden-
sation occurs is well described within the Bogolibov method [80], which consists
in separating out the condensate contribution to the bosonic field operator. In
general, the field operator can be written as Ψ̂(r) =

∑
α Ψα(r)âα, where Ψα(r) are

single-particle wave functions and âα are the corresponding annihilation operators.
Bose-Einstein condensation occurs when a single-particle state gets macro-

scopically occupied: the number of particles N0 of this particular state becomes
macroscopic, that is N0 � 1, and the ratio N0/N remains finite in the thermo-
dynamic limit N → ∞. In this regime the operators â0 and â†0 can be treated
like c-numbers: â0 = â†0 =

√
N0. The field operator can then be decomposed as

Ψ̂(r) =
√
N0Φ0(r) + Ψ′(r), where Ψ′(r) is a quantum field operator accounting for

the non-condensed atoms. The generalization of the above decomposition (indi-
cated as mean-field approximation) to the case of time-dependent configurations
is given by:

Ψ̂(r, t) = Φ0(r, t) + Ψ̂′(r, t), (2.38)

where the Heisenberg representation for the field operators has been used. Here,
the function Φ0(r, t) is a classical field which has the meaning of an order parame-
ter, and it is also referred to as the "macroscopic wave function of the condensate".
Its modulus defines the condensate density through n(r, t) = |Φ0(r, t)|2. The time
evolution of the field operator Ψ̂(r, t) can be described using the Heisenberg equa-
tion with the many-body hamiltonian (2.37), which gives:
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i~
∂

∂t
Ψ̂(r, t) = [Ψ̂(r, t), Ĥ]

=

[
−~2∇2

2m
+ Vext(r) +

∫
dr′Ψ̂†(r′, t)V (r− r′)Ψ̂(r′, t)

]
Ψ̂(r, t).

(2.39)

2.5.1 Gross-Pitaevskii equation

The Gross-Pitaevskii equation constitutes the zeroth order of the Bogoliubov
development, that is assuming Ψ̂′ ≡ 0. With this assumption, one can replace the
operator Ψ̂ with the classical field Φ0. A further simplification of Eq.(2.39) comes
from substituting the real two-body interaction potential V (r−r′) by the effective
potential introduced previously in this chapter. This gives:

i~
∂

∂t
Φ0(r, t) =

[
−~2∇2

2m
+ Vext(r) +

∫
dr′Φ∗0(r′, t)Veff (r− r′)Φ0(r′, t)

]
Φ0(r, t).

(2.40)
This equation is known as the Gross-Pitaevskii equation (GPE) [83, 84]. It

is valid for a macroscopic occupation of the condensate. It can be used,at low
temperature, to explore the macroscopic behaviour of the system, characterized
by variations of the order parameter over distances larger than the mean distance
between the atoms.

Contact interacting case Let us assume that the particles have a negligible
dipole moment, and therefore their interaction can be expressed by the short-range
effective potential of Eq.(2.20). Thus, V (r− r′) = gδ(r− r′), with g = 4π~2a/m.
The GPE (2.40) for the order parameter now reads:

i~
∂

∂t
Φ0(r, t) =

(
−~2∇2

2m
+ Vext(r) + g|Φ0(r, t)|2

)
Φ0(r, t). (2.41)

The stationary solution of the GPE (i.e. the ground state of the system with
the many-body Hamiltonian (2.37), in mean-field approximation) can be obtained
by writing the condensate wave function as Φ0(r, t) = φ(r)e−iµt/~, where µ is the
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chemical potential and φ is real and normalized to the total number of particles:∫
drφ2 = N0 ' N . Then the GPE (2.41) becomes:(

−~2∇2

2m
+ Vext(r) + gφ2(r)

)
φ(r) = µφ(r). (2.42)

This is typically referred to as the stationary Gross-Pitaevskii equation, and
plays a central role in determining the static properties of a dilute BEC, as it will
be discussed below. The stationary GPE has the form of a "nonlinear Scrödinger
equation", with a term proportional to the particle density n(r) = φ2(r). It is
a single-particle equation describing how the wave function of each atom in the
condensate is determined by the combined effect of the kinetic energy −~2∇2

2m
, the

trapping potential Vext(r), and the mean-field exerted on a given atom at position
r by the density of the other (N − 1) atoms at that point times the effective cou-
pling, gφ2(r). This explains the name "mean-field approximation" given to this
treatment. Note that here the eigenvalue is the chemical potential (dE/dN), not
the energy per particle (E/N), as it is for the usual (linear) Scrödinger equation.

One can study the properties of the ground state wave function in two limit
cases: the one where interparticle interactions are very low with respect to the
kinetic term, and therefore the nonlinear mean-field term in the stationary GPE
can be neglected (non interacting limit), and the opposite case where (repulsive)
interactions dominate over the kinetic energy, so that this latter term can be ig-
nored. Before going into the calculations for these two cases, it is worth making a
qualitative reasoning which allows to define a dimensionless parameter character-
izing the relative strength of the atom-atom interaction compared to the kinetic
energy. Because of its experimental relevance in the context of this thesis, the
trapping potential is assumed to be harmonic. For simplicity, let us suppose that
the harmonic potential is isotropic, with angular frequency ω0: V = mω2

0r
2/2. In

absence of interactions, the BEC matches the ground state of the harmonic oscil-
lator potential, such that its extent R is equal to the harmonic oscillator length,
defined as:

aho =

√
~

mω0

, (2.43)
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and the mean kinetic energy is given by ~ω0/4. Let us now consider the effect
of interactions perturbatively. The mean interaction energy per particle is of the
order of gn ∼ gN/a3

ho. Now one can compare the total (for N particles) interaction
energy Eint ∼ Ngn with the total kinetic energy Ekin ∼ N~ω0/4 , and obtains the
following relation:

Eint
Ekin

∝ N |a|
aho

. (2.44)

The parameter N |a|/aho expresses the importance of interatomic interactions
with respect to the kinetic energy.

In the limit N |a|/aho � 1 interactions can be ignored. In the absence of
interactions (g = 0), the condensate wavefunction is simply the Gaussian of the
harmonic oscillator ground state. For a generic 3D harmonic confinement of the
form:

Vext(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.45)

where the three oscillator frequencies ωi (i = x, y, z) may differ from each
other,the condensate density reads:

n(r) = φ2(r) = N
(mωho
π~

)3/2

e−
m
~ (ω2

xx
2+ω2

yy
2+ω2

zz
2). (2.46)

Here, ωho = (ωxωyωz)
1/3 is the geometric average of the oscillator frequencies.

The value of the density at the centre is proportional to N . The size of the cloud
is instead independent of N , and is fixed by the harmonic oscillator length (2.43)
for ωho.

If the atoms are interacting, the shape of the condensate density can change sig-
nificantly with respect to the Gaussian. The central density is lowered (raised) by
a repulsive (attractive) interaction and the radius of the atomic cloud consequently
increases (decreases). This effect of the interaction has important consequences,
not only for the structure of the ground state, but also for the dynamics and ther-
modynamics of the system (see, for instance [67]).

One should note that only large repulsive interactions (a > 0) are allowed
within the GPE treatment. In the case of too large attractive interactions, the gas

61



2.5 Mean field description of a trapped Bose-Einstein condensate 62

would collapse leading to also very interesting phenomena (like the "Bose Nova",
see ref. [81]). In this case other mechanisms, not included in the GPE, should
be taken into account to describe the gas behavior (for instance, three-body losses
and beyond mean-field effects [79]).

Thomas-Fermi approximation In the limit N |a|/aho � 1, the predictions of
mean-field theory take a rather simple analytic form. Regarding the ground state,
the effect of increasing the parameter N |a|/aho, with a > 0 is that the atoms are
pushed outwards, the central density becomes rather flat, and the radius grows.
As a consequence, the kinetic term in the GPE (2.42), proportional to ∇2

√
n(r),

takes a significant contribution only near the boundary of the density distribution
and becomes negligible with respect to the interaction energy. Therefore, a better
approximation for the condensate wave function in this limit may be obtained by
solving the GPE (2.42) neglecting the kinetic energy term. The GPE in this case
becomes an algebraic equation for the condensate density:

[Vext(r) + gφ2(r)]φ(r) = µφ(r). (2.47)

The solution of the previous equation gives the density profile in the form:

n(r) = φ2(r) =
µ− Vext(r)

g
(2.48)

in the region where µ > Vext(r), and n = φ = 0 outside. This is referred to as
the Thomas-Fermi (TF) approximation. The boundary of the cloud is therefore
given by the condition

Vext(r) = µ (2.49)

for which the density n(r) vanishes. In the TF approximation the extension of
the cloud in the three directions is given by the three semi-axes Ri obtained by
inserting the harmonic potential (2.45) into Eq.(2.49):

Ri =

√
2µ

mω2
i

, i = x, y, z. (2.50)
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The density (2.48) can thus be re-written as follows:

n(r) = nTF (0)

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, (2.51)

where nTF (0) ≡ µ/g is the value of the density at the centre of the trap.
Eq.(2.51) shows that the condensate density in the TF regime takes the form of
an inverted parabola. The so-called TF radii Ri of Eq.(2.50) can be evaluated in
terms of trap parameters once the chemical potential has been determined. The
normalization condition on n(r) provides a relation between the chemical potential
and the total number of particles N :

µ =
~ωho

2

(
15Na

aho

)2/5

. (2.52)

Note that the chemical potential depends on the trapping frequencies, en-
tering the potential Vext only through the geometric average ωho. A convenient
measure of the spatial extent of the cloud may be identified with the quantity
R̄ = (RxRyRz)

1/3. By combining equations (2.50) and (2.52), one gets:

R̄ = aho

(
15Na

aho

)1/5

, (2.53)

Therefore, R̄ is larger than aho, and increases with N .
On the contrary, the value of the density at the center of the trap nTF (0) is

typically much lower than the one predicted for noninteracting particles, nho(0) =

N/(π3/2a3
ho) and the ratio between the central densities in the two cases decreases

with N .
A remarkable feature of Bose-Einstein condensates in the TF limit is that in-

teractions can be important even though the gas is dilute. Indeed, for a typical
BEC with a ∼ 10−3 µm, and an average density n̄ ∼ 1014 cm−3, one has n̄a� 1.
This condition identifies a dilute gas. For a typical trapping frequency ωho ∼ 100
Hz, the harmonic oscillator length is ∼ 1 µm. Therefore, for a BEC of N = 105

atoms, one has Na
aho
∼ 102. This implies that the Thomas-Fermi approximation is

very well justified in most experimental circumstances.
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Finally, it is worth mentioning that the balance between the kinetic energy
and the interaction energy of the condensate fixes a typical length scale, called
the healing length, and indicated by ξ. It describes the minimum distance over
which the condensate wave function recovers its bulk value when subjected to a
localized perturbation (this explains the use of the term "healing" for this length).
To derive an expression for the healing length, let us consider a BEC confined by
a box with infinitely hard walls. At the wall, the wave function must vanish, and
in the interior of the box the condensate density approaches its bulk value. If one
indicates the spatial scale of the density variations by ξ, the kinetic energy per
particle is of order ~2/2mξ2, and it competes the interaction energy per partcile
gn for:

~2

2mξ2
= gn =

4π~2an

m
(2.54)

which gives

ξ =
1√

8πan
. (2.55)

In typical experiments the healing length is of the order of 1 µm, and therefore
it is much larger than the scattering length a.

The healing length plays an important role in the Bogoliubov theory of the
elementary excitations of a weakly-interacting BEC, as will be shown in Chapter
4.2.

2.5.2 Non-local Gross-Pitaevskii equation for dipolar sys-

tems

As already pointed out, dipolar interactions are expected to change many of the
properties of a BEC. Here I will present the non-local Gross-Pitaevskii equation
(NLGPE) needed for a mean-field description of dipolar BECs, and its consequen-
cies on the shape and size of the ground state of the system.

Here we consider Eq.(2.40) with Veff(r− r′) = gδ(r− r′) + Vdd(r− r′), where
Vdd(r− r′) = µ0µ2m

4π
1−3 cos2 θ
|r−r′|3 .

This gives a generalized form of the GPE (2.41) for the order parameter, which
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includes the dipolar contribution to the mean-field interaction energy, and is typ-
ically referred to as the NLGPE (non-local Gross-Pitaevskii equation):

i~
∂

∂t
Φ0(r, t) =

(
−~2∇2

2m
+ Vext(r) + g|Φ0(r, t)|2 + Udd(r, t)

)
Φ0(r, t), (2.56)

where

Udd(r, t) =

∫
dr′Vdd(r− r′)|Φ0(r′, t)|2. (2.57)

This term is a convolution of the density n(r, t) = |Φ0(r, t)|2 with the DDI
potential. Eq.(2.56) is non-local due to the long-range character of the dipolar
interaction. It is an integro-differential equation, much more complicated to solve
with respect to the GPE, even numerically. Let us only focus here on the stationary
solution of the NLGPE. Following the treatment of the previous section, in the
time-independent case, the NLGPE takes the form:

(
−~2∇2

2m
+ Vext(r) + gφ2(r) +

∫
dr′Vdd(r− r′)φ2(r′)

)
φ(r) = µφ(r). (2.58)

In the TF approximation, where the kinetic energy term can be neglected, the
density distribution n(r) satisfies the integral equation

µ = Vext(r) + gn(r) +

∫
dr′Vdd(r− r′)n(r′), (2.59)

which is a generalization of Eq.(2.48) to dipolar systems. A striking effect of
the DDI is to elongate the condensate along the direction z along which the dipoles
are aligned. This effect, called magnetostriction [85], that is a change of the shape
and volume of the atomic cloud due to internal magnetic forces, can be understood
in a simple way for an isotropic harmonic trap with Vext = mω2

hor
2/2, and treating

the dipolar interaction as a perturbation (εdd � 1). To zeroth order, that is in
the absence of DDI, Eq.(2.59) has the solution n(0)(r) = (µ − mω2

hor
2/2)/g ≡

nTF (0)(1− r2/R2), where R is the TF radius of the condensate. By inserting this
n(0)(r) into the last term of Eq.(2.59) and carrying out the integration over r′, one

65



2.5 Mean field description of a trapped Bose-Einstein condensate 66

obtains the dipolar contribution to the energy of an atom at point r in the form:

U
(0)
dd (r) =

∫
dr′Vdd(r− r′)n(0)(r′). (2.60)

Thus, from Eq.(2.59), one gets:

n(r) =
µ− Vext(r)− U (0)

dd (r)

g
. (2.61)

Since U (0)
dd (r) is anisotropic, the cloud is distorted with respect to the non-

dipolar case. It can be demonstrated (see ref.[67]) that, to first order in εdd, the
TF solution for the ground state of a dipolar BEC in a spherical trap has still an
inverted parabola shape as in the case of a purely contact interacting gas, of the
form:

n(r) = nTF (0)

(
1− x2

R2
dd,x

− y2

R2
dd,y

− z2

R2
dd,z

)
, (2.62)

but with the TF radii in the three spatial directions x, y and z containing the
explicit dependence on εdd:

Rdd,x = Rdd,y ' R(1− εdd/5) Rdd,z ' R(1 + 2εdd/5). (2.63)

Eq.(2.63) shows that the condensate is elongated along the direction of the
dipoles. One can then calculate to first order in εdd the mean-field DDI potential
(2.57) created by the density distribution (2.64), and finds [78]:

Udd(r) = εdd
mω2

ho

5
(1− 3 cos2 θ)

{
r2 if r < R
R5

r3
if r > R

(2.64)

Thus, the dipolar mean-field potential has the shape of a saddle, with minima
located on the z axis, along which the dipoles are oriented. It is therefore energet-
ically favorable for the cloud to become elongated along z, in order to maximize
the attractive part of the DDI, and therefore minimize the total potential energy.

The perturbative treatment may be extended to anisotropic traps. It is worth
noticing that in the case of a dipolar BEC, the cloud aspect ratio Rdd,x,y/Rdd,z dif-
fers from the trap aspect ratio, due to the elongation induced by the DDI discussed
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above, whereas for non-dipolar systems, the two aspect ratios coincide. The trap
aspect ratio is typically defined as the ratio of the harmonic oscillator lengths,
or equivalently the inverse of the corresponding trapping frequencies, along the
direction longitudinal to the dipoles and perpendicular to them, and it is equal to
1 for isotropic traps (ωx = ωy = ωz). As we will see in chapter 4, because of the
anisotropic character of the DDI, the geometry of the trapping potential plays a
crucial role in determining the static and dynamic properties of dipolar BECs.
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Chapter 3

Design of a new vacuum apparatus
for the realization of tunable
Bose-Einstein condensates

This chapter presents the design of the vacuum system for a new experimental
apparatus for producing BECs of 39K atoms, to be constructed in Florence. I will
give technical descriptions of the various components of the designed system, like
the vacuum chambers, the vacuum pumps and the magnetic coil configurations.
The experimental steps towards the realization of the BEC that are planned for
this experiment are also presented, since they fundamentally determine the choices
of design. The scheme includes a vapour cell with a solid potassium sample as
atom source, where a pre-cooling and trapping stage in a 2D MOT is planned, a
subsequent 3D MOT, followed by the loading of the atoms in a in-vacuum optical
resonator, and finally the optical transport of the atoms in the science chamber.
This latter step will be achieved by moving the focus of an optical dipole trap
beam through the use of lenses with a tunable focal length. At the end of the
chapter I will present a preliminar experimental test of the optical setup designed
for the optical transport.
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3.1 Design of the vacuum system

The knowledge of the internal atomic structure of K, together with the ex-
perimental techniques typically used to bring a gas of K atoms to degeneracy,
is essential for the design. At the University of Florence and LENS, the route
towards the Bose-Einstein condensation of 39K in a single species experiment is
well estabilished [86]. In my work, several parts of the vacuum system as well as
its fundamental structure have been inspired by the "K39 Experiment" at LENS,
while other parts have been designed from scratches.

When designing a vacuum system for the production of a degenerate atomic
gas, one has already to think of which kind of experiments wants to perform on
that system. The following major requirements have been kept in mind during the
design of the vacuum apparatus:

• The pressure in the vacuum chambers should be low enough to allow for a
lifetime of the atomic sample of at least few seconds. The lifetime of the
sample is proportional to the inverse of the background pressure. A simple
calculation based on the background collision cross section yields a lifetime of
the atomic sample between 2 and 8 s (depending on the chemical composition
of the background gas) for a pressure of 10−9 mbar, that is within the ultra-
high vacuum (UHV) regime.

• The system should be sufficiently compact to allow for a high repetition rate
of the experimental sequence for the production of the BEC.

• A wide optical access onto the atoms is needed to allow the use of many trap-
ping beams as well as the implementation of high spatial resolution imaging
and laser speckles for creating disordered potentials (see for instance [87]).

• The vacuum system has to be designed in such a way that a proper confi-
guration of magnetic field coils can be placed around the vacuum chambers,
allowing for the creation of homogeneous magnetic fields up to 400 G for
tuning of interactions via Feshbach resonances and gradient fields up to 30
G/cm for MOT operation. The previous maximal desired values for the
magnetic field and the magnetic field gradient are taken from [86].
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• Since potassium atoms are magnetic, particular care has to be taken in order
to reduce any magnetic field fluctuation or instability, in particular very close
to the atoms. For this reason, low-magneticity building materials, like the
steinless steel compounds SS304 or SS316, have to be employed for vacuum
components such as chambers, viewports, valves and bellows.

In order to satisfy these conditions, a scheme with three vacuum chambers has
been designed (Fig.3.1).

Figure 3.1: Overview of the vacuum system. The three chambers are indicated as
2D-MOT, 3D-MOT and science chamber. The vacuum pumps, the valves
and the nipple containing the potassium sample are also shown.

The first cell (which serves as a vapour cell, see below) is meant to host a bi-
dimensional magneto optical trap (2D-MOT) used as a first cooling and trapping
stage for the atomic gas. A relatively high pressure of potassium vapour of 1.3 ×
10−8 mbar at room temperatue [88] ensures a fast loading rate into the 2D-MOT.
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The (high flux) atomic beam will then be pushed towards the second cell, where
a three-dimensional magneto optical trap (3D-MOT) will be performed. Finally,
the atoms will be optically transferred into the third cell, which constitutes the
science chamber of the experiment. In the science chamber a very large optical
access onto the atoms can be achieved, due to the shape of the cell and to the
absence of MOT laser beams.

Following the approach described in [47], the 2D-MOT and 3D-MOT are planned
to be operated on the D2 line of potassium, with a transition wavelength of 767
nm, and a linewidth of ≈ 2π× 6 MHz [42], for which a commercially available
diode laser source will be used.

In the following, the various parts of the vacuum apparatus and the pumping
scheme to achieve UHV pressures in the system, are described in detail.

3.1.1 Vacuum chambers

2D-MOT cell The design of the 2D-MOT cell is taken from [47, 89]: four rect-
angular 126 × 31 mm2 N-BK7 anti-reflection coated windows, providing optical
access to four transverse trapping beams, are glued on a metallic rectangular frame,
machined from a low magneticity titanium block. The choice of the N-BK7 mate-
rial for the windows is due to a similar thermal expansion coefficient of titanium
and N-BK7, which allows to minimize stresses on the windows in the metal-to-
glass contact region during the baking of the cell. The potassium vapor can be
released into the 2D-MOT chamber by heating a solid sample up to 100◦C for few
days. In this way, the oxide layer that forms on the surface of the metal melts,
and potassium is released in the cell.

3D-MOT cell The 3D-MOT chamber has been designed completely from scratches.
The chosen building material is the very low-magnetic stainless steel aisi 316L. In
this chamber several steps of the experimental procedure towards the Bose-Einstein
condensation of the atomic sample will take place:

1. Trapping and cooling of the atoms in a 3D-MOT;
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2. Loading in a deep optical trap created by using a in-vacuum optical resonator
(see section 3.3) and initial evaporative cooling;

3. Loading in a far-off resonant optical dipole trap. This trap will be also used
to transfer the atoms from the 3D-MOT chamber to the science cell (as
described in section 3.4).

In order to provide optical access for all the necessary laser beams, a geometry
of the cell with six optical axes has been designed. It is sketched in Fig.3.2.

(a) (b)

Figure 3.2: Schematic view of the laser beams configuration in the 3D-MOT
cell. (a) MOT beams. The sixth beam is counterpropagating with respect
to the one coming from the top, and is hidden in the figure. (b) Optical trap
beams for resonator and transport. The two optical axes forming an angle
of 22.5◦ are shown.

In order to achieve an efficient loading of the atomic beam coming from the
2D-MOT in the 3D-MOT, large diameter MOT beams have to be used. In the
present setup the idea is to employ MOT beams with a diameter of 25 mm, ente-
ring the vacuum chamber through standard CF40 viewports, whose effective view
diameter is 35 mm. This means that no other laser beams can enter the cell from
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the same viewports used for the MOT beams. The two optical axes needed for
the resonator and the dipole trap beams are therefore obtained in the chamber
by modifying its originally octagonal shape into a decagonal one, as shown in Fig.
3.2(b). The small angle of 22.5◦ between these two axes should allow for an effi-
cient loading of the atoms from the resonator trap into the dipole trap, as will be
discussed later (see section 3.4).

The 3D-MOT chamber has been manufactured just before I left Florence. Fig.
3.3 shows a picture of this cell, where I have already assembled most of the flanges
and vacuum viewports.

Figure 3.3: Picture of the 3D-MOT cell for the new vacuum system. The custom
made cell is made up of stainless steel aisi 316L. It has been manufactured
by the MORIMECCANICA srl, Parma (Italy). The flanges, viewports, and
all-metal valve visible in the picture have been assembled to the cell by me.

Science chamber The science chamber of the experiment is a rectangular glass
cell with dimensions 30 × 30 × 60 mm3, which is connected to the rest of the
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apparatus via a 57 mm long glass cylinder (see Fig.3.1). The size and shape of
the cell have been designed in order to fulfill three main requirements. First, large
optical access onto the atoms is needed in this cell in order to employ several laser
beams: a crossed optical dipole trap, laser speckles, high resolution absorption
imaging, and eventually optical lattices. Second, large Feshbach coils have to be
placed close to the cell for tuning of the atomic interactions. Third, the distance
through which the atomic cloud can be efficiently transported between two points
of the vacuum system is limited by atom losses and heating of the atomic sample
during the transport. On the basis of an already existent experiment with a
similar optical transport setup [90], it can be estimated that the maximal transport
distance for the present system, allowing to have an efficient transport, is around
300 mm. This poses a constrain on the length of the glass cylinder and the cell
itself.

3.1.2 Vacuum pumps

Fig.3.1 shows the three vacuum pumps that will be used to pump out the back-
ground gas from the vacuum system and reach the desired UHV pressures in the
chambers. In between a vacuum chamber and the next one, a differential pumping
stage reduces the pressure progressively, in order to get the minimum pressure
over the whole apparatus in the final glass cell. The achievement of sufficiently
low pressures will require a baking procedure of all the parts of the vacuum appa-
ratus at a temperature higher than 100 ◦C for several days, in order to eliminate
condensed water laying onto the internal surfaces of the system and most of the
hydrogen accumulated in the steel components during their fabrication process.

The pump used for the 2D-MOT cell is a Vaclon Diode ion pump from Agilent
Technologies, with a nominal pumping speed of 20 L/s. This pump is particularly
indicated for pumping of active gases such as N2, O2, CO2, H2. In particular, H2

turns out to be the main residual gas at UHV pressures. The effective pumping
speed at the chamber decreases to 6.8 L/s due to the conductance of the connec-
tions (all the values are calculated for air). By calculating the outgassing of the
various surfaces, an achievable pressure of 1.5 × 10−9 mbar in the 2D-MOT cell
can be estimated [47].
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For the pumping of the 3D-MOT cell and the science chamber the plan is to use
two NEXTorr pumps from Saes Getters, with different nominal pumping speeds
of 200 L/s and 100 L/s, respectively. These pumps combine a non-evaporable
getter (NEG) cartridge with a small ion pump. The getter element provides very
large pumping speed and capacity and acts as the main pump for active gases,
in particular for hydrogen. Instead the ion pump has the task to remove noble
gases and methane, which are not pumped by the NEG. The NEXTorr pumps
have a much more compact design with respect to standard ion pumps, which also
means smaller magnets, and therefore a convenient reduction of stray magnetic
fields close to the vacuum system.

The expected effective pumping speed at the two chambers can be calculated
by knowing the nominal pumping speed of the pumps and the conductances of all
the tubes through which the pumps are connected to the chambers. In analogy
with electric circuits, the inverse of the conductances of a series of tubes or com-
ponents (such as a pump) sum up to give the inverse of the total conductance of
the series [91]:

1

Ceff
=

1

C1

+
1

C2

+
1

C3

+ ...+
1

Cpump
(3.1)

where Ceff is the effective pumping speed at the chamber, C1, C2, C3, ... are the
conductances of all the components that separate the chamber from the pump,
which depend on the geometry of the components, and Cpump is the nominal pum-
ping speed of the pump.

Using Eq.(3.1) it is possible to estimate the effective pumping speed at the
two chambers in the designed vacuum system. The effective pumping speed of the
NEXTorr pumps turns out to be 50 L/s at the 3D-MOT chamber and 42 L/s at
the science chamber, respectively.

Once the effective pumping speed at a chamber is known, the achievable pres-
sure in the chamber can be estimated. It is worth noticing that, after the baking
of the system, the main residual gas in the vacuum chambers is expected to be
the potassium itself, whose pressure at room temperature is on the order of 10−8

mbar. Therefore, to calculate the ultimate pressure in the chambers one has to
consider the flux of potassium atoms entering the chamber (expressed in units of
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mbar × L /s) and divide it by the effective pumping speed at the chamber.

• In the case of the 3D-MOT cell, assuming an incoming atomic flux of 1011

atoms/s (see ref. [86]), which corresponds to 10−8 mbar × L/s 1, and dividing
this quantity by 50 L/s, one gets an estimated achievable pressure of 2 ×
10−10 mbar.

• To estimate the incoming atomic flux in the final glass cell, one divides the
pressure in the 3D-MOT chamber by the conductance of the 16 mm diameter
tube that connects the 3D-MOT chamber to the differential pumping stage
provided by the 100 L/s NEXTorr pump (visible in Fig.3.1). The resulting
flux of 12.6 × 10−10 mbar × L/s has to be divided by the effective pumping
speed at the science chamber (42 L/s), to obtain a ultimate pressure in the
final cell of 3 × 10−11 mbar.

The calculated achievable pressures in the 3D-MOT cell and science chamber
are whitin the UHV regime, and are expected to provide a lifetime of the atomic
sample of several seconds, which allows to perform experiments.

3.2 Design of the magnetic field coils

Different sets of coils have to be used in the experiment. In particular, around
each vacuum chamber a proper configuration of magnetic coils is needed for mag-
netic trapping of atoms and/or Feshbach tuning of the interactions. The design
of the coils has to take into account the different operational requirements as well
as the experimental constraints of the apparatus. It has been performed by using
the RADIA package for Wolfram Mathematica [93] with which it is possible to
simulate the magnetic field created by a given configuration of coils.

Magnetic coils at the 2D-MOT chamber For bi-dimensional trapping of the
atoms, one needs to create a homogeneous magnetic field along the longitudinal
axis of the 2D-MOT cell (y-axis in the experimental apparatus, see Fig.3.4 for

1The pressure of 1016 atoms/cm3 of air is 1 mbar.
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reference), with zero field on the axis. Such a configuration can be realized by
using two pairs of rectangular coils with the long side parallel to the y-axis, and
the coils’ axes along x for one pair and along z for the other one. To realize
magneto-optical trapping, the current has to flow in opposite directions for coils
facing each other (see section 1.3.3). Moreover, if the magnetic field lines are
pointing inside the cell for one pair of coils, they have to point outside the cell for
the other one, such that the magnetic field gradients generated by the two pairs
of coils sum up along the coils’ axes x and z, while they subtract to zero along the
2D-MOT y-axis. The coils configuration around the 2D-MOT cell is sketched in
Fig.3.4(a).

The following parameters for the coils allow to create magnetic field gradients
of up to 10 G/cm along the z -axis:

• Distance between the closest faces of each pair of facing coils: 69 mm (the
2D-MOT cell is 40 mm wide along x and z, then the minimum distance
between each pair of coils is limited by the space needed for the support of
the coils)

• Height of each coil ' 23 mm.

• Width of each coil ' 5.7 mm.

• Applied current: 5 A (around 1 W dissipated power, calculated for steady
state operation at the indicated current).

Assuming to use a isolated copper wire with a rectangular section of 3.15 ×
1.25 mm2 to wind up the coils, each of the four 2D-MOT coils will be made up of
7 axial windings and 4 radial windings.

Magnetic coils at the 3D-MOT chamber To realize the 3D-MOT, a single
pair of circular coils with axis along z and current flowing in opposite directions is
needed. This configuration provides a certain magnetic field gradient (depending
on the applied current) along the coils’ axis and half of its value in the radial
direction. However, at the 3D-MOT chamber, not only MOT coils have to be
employed. In fact, after the MOT operation, the atoms will be loaded into the
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(a) (b)

(c)

Figure 3.4: Sketch of the magnetic field coils in the experiment. Magnetic coils
configuration at 2D-MOT cell (a), 3D-MOT cell (b) and science chamber
(c). The different sets of coils are not drawn in scale.

optical resonator, where a first stage of evaporative cooling will be performed. In
the case of Potassium, the collisional rate at zero magnetic field is too low to allow
an efficient evaporative cooling, therefore the use of Feshbach resonances is needed
to tune the s-wave scattering length towards high positive values and achieve an
efficient evaporation. A pair of coils in Helmholtz configuration is thus needed
for Feshbach tuning of interactions. The Helmholtz configuration means that the
current circulates in the same direction in the two colis, and the distance between
the coils equals the coil radius. The magnetic field generated at the center of the
coils is thus homogeneous.
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In order to keep the experimental setup as more compact as possible, the idea
is to use the same set of coils both for creating the gradient during the MOT cycle
and for creating the homogeneous Feshbach field in the successive evaporation in
the resonator. A relay system with a fast switching time2 will allow to change
the direction of the current in one of the coils, passing from the anti-Helmholtz
(gradient) configuration to the Helmholtz (homogeneous) one.

The size of the coils is determined by their distance. For a given applied current,
the highest magnetic field and magnetic field gradient are obtained when the coils
are as closest as possible to each other. In order to fulfill the Helmholtz condition,
this also means that the coils are as smaller as possible, and therefore they dissipate
low power and can be easily cooled down via a water cooling technique. However,
the chamber itself poses some limitations on how close the coils can be. In the
present setup, in order to place the coils as close as possible to each other, the
plan is to lean the coils directly on the chamber, around the CF100 flanges that
constitutes the superior and inferior parts of the 3D-MOT cell.

According to the experimental procedure described in [86], during the MOT
cycle a magnetic field gradient of around 10 G/cm is applied. At the end of the
MOT operation, the atoms occupy the three levels of the F = 1 manifold. In order
to have a fully polarized sample with all the atoms in the same Zeeman sublevel, a
quadrupole field of 30 G/cm is applied instantly. As a consequence, approximately
two thirds of the atoms are lost in the |F = 1,mF = 0,+1 > states and a fully pure
sample is created in the |F = 1,mF = −1 > magnetically trappable state. In the
experiment described in [86], the sample needs to be polarized in a magnetically
trappable state after the MOT cycle, because then the atoms are loaded in a
quadrupole trap with a high magnetic field gradient which is used to magnetically
transfer the atoms between two vacuum chambers. In the present case, even if
no magnetic transport has to take place, the polarization of the sample in the
|F = 1,mF = −1 > state could be useful for the tuning of interactions via a
Feshbach resonance. In fact, there exists a broad Feshabch resonance (with a
width of ≈30 G ) at an easily accessible magnetic field of around 160 G for atoms
in the |F = 1,mF = −1 > state [27].

2A switching time on the order of 100 µs � typical time for an experimental cycle, has been
obtained with a similar setup in [47].
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The goal in designing the coils at the 3D-MOT chamber is therefore to create
magnetic field gradients of up to 30 G/cm when the coils are operated in the
anti-Helmholtz configuration, and homogeneous fields of up to 160 G when the
Helmholtz configuration is employed. The simulations carried out with RADIA
insure that the previous requirements can be fulfilled by using magnetic coils with
the following parameters:

• Distance between the closest faces of the two coils: 75 mm (73 mm is the
heigth of the 3D-MOT cell, then 1 mm of isolating layer is considered between
each coil and the chamber).

• Height of each coil ' width of each coil: 20 mm.

• Applied current: 17.7 A (around 80 W dissipated power for steady state
operation at the indicated current) when operating the coils in Helmholtz
configuration, and 20 A (around 100 W dissipated power for steady state
operation) when using the anti-Helmholtz configuration.

In terms of axial and radial windings, the 3D-MOT coils will be made up of 6
axial windings and 16 radial ones.

Fig.3.5 shows the simulated magnetic field along z -axis obtained for the 3D-
MOT coils using the above parameters.

Magnetic coils at the science chamber In the science chamber the final stage
of the evaporative cooling towards the Bose-Einstein condensation of the atomic
sample will take place. As previously stated, to achieve an efficient evaporation
process, it is crucial to properly tune the s-wave scattering length. This requires
a pair of Feshbach coils to be employed around the science chamber. Once the
degenerate regime has been reached, the Feshbach coils will be used to control and
tune the interactions between the atoms while performing experiments. In order
to eventually be able to reach the condensation in each of the three magnetic sub-
levels mF of the hyperfine ground state F = 1 manifold, the Feshbach coils have
to be designed such that they can provide a homogeneous magnetic field up to
around 400 G [86, 27]. Thanks to the small dimension of the glass cell, the two
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Feshbach coils can be placed very close to each other. The following parameters
for the Feshbach coils turn out to give the desired homogeneous magnetic field of
400 G at the center of the chamber, with a relatively low dissipated power:

• Distance between the clostest faces of the two coils: 34 mm (30 mm is the
heigth of the glass cell, then 2 mm are left between each coil and the chamber
as a safe distance in order to protect the delicate chamber from possible
contact with the coils).

• Height of each coil : 18.9 mm.

• Width of each coil: 25 mm.

• Applied current: 20 A (around 72 W dissipated power for steady state op-
eration at the indicated current).

Beside the achievement of the control of interactions by using Feshbach coils,
in the science chamber the atoms have to be retained against gravity. The grav-
ity field exerts a magnetic field gradient of ' - 7 G/cm, along the vertical (z-)
direction. In the 2D-MOT and 3D-MOT chamber this is already compensated by
the quadrupole field (even if it is possible to use additional coils to specifically
compensate the effect of gravity). Since no quadrupole trap is needed in the final
cell, a proper coil configuration for the gravity compensation has to be designed.
A simple option considers to use a single layer (single axial winding) of each of
the two Feshbach coils for the gravity compensation purpose. For instance, the
upper layer of the top coil and the lower layer of the bottom coil can be controlled
separately with respect to the remaining layers that form the Feshbach coils. In
these pair of "single-layer" coils it is possible to apply a current flowing in opposite
directions, such that to create a (positive) magnetic field gradient along the coil
axis, which is parallel to the z-axis, and can therefore compensate for the gradient
induced by gravity. In Fig.3.4(c) the coil configuration at the science chamber is
sketched. If a current of 8.5 A is applied in opposite directions to the two outer
layers of the Feshbach coils, a magnetic field gradient of ' +6.7 G/cm is generated,
that can be used to compensate the gradient induced by gravity.

The Feshbach coils will be made up of 6 axial and 20 radial windings, while
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for the compensation coils a sinlge axial winding and 20 radial windings will be
employed.

During operation the magnetic coils will heat up, therefore a proper cooling
mechanism is needed. For all the coils in the experiment the expected dissipated
power during steady state operation is calculated to be ≤ 100 W. In a normal
experimental cycle the coils will be operated in pulse mode (they will be switched
on and off on timescales of few seconds), therefore the expected dissipated power at
each cycle is much lower than 100 W for all the coils. On the other side, one has to
think that many experimental cycles have to be performed during a typical working
day when the experiment is running, and the coils get unavoidably heated. All
this considered, the decision has been made to use a water cooling mechanism for
the coils at the 3D-MOT chamber and science chamber which consists of placing
each coil in a alluminium box, where there is a separated duct through which
cold water can flow. Thus, coils can be put in thermal contact with water and get
cooled during operation. For the 2D-MOT chamber coils, the calculated dissipated
power is so low that no water cooling mechanism is planned. However, the support
of these coils is made in alluminium, therefore it can provide an heat sink for the
coils.

3.3 Optical resonator

In many ultracold atomic experiments, as, for instance, in the ERBIUM exper-
iment described in Chapter 4.3.1, at the end of the MOT operation the atoms are
loaded directly into a single-beam or a crossed optical dipole trap, where evapo-
rative cooling towards the degeneracy can be performed. Therefore, both the 3D
magneto-optical trapping and the trapping in the optical dipole trap occur in the
same chamber. In the present case instead, the idea is to use a optical dipole
trap to first transfer the cold atomic cloud to the science chamber, and only there
perform evaporative cooling to create the BEC. This will provide a larger optical
access onto the atoms. To be efficient, the optical transport, which will be dis-
cussed later, requires a sufficiently small waist of the optical dipole trap, on the
order of 50 µm [90] in order to provide high enough trapping frequencies and thus
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(a)

(b)

Figure 3.5: Simulated behaviour of the magnetic field at the center of the 3D-
MOT chamber for two different coil configurations. (a) A magnetic
field gradient of up to 30 G/cm can be created when the coils are employed
in anti-Helmholtz configuration. (b) When the coils are in Helmholtz con-
figuration, a homogeneous magnetic field of up to 160 G can be generated
at the center of the chamber. In (a) and (b) the two vertical solid lines
are used as a reference to indicate a region of 20 mm (from -10 mm to 10
mm) around the center of the chamber along the z -axis. The blue points
represent the magnetic field along z calculated on the z -axis (x = 0, y = 0),
while the purple points describe the behaviour of the magnetic field along z,
28 mm far from the z -axis, at (x = 28 mm, y = 0).
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reduce as far as possible the losses of atoms during the transport. This value of the
waist is much smaller than a typical radius of a potassium MOT of around 2 mm
(see, for instance, [86]). As a consequence, the direct loading of the MOT into the
transport beam would not be efficient in the present system, and an intermediate
step is needed to confine the atoms in a smaller volume before the loading into
the transport beam. Another dipole trap, with a larger waist almost matching the
size of the MOT radius could in principle be used as the intermediate step, but in
this case, a very deep trap would be necessary in order to have sufficiently high
trapping frequencies, and this implies the use of very high power lasers of several
tens of Watts. However, high power lasers typically introduce some side effects
into the system, as for instance the thermal lensing effect on the viewports of the
vacuum chamber, and their use should be minimized as far as possible.

The decision has been made to use a high finesse Farbry-Perot cavity mounted
inside the 3D-MOT chamber, as the intermediate step for confining the atoms
after the MOT cycle and before the optical transport. Inside the cavity it is pos-
sible to achieve a trapping depth much larger than the mean kinetic energy of the
atoms in the MOT, even using laser powers of few Watts (< 4 W), thanks to the
amplification of the power achieved when the laser radiation is resonantly coupled
into the cavity. Moreover, the geometry of the resonator can be chosen in order
to maximize the trapping volume for the best possible overlapping with the MOT
volume, taking into account the spatial constraints of the vacuum chamber where
the resonator has to be mounted.

The design of the resonator has been inspired by the one already built in the
Ytterbium experiment at LENS [92]. Fig.3.6 shows a skectch of the cavity placed
inside the 3D-MOT chamber.

The idea is to screw the mounts for the cavity mirrors on the CF100 flange
which constitutes the inferior part of the chamber. The length of the cavity has
been chosen to be 90 mm, which is the maximum possible length, limited by the
presence of the gasket (in brown in Fig.3.6). The resonator has to be simmetric, so
that the waist of the beam is at the centre of the cavity, where the atomic cloud is.
The value of the waist of the resonator has to be chosen in order to be able to load
as many atoms as possible from the MOT into the resonator, without prejudicing
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Figure 3.6: Top view of the in-vacuum optical resonator. For reference, the view-
ports of the 3D-MOT chamber are visible in the sketch. The two supports
for the cavity mirrors are mounted on the CF100 flange attached to the
chamber. The red cylinder indicates the optical axes of the resonator, which
in this figure is not parallel to the axis of the entrance and exit viewports.
This difference is shown to demonstrate that it would be possible to fur-
ther reduce the angle between the resonator and the transport optical axes
from 22.5◦ up to around 19◦, to improve the loading of the atoms from the
resonator to the transport beam, thanks to a larger overlapping of the two
beams.

the stability of the cavity itself. A calculation of the effective number of atoms
that can be trapped in the resonator, for different values of the waist and different
laser powers is shown in Fig.3.7.

For this calculation, the following parameters have been assumed:

• Number of atoms at the end of the MOT operation: 1.65 × 1010, with a
peak atomic density of 8.1 × 1010 atoms/cm3 (measured in ref.[86]). From
the previous values, a MOT radius of around 2.5 mm can be estimated.

• Temperature of the atoms in the MOT: 25 µK [86].

• Finesse of the cavity: 1000.

• Wavelength of the laser beam coupled to the cavity: 1064 nm (red-detuned
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Figure 3.7: Number of atoms loaded into the resonator for different resonator
waists and laser powers. For each laser power, an optimal waist exists,
close to the value of the MOT radius.

far-off resonant trap).

As expected, the optimal waist of the resonator lies between 2 and 4 mm (for
an increasing laser power from 1 W to 4 W, respectively), that is, it matches
the expected MOT radius. However, it can be demonstrated that a waist of the
resonator ≥ 1 mm makes the cavity unstable. The maximum waist that guarantees
the stability of the cavity turns out to be around 400 µm. This gives a radius of
curvature of the cavity mirrors of around 1.6 m for a cavity 9 cm long. The
stability of the cavity is obtained at the expense of a reduced trappable number
of atoms: only a few percent of the atoms in the MOT can effectively be trapped
in the resonator. However, even if the loading efficiency is very low, one can take
advantage of the unusual high number of atoms achievable in a potassium MOT
(much higher than the usual MOT atom number in experiments with different
atomic species, even other alkali-metal elements), and still have around 5 × 107

atoms in the resonator, if 1 W of laser power is used, and around 108 atoms if the
power is increased to 4 W. This value is comparable to the one obtained in the
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Ytterbium experiment, where the trapping efficiency is much higher (around 33%)
[92].

Finally, with the chosen parameters for the cavity and a laser power of 1 W, a
trap depth of around 300 µK (12 times the temperature of the atoms in the MOT)
can be achieved, allowing to eventually start the evaporative cooling already in
the resonator.

3.4 Optical transport with focus tunable lenses

After the atoms have been confined in the optical resonator, the size of the
atomic cloud is expected to be reduced from ∼ 2 mm (MOT size) to ∼ 400 µm,
thus facilitating the loading into the transport beam. The idea is to load the atoms
from the resonator beam to a tightly focused optical dipole trap and then realize
an optical transport by spatially displacing the focus of this trap over a distance
of 29 cm, from the center of the 3D-MOT chamber to the center of the final glass
cell, where the BEC will be realized.

The optical transport of an ultracold atomic sample can be performed in several
ways, for instance by physically moving a lens with an highly precise translational
stage (see ref.[94]), or by using lenses with tunable focal length [90]. Here we de-
cide to adopt this latter strategy, using special lenses with variable focal length,
from the supplier Optotune [95]. These lenses have a body filled with a low-optical
absorption liquid and the surface is sealed off with an elastic polymer membrane.
An external current applied to a magnetic ring placed on the rear of the lens, can
induce the ring to mechanically press liquid from the outer area of the lens to its
center, thus increasing the curvature of the membrane, and therefore also the focal
length of the lens.

In a recent experiment by the group of T. Esslinger in Zurich [90], a setup with
two focus tunable lenses has been implemented to transfer an ultracold sample of
∼106 87Rb atoms at a temperature of 5 µK over a distance of 280 mm from a first
vacuum chamber to their science chamber. Using a far-off resonant trapping beam
at 1064 nm, with a power of 3.5 W and a waist of 47 µm kept constant during the
transport, they have been able to transport the atoms over the whole distance in
about 3 s, with an increase in temperature of the sample of few µK and almost no
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atom losses.
The idea here is to reproduce the setup used in Zurich. However, it is worth

noticing that one possible limitation to the efficiency of the optical transport in
the Florence experiment is related to the loading of the atoms from the optical
resonator to the transport beam. First, the beam in the resonator has a waist of
400 µm, while the transport beam should have a much smaller waist of around 50
µm. This difference in the beam waists limits the loading efficiency of the atoms
from one trap to the other. Second, the two trap beams form an angle of 22.5◦,
limited by the geometry of the 3D-MOT chamber, and therefore the effective over-
lapping volume between the transport beam and the resonator must be reduced
by a factor cos(22.5◦) ≈ 0.92 (eventually, a minimum angle of 19◦ between the two
beams can be reached, if the resonator beam is sent into the chamber at a cer-
tain angle with respect to the axis of the entrance and exit viewports, see Fig. 3.6).

During the time I spent at the Institute for Experimental Physics of the Uni-
versity of Innsbruck, I had the opportunity to carry out a preliminary test (not
with atoms) of an optical transport with focus tunable lenses, in a slightly differ-
ent setup, with respect to the one planned for the experiment in Florence. This
preliminary test is presented in the next section.

3.4.1 Test of the optical transport

The setup for the optical transport with focus tunable lenses that I have built
and preliminarly tested is meant to be implemented in a new experiment under con-
struction. In this experiment, a mixture of two strongly magnetic atomic species,
erbium and dysprosium, will be created. Here, the ultracold atomic sample has to
be transferred from the main chamber of the experiment, where the two-species
MOT will be operated, either forward to a glass cell devoted to high-resolution
imaging, or backward to a second chamber where Rydberg spectroscopy will be
performed. Since the transport setup is not specific to the used atomic species,
the knowledge gained in this project can be easily adapted to the necessity of the
potassium experiment in Florence .
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The goals of the optical transport in the experiment in Innsbruck are the fol-
lowing:

• Waist of the optical dipole trap of about 30 to 40 µm, constant during the
transport;

• Full transport distance to be covered: ≈ 320 mm backward (towards the
"Rydberg" chamber) and ≈ 380 mm forward (towards the glass cell) starting
from the center of the main vacuum chamber;

• Transport duration: 1 to 2 s.

The type of focus tunable lenses used in the test setup is the Optotune EL-10-
30-Ci-NIR-LD [95]. These are plano-convex lenses with a view diameter of 11 mm,
a focal length tuning range between 100 and 200 mm (which corresponds to a focal
power tuning range between +10 and +4 diopters) and a broad-band cover glass
anti-reflection coating between 700 and 1100 nm, suitable for the laser wavelength
of the transport beam of 1064 nm. The lenses can be controlled by using the Lens
Driver 4i [97] and the software supplied by Optotune.

Design of the optical setup The optical setup has been designed using the
Zemax Optic Studio software [96] and is sketched in Fig. 3.8.

It is made up of two EL-10-30-Ci-NIR-LD focus tunable lenses (indicated by
"FTL1" and "FTL2" in Fig.3.8), one "offset" lens and one "converging" lens. The
offset lens is a 1 inch plano-concave spherical lens, with focal length f = - 150
mm. In combination with FTL2, it allows to reach an effective focal tuning range
between -600 mm and 300 mm. The converging lens is a 2 inch plano-convex lens
with a focal length of 500 mm, which is used to focus the beam. With this setup,
using an initial collimated beam radius of 0.9 mm, the expected beam waist is ≈ 36
µm (diffraction limited), which is within the desired values. A bigger initial beam
radius would allow to reach a smaller waist, but the size of the initial collimated
beam is limited by the 11 mm view diameter of the FTL2. Thus, 0.9 mm turns
out to be the maximum radius for the initial beam such that the beam is not cut
by the FTL2 aperture. Moreover, by properly varying the current in the FTL2,
the designed setup is expected to allow the displacing of the focus of the trap over
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Figure 3.8: Setup for the optical transport at costant waist. The distance between
FTL1 and the offset lens is 590 mm; the offset lens and the FTL2 are 15 mm
apart; the converging lens is 500 mm far from the FTL2. The position of
the viewport from which the transport beam enters the vacuum chamber is
also indicated. In the sketched configuration, the focal length of FTL1 and
FTL2 are 100 mm and 138 mm, respectively. With this value the focus of
the trap beam is at the center of the main chamber (see Table 3.1 below),
that is the starting position for the transport.

the full transport distance (-320 mm and 380 mm), maintaining the waist constant
during the transport.

For the transport process, only the focal length of the FTL2 is varied, while
FTL1 is kept always at the same focal length of 100 mm. This would suggest that
FTL1 could be replaced by a simple fixed focal length lens. However, it is conve-
nient to have two tunable lenses in the setup, since a proper tuning of the focal
length of the two lenses allows to dynamically change the waist size of the optical
dipole trap during the transport. This opens the possibility to have a dynamic
control over the trapping potential (trap curvature and depth) without affecting
its position or varying the beam power (see reference [90]).

Test of the optical setup The setup simulated with Zemax has been repro-
duced in the lab (Fig. 3.9). The test has included the following measurements:

• Measurement of the beam waist. A beam waist of (50,0 ± 6,5) µm has
been measured using the Thorlabs beam profiler software. The CCD sensor
has a resolution (pixel-size) of 6.5 µm. The measured value of the waist is
slightly larger than the expected one of ≈ 36 µm, most probably because of
aberration effects that are not accounted for in the calculation.
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Figure 3.9: Picture of the optical setup for the transport at constant waist.
Realization in the lab of the design of Fig.3.8. The laser source used for the
test is a commercially available laser emitting at a wavelength of 1064 nm.

• Temperature effects. When increasing the current, the lens heats up, the
optical fluid expands in volume and therefore the focal length of the lens de-
creases. A decreasing of the focal distance by approximately 0.6 diopters (≈
12 mm) per 10◦C temperature increase has been observed (from datasheet,
see [95]). This effect crucially affects the reproducibility of the optical trans-
port, and needs to be carefully characterized and compensated for. In the
case of the EL-10-30-Ci-NIR-LD lens type the temperature compensation
can be achieved thanks to an integrated temperature sensor (SE97B) which
allows for active feedback on the focal length variation. The temperature
compensation mechanism works as follows. At each given value of the ap-
plied current corresponds a certain value of the lens focal power (the focal
power depends linearly on the applied current, as reported in [95]), and a
certain value of the temperature. These calibration data are stored in the
EEPROM of the lens and allow for the reproducibility of the focal power. In
practice, when a certain value of the focal power is set, if the sensor measures
a temperature which is different from the one stored in the lens memory for
that particular focal power, the current is adjusted such that to provide the
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desired set focal power.
When this compensation mechanism is activated, the measured reproducibi-
lity of the lens focal power is 0.1 diopters, which corresponds to a repro-
ducibility of the focal length within 3 mm. A shift of the trapping beam
focus of 3 mm at each experimental cycle is considerable for the purpose
of the optical transport, but it is sistematic: at an increase in temperature
corresponds a positive shift of the focal power (up to + 0.1 diopters), while
a decrease in temperature causes a negative shift of the focal power, up to
-0.1 diopters. This effect can therefore be properly compensated for in the
experiment.

• Achievable transport distance and duration. The range of focal powers
that can be maintained at a given temperature depends on the minimum
and maximum limits on the operational temperatures and currents of the
lens, which can be set by the user. In the test these values have been set
as follows: Tmin = 20 ◦C, Tmax = 45 ◦C, Imin = 0 mA, Imax = 290 mA
(recommended maximum operational current). For these limit values, the
range of guaranteed maintained focal powers goes from 4.0 to 10.5 diopters.
Table 3.1 summarizes the values of the focal power of FTL1 (fixed) and
FTL2 and the corresponding focal lengths, that are needed to have the focus
of the transport beam in the three desired positions: the center of the main
chamber (indicated with position A in the table), the center of the glass
cell (position B) and the center of the Rydberg chamber (position C). All
the values of focal power are within the guaranteed range for temperature
compensation operation. This means that the temperature compensation
mechanism is guaranteed over the whole transport distance. Concerning the
duration of the transport, the test has proved that it is possible to move
the focus of the beam over a distance of up to 380 mm in 1 s. In fact, the
response time of the lens to a current change of 200 mA is only about 15 ms
[95].

It is worth noticing that the performed test of the optical transport setup is
only preliminary, for two main reasons. First, it has been done at a very low
laser power of 10 mW, while the actual transport is meant to be performed at
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Focus at position A Focus at position B Focus at position C
Focal power FTL1 10.0 dpt (f = 100 mm) 10.0 dpt (f = 100 mm) 10.0 dpt (f = 100 mm)
Focal power FTL2 7.21 dpt (f ≈ 138 mm) 8.41 dpt (f ≈ 118 mm) 5.85 dpt (f ≈ 170 mm)

Table 3.1: Values of the focal powers of FTL1 and FTL2 needed for the optical
transport at constant waist. At each configuration of focal powers corre-
sponds a different position of the transport beam focus: focus at the center
of the main chamber (A), focus at the center of the glass cell (B), focus at
the center of the Rydberg chamber (C).

higher power (at least few Watts). At higher powers there might be some effect of
heating of the lens due to absorption of laser light that are independent from the
applied current, and cannot be easily compensated for. Second, the setup has to be
implemented in the experiment, and a comprehensive test of the optical transport
(as the one described in [90]) has to be performed with the atoms. However, this
first test is necessary to understand the working principle of the lenses and check
the efficiency and stability of this technique to displace the focus of an otical trap.
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Chapter 4

Exploring dipolar Bose-Einstein
condensates with tunable
interactions: observation of roton
mode population

This chapter focuses on the work I carried out in the ERBIUM experiment
at the Institute for Experimental Physics of the Univeristy of Innsbruck (Aus-
tria). There, I have been working with dipolar BECs of Er atoms, for which the
anisotropic and long-range dipole-dipole interaction add to the contact interaction,
opening the access to many intriguing new phenomena that can be studied with
these systems. Among them, an interesting phenomenon, theoretically predicted
in 2003 [35], is the emergence of a roton-maxon excitation spectrum in a dipolar
BEC, reminescent of that in superfluid helium. Before our investigation, it had
never been observed in experiments. Here, I will report on the first experimental
observation of the roton mode population in a dipolar BEC of 166Er atoms.

I will first give an historical introduction to the roton excitation, originally ob-
served in superfluid helium, and describe how superfluidity and Bose-Einstein con-
densation are linked. Then, I will give a theoretical description of the elementary
excitations in a trapped dilute BEC, showing that in conventional (non-dipolar)
BECs a roton excitation is not present. On the contrary, in dipolar BECs the
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roton emerges as a consequence of the peculiar long-range and anisotropic char-
acter of the DDI. The above mentioned theoretical proposal, at the basis of our
experimental investigation, is reviewed in this chapter.

I will then describe the ERBIUM experiment in Innsbruck, giving the details
of the production of degenerate gases of 166Er in this system. The experimental
study of the roton mode excitation in the dipolar BEC is then reported. Here, we
have exploited the tuning of the s-wave scattering length using a Feshbach reso-
nance. This has been an essential tool to reach the regime where DDI dominate
over the contact interactions, where the roton mode is expected to emerge. I will
describe the measurements, and present the results. I will show the comparison of
our experimental data to both analytical model and numerical simulations, which
confirm the population of the roton mode in our system. Finally, I will present
numerical simulations that I personally performed, which helped in having a better
understanding of the physics at play when the roton mode in the dipolar BEC is
populated. The results of these simulations also rised up interesting interpreta-
tions which might connect the roton physics to the physics of the quantum droplets
[32, 26] in a dipolar quantum gas. This connection will be discussed at the end of
the chapter.

4.1 Historical introduction to roton excitations: ro-

tons in superfluid helium

Helium (He) was first liquefied in 1908 by H. Kamerlingh Onnes, who cooled
it below the liquid-gas transition temperature of 4.2 K. One special property of
helium is that, below a certain pressure, it remains liquid for arbitrarily low tem-
peratures, even down to the absolute zero. On the contrary, all other elements
of the periodic table solidify below a certain temperature, when they are cooled
down. Indeed, at very low temperatures the kinetic energy of the atoms is only
given by the zero-point motion, which is inversely proportional to the atomic mass.
For helium, the atomic mass is so small that the zero-point motion is sufficiently
high to win over the interatomic attractive van der Waals forces, thus preventing
the atoms from forming a crystal and keeping the system fluid even at absolute
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zero. Only under strong pressure (> 25 atm) does helium solidify. For almost all
the other elements, the atomic mass is so much higher than the one of helium,
that the zero-point motion is not sufficient to oppose the crystalizing effect of the
attractive forces. The only exception is hydrogen, whose atoms are lighter than
the helium ones. However, even if they are lighter, the interatomic interactions
are much stronger than in helium, and hydrogen too solidifies at sufficiently low
temperature.

In 1927 M. Wolfke and W.H.Keesom discovered that in the bosonic 4He iso-
tope there exists a distinct phase transition at a temperature of around 2.17 K,
lower than the liquid-gas transition temperature. This phase transition has been
observed in a discontinuity of the specific heat, whose curve as a function of tem-
perature has the shape of the Greek letter λ, and thus the transition temperature
was called λ point, Tλ = 2.17 K. The two phases of liquid 4He were named "he-
lium I" (T > Tλ), and "helium II" (T < Tλ). Later, in 1938, P. Kapitza [98] and
independently, J.F. Allen and A.D.Misener [99] performed experiments on liquid
helium II revealing its extremely low viscosity. Indeed, the flow in liquid helium
II below the λ point was observed to be strikingly non-dissipative. This behaviour
inspired Kapitza to coin the term superfluid for helium II, in connection to the
phenomenon of electronic superconductivity in metals. Superconductivity is the
property of electrons to flow without resistance through a metal if it is cooled down
below a certain critical temperature. It had already been observed earlier, in 1911
[100] (even if not yet microscopically understood at that time).

One of the most fruitful ideas in interpreting the behaviour of helium II is the
so-called two-fluid model, developed by L. Tisza [101] and L. Landau [102] shortly
after the intuition by Kapitza. In this model the system is formally divided into
two fluids: the superfluid and the normal fluid. At zero temperature there is only
a superfluid, that is a perfect ideal fluid which may flow without friction. If heated,
the heat energy excites the liquid. The excitations created within the liquid can
propagate from one place to another, collide with the walls and with each other,
and give to helium II some properties associated with the normal fluid component,
such as a finite viscosity. Thus, the viscous normal fluid component supports ther-
mal excitations in the system. If the temperature is increased, the normal fluid
becomes more and more dominant until the superfluid completely vanishes at and
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above the critical λ point.

4.1.1 Landau’s dispersion relation and superfluid critical ve-

locity

In 1941 Landau, as a result of his studies of quantum hydrodynamics, supposed
that every weakly excited state in liquid helium II was the combination of two kinds
of low-lying elementary excitations or quasiparticles [102]. On the one hand, there
are the phonons, or quantized sound waves, that are low momentum excitations
whose energy ε is a linear function of their momenum k: ε(k) = ~kc, where c is the
sound velocity. On the other hand, there are the rotons, elementary excitations at
finite momenta with an energy forming a parabola of minimum ∆, the roton energy
gap. These latter were initially interpreted as quantized vortices: this explains the
name rotons, due to the rotational nature of such vortices. The energy of the roton
excitations is a quadratic function of their momentum krot:

ε(k) = ∆ +
~2(k − krot)2

2mrot

, (4.1)

where mrot is the effective mass of a roton. Few years later, Landau finally
unified the two types of excitation in a single dispersion relation ε(k), which con-
tinuously evolves from linear at low k (phonons), up to a maximum, denoted as
maxon, to parabolic-shaped with a minimum (roton) at a finite k = krot, and fi-
nally it rises again, as represented in Fig.4.1. At the low temperatures encountered
in helium II, only the states near k = 0 and those close to the roton minimum are
excited.

Originally, Landau proposed his phonon-roton dispersion relation to explain
the observed thermodinamic properties of 4He around the λ point. Later, in 1954,
R. Feynmann linked Landau’s energy spectrum to the static structure factor of
the liquid, through the following relation [103]:

ε(k) ≤ ~2k2

2mS(k)
, (4.2)

where S(k) is the static structure factor, defined as S(k) ≡ 〈0|ρ̂kρ̂†k|0〉/N . Here
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N is the number of atoms of mass m, |0〉 is the ground state of the system, and
ρ̂k ≡

∑
q â
†
qâq+k is the density fluctuation operator, with â†q the bosonic creation op-

erator of a particle of momentum q. S(k) is the Fourier transform of the two-body
correlation function and hence provides a measure of the degree of correlation be-
tween the atoms. The existence of strong two-body correlations in helium II may,
at first glance, seem surprising since helium remains a liquid even at temperatures
close to the absolute zero exactly because of weak interatomic interactions. How-
ever, despite their apparent weakness, these interactions are strong if associated
to the density of the liquid state. Indeed, typical densities in helium II are n ∼
1021 - 1023 cm−3 (for comparison, the density of a gaseous BEC is ∼ 1014 cm−3),
which is such that the average interatomic separation d is close to the minimum
of the attractive interatomic van der Walls potential well b: d ∼ b ' 3 × 10−10

m [103]. Thus, for helium II the diluteness parameter nb3 ∼ 1, and the system is
said to be dense, in opposition to dilute as in the case of BECs, for which typically
n|a|3 � 1.

Feynmann identified the peculiar roton minimum in the energy spectrum of
helium II with a peak of the static structure factor occurring at krot ' 2π/d. This
manifests a tendency of the system to establish a local order on the length scale
of the interparticle distance, driven by the strong correlations among the atoms.
In 1957, M. Cohen and Feynmann proposed that Landau’s dispersion could be
measured by inelastic scattering of neutrons off of a liquid 4He sample [104]. This
experiment was carried out soon after, and confirmed Landau’s theory [105] (see
Fig.4.1).

Based on his intuition of the phonon-roton dispersion relation, Landau devel-
oped a very general argument that results in a hard criterion for these elementary
excitations to allow for superfluidity in helium II. The criterion states that su-
perfluid, or dissipationless flow only exists below a critical velocity, the so-called
superfluid critical velocity or Landau critical velocity.
Let us consider a superfluid flow moving at velocity vs and a small aperture or a
small defect at rest in it. The flow can lose kinetic energy (dissipation) by creat-
ing elementary excitations. The energy cost of an excitation of momentum k is
ε(k) in the frame of the superfluid. In the laboratory frame, it is instead equal to
ε(k) + ~k · vs. For a given k, the energy cost is minimum for an excitation prop-
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Figure 4.1: Measured phonon-roton dispersion relation of liquid 4He at a tem-
perature of 1.12 K. The circles are neutron scattering data from ref. [105].
The solid line shows the calculated free-particle dispersion curve. The dashed
line from the origin is the theoretical phonon branch calculated from a ve-
locity of sound of 237 m/s, and the dotted line has a slope equal to the
velocity of sound. The smooth curve through the points is a guide to the
eyes. The measured dispersion relation shows a linear phononic behaviour at
small momenta, and the roton minimum at a momentum ≈ 2.0 Å−1, which
is on the order of the inverse of the interparticle distance. Figure adapted
from [105].

agating against the superfluid flow: ε(k) − ~kvs. The fluid loses energy through
dissipation if ε(k)− ~kvs < 0. Consequently, the minimum velocity giving rise to
dissipation is the Landau critical velocity, given by:

vL = min
k

ε(k)

~k
, (4.3)

where the minimum is on the full k-spectrum.
This simple argument by Landau, based on the conservation of energy and

momentum, is of fundamental importance for the understanding of superfluidity.
A direct consequence is that systems where mink

ε(k)
~k = 0 can not be superfluid,
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since then vL = 0 and an arbitrarly small velocity would result in dissipation. For
helium II, the superfluid critical velocity is set by the roton minimum, and it has
been measured to be vL ' ∆/krot ≈ 60 m/s [106].

4.1.2 Superfluidity and Bose-Einstein condensation

Inspired by the variety of experimental evidences for the superfluid behavior of
4He below Tλ, by the fact that such phenomena were not observed in the fermionic
3He isotope at the same temperatures, and by the earlier theoretical work of Ein-
stein on the Bose-Einstein condensation of an ideal Bose gas, in 1938, F. London
proposed that the unusual behavior of liquid 4He was due to the phenomenon of
Bose-Einstein condensation taking place in the cold fluid below the λ point [107].
London was the first to link the superfluidity of helium II to the Bose-Einstein con-
densation, and he did it at a time when only the non-interacting theory of BECs
had been developed. Successively, in 1947, Bogoliubov constructed his theory of
a weakly interacting BEC (see section 2.5), and in 1956 L. Onsager and R. Pen-
rose generalized Bogoliubov theory of a BEC making it applicable to a system of
strongly interacting particles. In their paper [108], Onsager and Penrose derived a
criterion for superfluidity and Bose-Einstein condensation that linked definitively
the two phenomena. The criterion, which is applicable to either a liquid or a gas,
states that Bose-Einstein condensation is equivalent to the existence of a macro-
scopic eigenvalue of the one-body correlation function, where macroscopic means
scaling as the total number of particles, N . The authors demonstrated that helium
II indeed satisfies this criterion, with roughly less than 10% of the atoms "con-
densed" at zero temperature, thus confirming the original idea of London.

Today, much of the physics of superfluid 4He remains elusive, due primarily to
its very high density and strong interactions. Because of strong interactions, in
superfluid helium usually only a very small number of atoms are in the condensate,
at most 10% of the total number of atoms even at zero temperature, compared to
the typical percentage of atoms in the condensate for dilute BECs, of more than
80%. Atoms that are kicked out of the condensate at zero temperature because
of the interactions form the so-called quantum depletion of the condensate. The
large quantum depletion in helium II makes it very hard to investigate also theo-
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retically, since the mean-field perturbative approach which can be used with BECs
(see section 2.5) can not be applied here, and more complex theories have to be
developed (see, for instance, the discussion in ref. [109]).

Gaseous BECs, constituting "the other" quantum fluid than superfluid helium,
bring a complementary high degree of control and tunability of the system parame-
ters, togheter with an easier theoretical description, allowing to further investigate
superfluidity in cold matter.

4.2 Elementary excitations in trapped Bose-Einstein

condensates

In the previous section we have seen that superfluid 4He and gaseous BECs
are manifestations of the same physical phenomenon. Now, a question may arise
whether a BEC also shares the same low-energy excitation spectrum as helium
II, characterized by the phonon-roton dispersion relation. This is an interasting
question, because we have seen that this dispersion relation has a fundamental
impact on the macroscopic properties of the superfluid. In addition, excitations
determine the dynamic behaviour of the system in the regime of weak perturba-
tions and, therefore, they provide experimental access to important information
about the system. The goal of this section is to give an answer to this question.
First I will give a general theoretical description of the elementary excitations in
a dilute BEC, following the treatment of ref. [79]. Then I will discuss two specific
cases in which the emergence of a roton minimum in the low-energy spectrum of a
trapped BEC is theoretically predicted. One of this two cases will be the subject
of the experimental investigation presented later in this chapter.

The hamiltonian of a gaseous atomic assembly was introduced in Chapter 2.5
(see Eq. (2.37)). There, a mean-field treatment was introduced, and by using the
zeroth order in the non-condensed field operator Ψ′, a semi-classical equation for
the BEC state Φ0 was obtained (Eq. 2.40), the so-called GPE.

The description of the elementary excitations of a dilute BEC is usually per-
formed on the basis of the so-called Bogoliubov-de Gennes (BdG) equations [80],
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which are obtained by diagonalizing the quadratic hamiltonian (2.37) using the
celebrated Bogoliubov transformation of the particle annhilation and creation op-
erators into quasiparticle ones [110]. These equations can be alternatively obtained
by developing to second order in Ψ′ the equations of section 2.5.1, that is perform-
ing a perturbative treatment on the GPE, linearizing it around the stationary
solution Φ0. In other words, one can look for solutions of Eq.(2.40) of the form:

Φ0(r, t) = e−iµt/~[φ(r) + u(r)e−iωt + v∗(r)eiωt], (4.4)

where u(r) and v(r) are complex amplitudes of small oscillations around the
ground state wavefunction, with frequency ω. By substituting (4.4) into Eq.(2.40),
and keeping only terms linear in the functions u(r) and v(r), one obtains a set of
coupled linear equations, which are exactly the BdG equations:(

H0 +A+ B −B
B −(H0 +A+ B)

)(
u(r)

v(r)

)
= ε

(
u(r)

v(r)

)
(4.5)

where H0 = −(~2/2m)∇2+Vext(r), A =
∫
dr′Veff (r−r′)n(r′), and the operator

B acting on a function ψ, and evaluated at point r is defined as:

(Bψ)(r) =

∫
dr′φ(r′)Veff (r− r′)ψ(r′)φ(r). (4.6)

The coupled equations (4.5) allow one to calculate the eigenenergies εj = ~ωj
of the excitations, and the corresponding eigenfunctions (uj(r), vj(r)), from which
one can extract the wavefunction of the elementary excitation using Eq.(4.4).

In a uniform gas, i.e. Vext = 0, the amplitudes u and v are plane waves. In
addition, if the inteparticle interactions are simple contact interactions, Veff (r) =

gδ(r), one gets the following Bogoliubov dispersion relation [80]:

ε = ~ω =

√
~2k2

2m

[
~2k2

2m
+ 2gn

]
, (4.7)

where k is the wave vector of the excitation and n = |φ|2 is the density of the
gas. At low momenta, Eq.(4.7) gives the phonon dispersion relation ε(k) = ~csk,
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where

cs =

√
gn

m
(4.8)

is the sound velocity. Instead, at large momenta, the energy spectrum coin-
cides with the free-particle energy ε(k) = ~2k2/2m. The transition between the
collective and the single-particle behaviour occurs at momenta of the order of ~/ξ,
where ξ is the healing length introduced in section 2.5.1 [111].

In the presence of a trapping potential the spectrum gets discretized [79].
Eq.(4.7) shows a monotonic behaviour, and thus no roton excitation is present

in weakly-interacting BECs with only contact interactions. This has been also
verified experimentally. As an example, J. Steinhauer and coworkers at the Weiz-
mann Institute of Science in Israel have measured the bulk excitation spectrum of
a 87Rb BEC and they found excellent agreement with Bogoliubov theory (4.7), (see
ref. [112]). The absence of a roton minimum in their measured energy spectrum
can be understood by recalling the qualitative discussion about the relation (4.2)
from Feynmann between the energy spectrum and the static stracture factor in
helium II. The interactions in 87Rb are repulsive and characterized by an s-wave
scattering length a ≈ 5 nm. This is between 1 and 2 orders of magnitude smaller
than the average atomic distance at typical densities.

4.2.1 Emergence of the roton

In 2003 two seminal theoretical works predicted the existence of a roton min-
imum in the energy spectrum both in BECs with dipole-dipole interactions [35],
and in BECs irradiated by a off-resonant laser light [113]. The former proposal is
the seed argument for the experimental work described later in this chapter, and
will be discussed extensively in the next section.

In the latter proposal, one exploits a far off-resonant laser shined on a gaseous
BEC inducing dipole-dipole interactions between the atoms. The dynamically in-
duced DDIs give rise to long-range interatomic correlations whose characteristic
length is the laser wavelength. These correlations, which are tunable via the laser
intensity and frequency, can produce a minimum at finite momentum in the ex-
citation spectrum of the BEC, reminescent of the roton minimum in the strongly
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correlated liquid helium II. Inspired by the idea of long-range interactions medi-
ated by light, a roton-type mode softening has been recently observed in a BEC
coupled to an optical cavity [114]. In that experiment, the strong coupling between
the cavity light and the atomic system induces an effective global (infinite)-range
atom-atom interaction which extends over the entire atomic cloud and is tunable in
strength. The coupling arises from the coherent scattering of photons from a pump
laser beam into the cavity mode and back to the pump. When the pump laser is
switched on the excitation frequency decreases and shows a minimum as a function
of the pump-laser power (not in momentum space). Because of the existence of a
minimum in the frequency domain, this effect has been called “roton-type mode
softening”.

Additionally, roton-like softening of the excitation spectrum can be created
in BECs with spin-orbit coupling [115, 116], and in BECs in shaken optical lat-
tices [117], using off-resonant laser light to engineer the single-particle dispersion
relation. In the first case, the single-particle dispersion is modified to show a
"double-well" structure by coupling different momentum classes of spin compo-
nents in a BEC through the use of a pair of off-resonant Raman beams [118].
The degeneracy of the two wells can be further lifted by adjusting the Raman
detuning of the beams. This can be interpreted as a roton-maxon-like feature of
the dispersion relation. In the second case, a similar double-well structure in the
single-particle dispersion is realized by loading a 3D BEC into a 1D shaken (i.e.
periodically phase modulated) optical lattice [119]. If the BEC is loaded into one
of the dispersion minima by providing a momentum kick, before phase modulating
the lattice, the dispersion relation is again modified. In particular, the degener-
acy between the two wells is lifted and the resulting dispersion relation features a
roton-maxon like behaviour.

In all the above described examples, the wavelength of the roton-like excitation
is externally set by the driving light field. One can therefore speak about "artificial
rotons" [117] in contrast to the "genuine" roton arising in liquid helium II, which
is driven by internal interatomic interactions. An alternative system where a roton
minimum of the excitation spectrum is theoretically predicted, corresponding to
the second proposal from 2003, is a BEC with dipole-dipole interactions [35]. In-
terestingly, BECs with dipolar interactions are more closely related to superfluid
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helium with respect to BECs irradiated by off-resonant light, in what concerns
the origin of the roton minimum, arising from the genuine interaction between the
atoms. In particular, the roton excitation is compressible (i.e. its wavelength can
be changed by changing the density of the system), as in the case of superfluid
helium. However, in contrast to helium, the emergence of an energy minimum at
finite momentum in dipolar BECs does not require strong inter-particle interac-
tions. It instead arises in the weakly-interacting regime and originates from the
peculiar anisotropic and long-range character of the DDI, as will be discussed in
the next section.

4.2.2 Roton mode in dipolar Bose-Einstein condensates

In their seminal paper [35], L. Santos and co-workers theoretically predict the
existence of a roton-maxon excitation spectrum for dipolar BECs in an anisotropic
geometry. They point out that, as in superfluid helium, the roton spectrum in
such systems is a genuine consequence of the underlying interactions among the
particles.

They consider the case of a quasi-2D dipolar BEC, harmonically confined in
the direction of the dipoles (z-axis) and uniform in the other two directions (see
Fig.4.2). This trapping geometry is also later called "infinite pancake".

Figure 4.2: Quasi-2D pancake trap geometry considered in ref. [35]. The system
is harmonically confined along the direction of orientation of the dipoles (z-
axis) and is assumed to be uniform in x and y. The size of the cloud along
z is given by the harmonic oscillator length lz =

√
~/mωz, where ωz is the

trapping frequency. Figure adapted from [37].

The origin of a minimum of the excitation spectrum at finite momentum in such
a system can be qualitatively understood from the following geometrical argument.
Let us consider elementary excitations in the infinite (xy)-plane. They are charac-
terized by their planar momentum of norm k and correspond to in-plane density
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modulations of wavelength 2π/k. The harmonic confinement along the dipoles
fixes a characteristic length for the size of the BEC along that direction through
the harmonic confinement along lz =

√
~/mωz, where ωz is the trapping frequency

along z. For low k, the wavelength of the real-space density modulations is larger
than lz and the dipoles sit mainly side-by-side. Therefore the DDI are predomi-
nantly repulsive and the phononic part of the dispersion relation ε(k) is stiffened
with respect to a non dipolar system. In contrast, for klz ≥ 1, the wavelength of the
real-space density modulations is on the order of lz, and a head-to-tail alignment
of the dipoles is favoured. In this configuration the DDI are mainly attractive,
which results in a softening of the excitation spectrum. This softening for k ≥ 1/lz

is counterbalanced by the contributions of the repulsive contact interaction, and
of the kinetic energy, which ultimately dominates at very large k � 1/lz, leading
the dispersion relation to eventually bend up into a single-particle spectrum. For
strong enough DDI, the changing of sign of the dipole-dipole contribution to the
excitation energy for increasing momentum, and the competition of the DDI with
the contact interactions and the kinetic energy, give rise to a roton minimum in
the dispersion relation ε(k), occurring at momentum k = krot, set by the geomet-
rical scaling krot ∼ 1/lz [35]. Fig.4.3 shows a drawing of the expected excitation
spectrum in the above described trapping geometry. The sketches of the real-space
density modulations help to visualize the qualitative description.

Quantitatively, for a condensate of dipolar particles harmonically confined in
the z direction, along which the dipoles are aligned, and uniform in the other
two directions, the ground state wave function is independent of the in-plane co-
ordinates r = (x, y), and can be written as Φ0(r, t) = φ(z)e−iµt/~, where µ is
the chemical potential. We recall that Φ0 is dictated by the NLGPE given in
Eq.(2.56). Then, integrating over r′ in the dipole-dipole term Udd, one obtains
a one-dimensional equation similar to the stationary GPE (2.42) for short-range
interactions: (

−~2∇2

2m
+
m

2
ω2
zz

2 + (g + gdd)φ
2(z)

)
φ(z) = µφ(z). (4.9)

where gdd ≡ µ0µ
2
m/3 = 4π~2add/m is a measure of the strength of the DDIs.

The problem can be simplified by using the TF approximation for the condensate
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Figure 4.3: Roton mode in a dipolar BEC. Real (solid line) and imaginary (norm
of the dotted line) parts of the dispersion relation for a dipolar BEC in
the geometry of Fig.4.2, showing the emergence of the roton minimum for
decreasing a (regime of dominant DDI). The DDI change sign from repulsive
to attractive for increasing momentum. The sketches at the bottom of the
figure show the dipole alignment corresponding to small-k (on the left) and
large-k (on the right) density modulations. Figure adapted from [37].

wave function, which is valid for µ� ~ωz, and reads:

φ2(z) = n0(1− z2

L2
), (4.10)

where n0 = µ/(g+gdd) is the condensate maximum density and L = (2µ/mω2
z)

1/2

is the TF radius of the condensate in the z direction. As done for the purely-
contact interacting case in section (4.2), one can obtain the spectrum of the el-
ementary excitations in the Bogoliubov-de-Gennes approximation by linearizing
Eq.(4.9) around the approximate ground state solution (4.10). For low in-plane
momenta kL � 1, the BdG equations become identical to the ones for the exci-
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tation of a trapped condensate with a short-range interaction characterized by a
coupling constant (g + gdd) > 0 (see section 4.2). In this case, the lowest branch
represents phonons propagating in the (x, y) plane. The dispersion relation is given
by:

ε0(k) = ~csk, kL� 1 (4.11)

where the sound velocity is cs =
√

2µ/3m. This branch is not modified by the
effect of the DDI. One finds that the most interesting behaviour of the excitation
spectrum in the TF regime is expected in the opposite limit, kL � 1. Here
the effective coupling strength decreases due to the negative contribution of the
dipolar term, coming from mainly attractive DDI. One can demonstrate that in
this case the BdG equations are similar to the ones for the excitation of a trapped
condensate with a short-range interaction characterized by a coupling constant
2(g − gdd). The parameter εdd introduced in Eq.(2.35), can now be expressed as
εdd = gdd/g. For the threshold value εdd = 1, for which the effective coupling
vanishes, the dispersion law is characterized by a plateau, and the lowest branch
of the spectrum is given by [35]:

ε20(k) = E2
k + ~2ω2

z , kL� 1, (4.12)

where Ek = ~2k2/2m. Instead, for εdd 6= 1, assuming µEk|1/εdd − 1|/(1 +

1/2εdd)� ~2ω2
z , the lowest branch of the spectrum is found to be:

ε20(k) = E2
k +

(1/εdd − 1)(5 + 1/εdd)

3(1 + 1/2εdd)(2 + 1/2εdd)
µEk + ~2ω2

z , kL� 1, β 6= 1/2. (4.13)

For εdd > 1, that is when DDI dominate over the short-range interactions,
the dispersion law (4.13) has a minimum, and the whole spectrum should have a
roton-maxon character (see Fig.4.3).

From Eq.(4.13), one can evaluate the momentum at which the roton minimum
is located (the "roton momentum"), and the excitation energy at the roton mini-
mum (typically indicated as the "roton energy gap"). For εdd close to 1, the roton
momentum krot is given by:
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krot =

(
16µ(1− 1/εdd)

30~ωz

)1/2
1

lz
, (4.14)

while the roton energy gap ∆ ≡ ε0(krot) reads:

∆ =

[
~2ω2

z −
(

8µ(1− 1/εdd)

30

)2
]1/2

. (4.15)

Eq.(4.15) shows that the roton minimum can be made deeper, or in other words,
the roton gap can be decreased by increasing the density (chemical potential) or
εdd. In particular, increasing εdd means decreasing the s-wave scattering length a
(see Fig.4.3). For µ(1 − 1/εdd)/~ωz = 30/8 the minimum energy reaches zero at
krot =

√
2/lz. At larger values of µ or εdd one gets imaginary excitation energies for

k ∼ 1/lz, which correspond to an unstable condensate [70]. This analytical result
is confirmed by numerical calculation [35] and by several other theoretical works
developing theoretical calculations in more sophisticated configurations (see, for
instance, [120, 121, 122, 123, 124, 125]).

The roton in dipolar BECs is highly tunable, as we have seen that, by vary-
ing the density, the frequency of the tight confinement, and the s-wave scattering
length, one can vary the depth of the roton minimum in the dispersion relation.

Despite the physics of the roton mode in dipolar BECs is theoretically deeply
understood, the experimental observation of dipolar roton modes has remained
elusive so far. This may be due to the fact that, up to few years ago, the only
dipolar BEC available in experiments consisted of chromium atoms [18], for which
the achievable dipolar interaction strength is not sufficient to dominate over the
short-range interaction and support a roton mode. More recently, the realization
of BECs of the higly magnetic lanthanide dysprosium [23] and erbium [24], opened
new possibilities for accessing the regime of dominant DDIs.

109



4.3 Observation of roton mode population in a dipolar BEC of
strongly magnetic erbium atoms 110

4.3 Observation of roton mode population in a dipo-

lar BEC of strongly magnetic erbium atoms

In this section I will first give an overview of the experimental apparatus used at
the ERBIUM experiment in Innsbruck for producing ultracold degenerate samples
of 166Er atoms. Then I will describe the experimental investigation of the roton
mode in Er.

4.3.1 The ERBIUM experiment in Innsbruck

The ERBIUM experiment is a machine working with ultracold bosonic and
fermionic erbium atoms. It can produce BECs of bosonic 168Er [24] and 166 Er
isotopes, containing up to 105 atoms, with a typical maximum density of 1014

cm−3 . The 168Er isotope can also be used to create Er2 molecules via magneto-
association using a Feshbach resonance [126]. Moreover, degenerate Fermi gases
can be realized by using the fermionic 167Er isotope [127].

In the following I will focus on the description of the production of an 166Er
BEC, since this is the isotope with which I have been working. The first BEC of
166Er has been achieved in 2016, before my arrival on the experiment [26].

Overview of the apparatus and experimental sequence for producing
an 166Er BEC The experimental apparatus, sketched in Fig.4.4, has been de-
signed by F. Ferlaino and mainly his PhD student A. Frisch starting in 2009. It
is described in detail in the PhD thesis of the latter (see ref. [43]). It includes the
vacuum system and the laser sources used for cooling and trapping the atoms. The
vaccum system is composed of two sections with different background pressures,
connected via a differential pumping tube. The first section is at high vacuum
(HV) and includes a high temperature oven, a transversal cooling stage and a first
pumping stage. The second section is at ultra high vacuum (UHV) and contains
a Zeeman slower, the main experimental chamber and a second pumping stage.

The two pumping stages in the two vacuum sections and the differential pump-
ing tube provide a pressure of 4 × 10−9 mbar and 1 × 10−11 mbar in the HV
and UHV parts, respectively. The high temperature oven uses an effusion cell,
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Figure 4.4: Drawing of the ERBIUM experiment vacuum system. The HV and
UHV sections are shown. The starting point for the production of ultracold
atomic samples is the high temperature oven, coloured in red on the right
of the figure. The atoms are subjected to two stages of cooling (trasversal
cooling, in blue, and Zeeman slowing, in green) before arriving at the main
experimental chamber (in yellow in the figure). There, 3D magneto optical
trapping is performed, followed by evaporative cooling in a crossed optical
dipole trap. The blue and yellow arrows in the figure represent cooling light
at 401 nm and 583 nm, respectively. Figure taken from [43].

containing small pieces of solid erbium. It is typically operated at 1100 ◦C. At this
temperature erbium atoms can evaporate inside the oven. Then, a set of apertures
is used to produce a collimated atom beam out of the oven.

After the oven, the atom beam is subjected to a first optical cooling stage, in
two orthogonal directions transversally to the beam propagation direction. This
allows to increase the atom flux along the longitudinal direction. The optical cool-
ing, whose principle has been described in section 1.3.2, is performed on the broad
401 nm-wavelength transition of erbium. After the transversal cooling, the atoms
enter a Zeeman slower (see section 1.3.2). The Zeeman slower light is also operated
at 401 nm. This allows to slow the atoms down along the longitudinal direction.
With the Zeeman slower, the velocity of the atoms can be decreased by two orders
of magnitude, reaching ≈ 8 m/s at the end of the Zeeman slower. This velocity is
low enough for the atoms to be captured by a 3D MOT at the main experimental
chamber. The MOT is operated on a narrow-linewidth transition at a wavelength
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of 583 nm [49]. The linewidth of the atomic transition of Γ = 2π × 190 kHz
gives a Doppler temperature of TD = 4.6 µK (see section 1.3.3). In this special
narrow-line MOT the atoms are cooled down to a temperature of ≈ 15 µK and
additionally, they are automatically spin-polarized to their lowest Zeeman sublevel
[49]. For 166Er typically 3 × 107 atoms are captured into the MOT after 3 s of
MOT loading.

In order to bring the cold atomic sample to degeneracy, the atoms are first
loaded from the MOT into a horizontal red-detuned far off-resonant optical dipole
trap (ODT) at 1064 nm, propagating along the y-axis of Fig. 4.4, and with a
tunable geometry. The horizontal ODT beam has a maximum power of 24 W,
a vertical waist wz = 18 µm, and a tunable horizontal waist, wx = λ′wz. The
ellipticity of the horizontal ODT beam can be changed from 1.57 to 15 by time av-
eraging the frequency of the first-order deflection of an Acousto-Optic Modulator
(see ref. [128]). For 166Er typically 7 × 106 atoms are loaded into the horizontal
ODT using λ′ = 6 and the maximum power available. For the two bosonic iso-
topes, an additional vertical 1064 nm ODT beam, propagating nearly collinear to
the z-axis, is used. The vertical ODT beam has a maximum power of 7 W and an
elliptical beam profile with waists of 110 µm and 55 µm along x and y, respectively.
The two red-detuned ODTs cross at their respective focii, thus realizing a so-called
crossed dipole trap. Here the atoms are subjected to forced evaporative cooling
(see section 1.3.5). First the power and then the ellipticity of the horizontal ODT
beam are changed in order to reach quantum degeneracy. During the evaporation
sequence a uniform magnetic field is applied. It fixes the magnetization axis and
set the value of the scattering length via the multitude of Feshbach resonances
available in Er (see section 2.4 and ref. [76]). For 166Er, the magnetic field is set
to 1.9 G during the evaporation to optimize the elastic to inelastic collision ratio.
We typically obtain a BEC of 105 166Er atoms, with a condensed fraction of ≈ 70%.

Imaging procedure Resonant absorption imaging (see section 1.4.1) on the
broad-line at 401 nm is used to image the atoms at the end of the experimental
sequence. Two optical setups are available for imaging in the experiment, one
allows to image the atoms horizontally, approximately along the y-direction, and
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the other setup provides a vertical imaging, approximately along the z direction.
In the experiment that I will describe in the following, the horizontal imaging
setup has been used for calibration of final atom number and condensate fraction
in the BEC, and the vertical imaging setup for the science measurements. The
atom number and the condensate fraction are determined by fitting the absorption
images of the gas to a bimodal distribution, which is the sum of a Thomas-Fermi
density profile (for the condensate) and a broad Gaussian density profile (for the
background thermally excited atoms). With the vertical imaging the density dis-
tribution in the (xy)-plane perpendicular to the dipole direction can be measured.

The spatial resolution of the vertical imaging is 3.7 µm. In the experiment we
employ time-of-flight (TOF) expansion measurements, accessing the momentum
distribution of the gas [111]. The used TOF time of 30 ms translates the spatial
imaging resolution into a momentum resolution of ≈ 0.32 µm−1. The recorded 2D
TOF absorption images of the cloud provide the spatial density distribution at a
TOF time tTOF on the (x, y) plane: nTOF (x, y, tTOF ). We assume that this ex-
panded density distribution directly maps the 2D in-trap momentum distribution
ñ(kx, ky), via the simple mapping:

ñ(kx, ky) =

(
~tTOF
m

)2

nTOF

(
~kxtTOF

m
,
~kytTOF

m
, tTOF

)
. (4.16)

which neglects the initial size of the cloud in the trap and the effect of in-
terparticle interactions during the TOF expansion. Numerical simulations of the
experimental sequence (see section 4.3.4) confirm that the interactions are negli-
gible during the expansion, and justify the use of (4.16).

4.3.2 Choice of the trapping geometry

Before this work, rotons in dipolar BECs have been mostly connected to quasi-
2D (pancake-like) geometries of the trap [35, 120, 121, 122, 123, 124, 125]. However,
as emerges from the physical description based on the seminal work [35] (see sec-
tion 4.2.2), the conditions for the presence of the roton minimum in the energy
spectrum of a dipolar BEC are the peculiar anisotropic and long-range character of
the DDI and a strong confinement along the direction of the dipoles. Apparently,
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no strict constraints on the shape of the trap are necessary. In our work [37], the
study of roton physics is extended to a largely unexplored (3D) geometry with trap
elongation along only one direction (y) transverse to the magnetization axis (see
Fig.4.5). This trap geometry is also indicated as cigar-shaped. Here, one expects
a rotonization of the excitation spectrum along y.

Figure 4.5: The axially elongated trap geometry used in the experiment. The
dipoles are aligned transversely to the axis of the trap and subjected to a
3D harmonic confinement, with the thightest confinement along their orien-
tation direction (z-axis). Figure adapted from [37].

This choice of the trap geometry is motivated by the choice of the experi-
mental observable we want to measure in our investigation. Among the various
consequencies of the emergence of a roton minimum in the dispersion relation,
such as a reduction of the superfluid critical velocity below the velocity of sound,
and a peaked structure factor (signal of strong two-body correlations), which have
been measured in previous experimental works with non-dipolar BECs (see section
4.2.1, and references [114, 116, 117]), there is also another consequence, that is a
peculiar momentum distribution of the atoms. We focus on this latter observable.
As already discussed, in a dipolar BEC the roton energy gap ∆ = ε(krot), depends
on the density and on the strength of the interactions. In ultracold gases the scat-
tering length a can be tuned using Feshbach resonances (see section 2.2). When a
is reduced, ∆ decreases, vanishes, and eventually becomes imaginary (Fig.4.3). In
this case, the system undergoes a roton instability and the atoms in the conden-
sate, that is the atoms with momentum ky = 0, are transferred into the states at
momentum ±krot. The population of the roton mode should then be clearly visible
in the momentum distribution of the gas. Now, in the extensively-studied pancake
geometries, the roton population in momentum-space is expected to spread over
a ring of radius k = krot (Fig.4.6(a)), as follows from the discussion in section
4.2.2. Instead, in a cigar-shaped trap geometry the same roton population is ex-
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pected to focus in two prominent peaks at ky = ±krot, thus providing an enhanced
experimental signal with respect to the pancake case (Fig.4.6(b)).

Figure 4.6: Signatures of the roton mode in the momentum distribution. (a)
In a pancake trap the population of the roton mode manifests itself as a
ring in the (kx, ky)-density distribution, indicated by ñ. An identical roton
population focuses into two peaks in a cigar-shaped geometry (b), thus
producing an enhanced experimental signal. Figure adapted from [37].

Shaping of the trap The crossed optical dipole trap beams provide a harmonic
trapping potential V (r) = 2mπ2(ν2

xx
2 + ν2

yy
2 + ν2

zz
2), with frequencies (νx, νy, νz)

along the three coordinate axes for the BEC. By adjusting independently λ′ and
the powers of the vertical and horizontal ODT beams, it is possible to dynami-
cally control the geometry of the trap. In particular, the trapping frequency νy is
essentially set by the vertical ODT beam power, while νz by that of the horizontal
ODT beam. νx is controlled by both the power and ellipticity of the horizontal
ODT beam, with νz/νx ≈ λ′. The independent control of νy and νz allows to
easily tune the relevant trap aspect ratio for the cigar-like geometry, denoted by
λ = νz/νy. Once the BEC has been created, the beam parameters are changed
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to shape the trap into an axially elongated configuration, favourable for observing
the roton physics, that is νy � νx, νz.

4.3.3 Measurements

Quench of the scattering length For 166Er the dipolar length add =

µ0µ
2m/12π~2 ' 65.5 a0, which measures the strength of the DDI, is compara-

ble to the estimated background s-wave scattering length abg = 72(13)a0 [43].
In order to enter the dipole-dominated regime and be able to observe the roton
physics, we make use of a magnetic Feshbach resonance to decrease the value of
the scattering length sufficiently below the dipolar length. The chosen Feshbach
resonance is centered around B = 0 G. For this resonance the B-to-a conversion
has been previously precisely measured via lattice modulation spectroscopy, as re-
ported in ref. [26] (see Fig.4.7). The errors on the estimation of the scattering
length are of 3-to-5 a0 for the relevant range of a of 27-67 a0 explored in this work,
and are due to statistical uncertainties of the conversion and effects of magnetic
field fluctuations (for instance from stray fields).

Figure 4.7: Scattering length as a function of the magnetic field. The data
points (circles) are extracted from spectroscopic measurements of the gas in
a optical lattice (see ref. [26]) and the solid line is a fit to the data with its
statistical uncertainty (grey shaded region). Figure adapted from [26].
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During the shaping of the trapping potential into the cigar-like geometry the
magnetic field set value Bset is slowly (in 300 ms) changed from 1.9 G (the value
at which the BEC is created, corresponding to a =80(2) a0) to 0.4 G, which
corresponds to a scattering length of 61 a0. Thus, the experiment starts with a
stable BEC with initial scattering length ai = 61 a0. To excite the roton mode
we then perform a quench, i.e. a sudden variation, of the interactions into the
dipole-dominated regime. This is done by abruptly changing Bset from 0.4 G to
the desired lower value, corresponding to a final scattering length af . After the
quench, the atoms are held in the trap for a variable holding time th, before being
released from the trap for performing TOF imaging. Immediately after the trap is
switched off, Bset is suddenly changed back to 0.3 G, corresponding to aimg = 57
a0. This change guarantees constant and optimal imaging conditions with a fixed
probing procedure of maximal absorption cross-section. In addition, the increase
of a allows to minimize the time during which the dynamics happens in the regime
of small-a values where the roton is populated, such that we effectively probe only
the short-time evolution of the gas.

The experimental sequence for the scattering length is sketched in Fig.4.8. Be-
cause of delays in the experimental setup coming, for instance, from eddy currents
in the main chamber, the actual B value felt by the atoms responds to a change
of Bset via B(t) = Bset(t) + τdB/dt, see ref. [72]. By performing pulsed-radio-
frequency spectroscopy measurements (with pulse duration of 100 µs) on a BEC
after changing Bset (from 0.4 G to 0.2 G), this law has been verified in our sys-
tem and τ has been calibrated to be τ = 0.98(5) ms. As a consequence, a is still
evolving during the hold time and the TOF time and converges to its set value
with a characteristic timescale of τ . This effect is accounted for in the experiment
(and also in the simulations, discussed later), and in the following I will report the
roton properties as a function of the effective value of a at a certain th. In order to
investigate the short-time physics, yet long enough compared to τ , we focus here
on th between 3 and 6 ms.

The momentum distribution ñ(kx, ky) is then recorded as described in section
4.3.1. To investigate the excitation of the roton mode, the measurement is re-
peated at various values of af < add in a fixed cigar-shaped trap geometry. The
observed ñ(kx, ky) shows a striking behaviour (Fig.4.9). For large enough af , the
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Figure 4.8: Experimental sequence for the scattering length.

momentum distribution shows a single central narrow peak with an inverted aspect
ratio compared to the trapped gas, typical of a stable BEC with a macroscopic oc-
cupation of the condensate state with momentum ky = 0 (Fig.4.9(a)). The center
of the momentum distribution is defined as the origin of ky. When the scatter-
ing length is decreased further below add, we observe a sudden appearance of two
finite-momentum peaks at the sides of the central one, which are of similar shape
and symmetrically located with respect to ky = 0. Decreasing even further af into
the dipole-dominated regime, we see that the relative population of the two side
peaks with respect to the central one increases (Fig.4.9(b), (c)). We repeat the
experiment several times, and observe that the peaks consistently appear at the
same positions, so that they are clearly visible in the averaged distributions. The
robustness and reproducibility of these observations support our interpretation of
the two finite-momentum peaks in the momentum distribution, appearing when
quenching the scattering length into the dipole-dominated regime, as a signature
of the roton mode population in our system.

To quantitatively investigate the structure of the peaks, a sum of three Gaus-
sian distributions is fitted to the central cuts of the average ñ(kx, ky) (Fig.4.9(d),
(e), (f)), as detailed in ref. [37]. From the fit it is possible to extract the central
momentum |ky| ≡ krot of the side peak.

Probing the scaling of the roton momentum As derived in [35], and
confirmed in other theoretical works [120, 123, 122], a smoking gun of the ro-
ton mode in dipolar BECs is its geometrical scaling with the harmonic oscillator
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Figure 4.9: Observed roton peaks in momentum distribution. ñ(kx, ky) obtained
by averaging 15-to-25 absorption images for the trapping configuration (νx,
νy, νz) = (267, 32, 456)Hz (λ = 14.3), with th = 3 ms, and af = 54a0 (a),
44a0 (b), 37a0 (c). (d), (e), (f) Corresponding central cuts at kx ≈ 0
(dotts) and their fits to three-Gaussian distributions (lines). Figure adapted
from [37].

length along the tighter confined direction, krot ∼ 1/lz, where lz =
√
h/mνz (see.

Eq.(4.14)). Additionally, krot is expected to be almost independent on the scat-
tering length close to the instability [35, 122]). In the experiment we study both
dependencies.

In a first set of measurements, the quench experiment described above is re-
peated for different trapping configurations. In particular, we vary νz from ≈150
Hz to ≈800 Hz, while keeping νy almost constant during the experiment at about
35 Hz. This is possible thanks to the independent control we can have on the two
trapping frequencies νz and νy in the experiment. The range of variation of νz
corresponds to a tuning of the trap aspect ratio λ = νz/νy from about 4 to 30 (the
ratio νz/νx is instead kept constant during the experiment at about 1.6). All the
explored trapping configurations are listed in Table 4.1.

Increasing the strength of the confinement along the z direction, we clearly
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λ νx (Hz) νy (Hz) νz (Hz) N (104) BECf (%) T (nK)
4.3 114 35 149 9 66 45
10.2 183 30 306 11 62 104
14.3 267 32 456 8.6 50 150
21.3 357 30 638 8.4 36 179
29.7 432 26 771 7 20 171

Table 4.1: Experimental parameters for the measurements reported in Figures
4.9 and 4.10. In the table, BECf indicates the fraction of the total number
of atoms N which are in the condensate, and T is the temperature. The
typical statistical uncertainties on νx and νz are below 1%, and can be up to
10 % for νy. The experimental repeatability results in 5-to-10% shot-to-shot
fluctuations of N , BECf and T .

observe the expected geometrical scaling for the roton momentum. The measured
values of krot increase linearly with 1/lz, with a slope of 1.61(4) (Fig.4.10(a)).

In a second set of measurements, we fix the trap geometry and investigate the
dependence of krot on a. We observe that, within our experimental uncertainty,
krot shows a smooth increase when decreasing a (Fig.4.10(b)).

4.3.4 Comparison to theory

In order to confirm our observations and get a deeper understanding of the
roton population in our system, the experimental data are compared to two theo-
retical models, which have been specifically developed by L. Santos, F. Wächtler,
and R.M.W. van Bijnen, for our system parameters. These models are fully ex-
plained in ref. [37]. Here I will only report their main assumptions and results.

Analytical model The analytical model developed by L. Santos generalizes the
results of ref. [35] to a non-radially symmetric trapping geometry. The starting
point is the calculation of the low-energy excitation spectrum of the stationary
BEC. The condensate is assumed to have a homogeneous density along the y-axis,
i.e. it is not confined along y, and to be harmonically trapped along x and z. Thus,
in the model the so-called local density approximation [111] is applied along the
y-axis. Then, similarly to the approach detailed in section 4.2.2, in order to analyt-
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Figure 4.10: Characteristic scalings of the roton momentum. (a) Measured krot
as a function of 1/lz for the trapping configurations listed in Table 4.1
(circles). The solid line is a linear fit to the data, passing through the origin,
with a slope of 1.61(4). The dotted and dashed lines are the predictions
from the analytical model and the numerical simulations, respectively. (b)
Measured dependence of krot on af for the trapping configuration (νx,
νy, νz) = (267, 32, 456)Hz (λ = 14.3). Error bars show the statistical
uncertainty from the fit. Figures adapted from [37].

ically evaluate the energy spectrum ε(ky), the Thomas-Fermi (TF) approximation
is used for the BEC wave function along the confined x and z directions. Under
the above mentioned approximations, one finds that for dominant DDI (εdd ≥ 1),
ε(ky) for our cigar-shaped dipolar BEC indeed shows a roton minimum. At the
instability, where the roton energy gap vanishes, the model predicts a simple geo-
metrical scaling for the roton momentum, krot ∼ κ/lz, with the geometrical factor
κ depending only on the ratio νz/νx. This stationary description thus accounts for
the existence of the roton mode in the elongated geometry used in experiments,
and predicts the scaling of krot with the system parameters [37]. The values of krot
calculated from the analytical model for the various trapping configurations ex-
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plored in our experiment are in good agreement with the measured ones, as shown
in Fig.4.10(a).

Numerical simulations The system dynamics under the quench of the scatter-
ing length has been numerically simulated by F. Wächtler and R.M.W. van Bij-
nen. They calculated the time evolution of a generalized non-local Gross-Pitaevskii
equation (gNLGPE) of the form:

i~
∂

∂t
Φ0(r, t) =

(
−~2∇2

2m
+ Vext(r) + gn+ Udd(r, t)+

∆µ[n]− i~L3

2
n2

)
Φ0(r, t)

(4.17)

which constitutes an extension of the NLGPE introduced in Eq.(2.56), with
two additional terms in the right-hand side operator. The fourth terms accounts
for the effect of quantum fluctuations, which can be accurately included in the
NLGPE in a mean-field treatment through the so-called Lee-Huang-Yang (LHY)
correction to the chemical potential, obtained under a local density approximation
[132, 133]:

∆µ[n] =
32

3
√
π
g(na)3/2

(
1 +

3ε2dd
2

)
. (4.18)

The fifth term describes three-body inelastic loss processes (see section 2.3) via
a non hermitian term [134]. It includes an experimentally determined loss param-
eter L3, which depends on a, and is typically of the order L3 ' 10−41 m6s−1, as
reported in ref. [26].

The importance of the combined effect of these two terms in the dynamics of
dipolar BECs has been estabilished by recent theoretical and experimental results
(see, for instance, [135, 136, 137, 131, 26]), which have proven that, on one hand,
three-body losses limit the peak density of the atomic cloud, and on the other
hand, quantum fluctuations constitute the leading mechanism for stabilizing dipo-
lar BECs against collapse.

The effect of a finite temperature is additionally accounted for in the simula-
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tions by populating the excited states of the system. The excited states used in
this procedure are the eigenstates of the harmonic trap, as in ref.[135].

The simulations reproduce as close as possible the conditions of our exper-
iments, including initial atom number in the BEC, temperature, trapping fre-
quencies, ramping, holding, and TOF times. Moreover, the exact experimental
sequence for the scattering length is included in the numerics. From the simulated
evolution, the 3D wavefunction of the gas is obtained as a function of th, Φ0(r, th),
from which the spatial and momentum distributions can be extracted. In partic-
ular, the integrated momentum distribution ñ(ky, th) =

∫
dkxdkz|Φ̃0(k, th)|2, with

Φ̃0(k, th) the Fourier transform of Φ0(r, th), can be evaluated. The calculations
show that, few ms after the quench, the system developes roton peaks in the inte-
grated momentum distribution ñ(ky, th), and real-space short-wavelength density
modulations at the centre of the BEC, verifying the predicted "roton confinement"
phenomenon [123], according to which the density modulation corresponding to a
roton instability in a dipolar BEC is confined in the trap centre, where the density
of the gas is maximal. The values of krot extracted from the calculated momen-
tum distributions for the different trap configurations used in the experiment, and
their geometrical scaling, are in very good quantitative agreement with both the
experimental data and the analytical model calculations, as shown in Fig.4.10.

Numerical simulations are also performed to control the validity of the map-
ping (4.16) used in the experiment. In fact, they provide both the real momentum
distribution from the in-trap wave function, and the expanded spatial distribu-
tion after 30 ms of ballistic expansion. The two values of the roton momentum
extracted from the two calculated distributions agree within 5%, thus confirming
that the interactions have a small importance during the expansion for our system
parameters.

4.4 Complementary simulations of the time evolu-

tion

To have a further insight into the dynamics of our system induced by the quench
of the scattering length, I have personally carried out time evolution simulations,
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using the code written by R.M.W. van Bijnen. In particular, in my simulations I
focused on the in-trap dynamics. In a first set of simulations, I calculated the time-
evolution for varying th of the dipolar BEC following the quench of a to different
final values af , for a fixed trap geometry. From the simulated wavefunction, I
extracted the spatial density distribution as a function of th, which gives access
to information not accessible in the experiment. I will present an analysis of this
information. In a second set of simulations I concentrated on the specific effects of
quantum fluctuations and three-body losses on the system dynamics, by artificially
switching on and off these terms in the simulations based on the gNLGPE (4.17).
By comparing the time evolution of the in-trap density in the different cases, I
analyzed the specific role of each of these terms. In the following I will first
describe the main features of the code from R.M.W. van Bijnen, and then present
the results.

4.4.1 The code

The simulation is based on a numerical procedure considering a discrete version
of the 3D wave function of the gas and it calculates the time evolution of the
wave function along the gNLGPE (4.17) using discrete time steps. The code
can accomplish two distinct tasks. First, it can compute the ground state of the
gNLGPE. Second, it can calculate the real-time evolution of any 3D wave function
along the gNLGPE. For both tasks I will summarize here the main computational
steps.

Features of the numerical computation

• The wave function considered by the program is defined on a discrete spatial
grid in the coordinates r ≡ (x, y, z), with Nx × Ny × Nz grid points, which
constitutes the "simulation box". Typical values for the grid points are Nx =

128, Ny = 512, Nz = 64. In order to describe the evolution along Eq.(4.17)
without being limited by edge effects, the grid typically has an extent in all
spatial directions at least three times bigger than the size of the BEC wave
function in the corresponding direction.
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• A key point consists in using the convolution theorem to calculate the DDI
potential term Udd(r) =

∫
dr′Vdd(r − r′)n(r′), which is a convolution of

the DDI potential Vdd(r − r′) = µ0µ2m
4π

1−3 cos2 θ
|r−r′|3 with the 3D spatial density

n(r) = |Φ0(r)|2. The ∼ 1/r3 behaviour of the DDI potential can lead to
difficulties in the calculations when the integral Udd is discretized onto a
real-space grid. For instance, for each grid point of coordinate r, the in-
tegral becomes a sum over the entire spatial grid (sum over all r′), and
the divergence corresponding to the r = 0 pole of the DDI potential can
not be treated numerically. In order to overcome this complication, and
since Vdd(r) and n(r) have both well defined Fourier transforms, one can
move to momentum space. Then the real-space convolution defining Udd(r)
becomes a simple product in Fourier space: Udd(r) = F−1[Ṽdd(k)ñ(k)](r),
where F−1[·] indicates the inverse Fourier transform, and ·̃ indicates the di-
rect Fourier transform. Note that Ṽdd(k) is analytically well defined, and
given by Ṽdd(k) = µ0µ2m

3
(3 cos2(θk)− 1), with θk the angle between k and the

polarization axis.

• The kinetic energy term is also conveniently calculated in momentum space.
In fact, the kinetic energy operator T̂ = −∇2 has the simple diagonal form
in momentum space ˆ̃T = k2. Thus, −∇2ψ(r) = F−1[k2ψ̃(k)].

Ground state calculation

• We note that Eq.(4.17) can be obtained through a variational approach [79]:

i~
∂

∂t
Φ0 =

δE

δΦ∗0
, (4.19)

where the energy functional E is given by

E[Φ0] =

∫
dr

[
~2

2m
|∇Φ0|2 + Vext(r)|Φ0|2 +

g

2
|Φ0|4 +

3gεdd
8π
×∫

dr′|Φ0(r′)|2 1− 3 cos2 θ

|r− r′|3
|Φ0(r)|2 + ∆µ[|Φ0|2]|Φ0|2 − i~

L3

2
|Φ0|6

]
.(4.20)
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Thus, finding the ground state is equivalent to minimize the energy functional
(4.20).

• The numerical minimization of (4.20) is done by using the conjugate gradi-
ents algorithm [139]. The idea of this method is to sample the variations
of the energy functional E[Φ0] on a large scale. One starts from minimiz-
ing the energy functional E[Φ0] by considering an initial wavefunction Φ0,0,
which is assumed to be a Gaussian in the code. The wavefunction is then
changed by considering the direction of the most negative gradient δE/δΦ∗0
around the initial Φ0,0. The direction of the next change of Φ0 is then con-
structed iteratively by a linear combination between the direction of most
negative gradient evaluated at Φ0,n−1 and Φ0,n−2 (or all Φ0,n′ with n′ < n),
to construct the new Φ0,n. This is iteratively repeated until the minimum
of the energy functional is found, i.e. the gradient in that point is zero. In
the code, the condition of zero gradient is assumed to be achieved when the
gradient amplitude reaches values smaller than a threshold that can be set
by hand. With this method the ground state wave function is typically cal-
culated in few tens of seconds. Other typically used techniques for function
minimization, such as the imaginary time evolution method [139], have been
demonstrated to provide a much slower convergence for the specific case of
a Gross-Pitaevskii energy functional, as reported, for instance, in ref. [140].

Time evolution The time evolution of the gNLGPE (4.17) is calculated using
the split-step method (see, for instance, ref. [141]). In this method, one considers
the time-independent hamiltonian Ĥ as given by the sum of the kinetic energy term
T̂ and the potential energy term V̂ , Ĥ = T̂+V̂ . Here, the effective potential energy
for the evolution includes the external trapping potential, the interparticle inter-
actions, the LHY correction and the three-body loss term. The evolution operator
over a time ∆t can be approximately split as e−iĤ∆t/~ = e−iT̂∆t/~e−iV̂∆t/~+O(∆t2),
where the two operators − i

~ T̂∆t and − i
~ V̂∆t do not commute in general. The

time evolution operator e−iĤ∆t/~ can now be efficiently calculated exploiting the
fact that the operator T̂ is diagonal in momentum space, and the operator V̂ is
diagonal in real space. Thus, in a certain time step ∆t one can calculate only
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e−iV̂∆t/~ψ in real space, and in the subsequent time step only e−iT̂∆t/~ψ in mo-
mentum space, alternatively, with the wave function that is continously Fourier
transformed back and forth between each step. This turns out to be much faster
than exponentiating a non-diagonal matrix. The computational speed is then ul-
timately determined by the size of the simulation box. The simulations I present
here have been obtained using the computational facilities of HPC infrastructure
LEO of the University of Innsbruck. The computation of the time evolution of the
3D wavefunction during a typical th up to 80 ms took about 15 hours.

Approximations used in the code

• The temperature is taken to be zero in the simulations, and the initial wave-
function is assumed equal to the ground state wavefunction. The numerical
calculations reported in [37] have demonstrated that the effect of a finite tem-
perature is to seed the population of the roton mode. This means that, if the
temperature is not accounted for in the simulations, the initial population
of the roton mode is expected to be delayed towards longer holding times.
However, the the rapid dynamics after the seeding of the roton excitation
can be considered as weakly affected by the temperature.

• In the simulations, the time evolution is calculated after an abrupt change of
a, controlled by the correlated variation of B, as performed in the experiment.
The variation in time of the magnetic field (and scattering length) during the
experiment is simulated by using a linear ramp, instead of the experimentally
measured exponential ramp (see section 4.3.3). To extract the corresponding
variation of a, we use the experimentally calibrated conversion (see section
4.3.3). It is worth to note that as T = 0 is taken, the exact time variation
at short th are not expected to match the experimental observations and the
influence of the specific ramp should be negligible.

• The values of the three-body loss parameter L3 for different scattering lengths
are determined via a linear interpolation of the measured data reported in
ref. [26].
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From the 3D wave function of the gas in-trap after a hold time th, Φ0(r, th),
it is possible to extract the 1D density distribution n1(y, th) =

∫
dxdz|Φ0(r, th)|2

integrated along the two confined directions x and z. The 1D density profile along
the elongated direction of the trap should reveal the population of the roton mode
in real space, in the interesting region of parameters. This should appear through
the formation of density modulations, which can not be directly observed in our
experiment due to a limited spatial resolution of the imaging system.

4.4.2 In-trap dynamics after the quench of the interactions

In my simulations I consider a BEC of 166Er atoms with an initial atom number
N = 105, confined in a cigar-shaped trap with trapping frequencies (νx, νy, νz) =

(156, 17, 198) Hz (λ = νz/νy = 11.6), and dipoles aligned along the tighter confined
z direction by an external uniform magnetic field. The initial value of the external
magnetic field is 0.8 G, corresponding to an initial scattering length for the atoms
of ai = 67a0 > add, for which the BEC is stable. In order to enter the dipole-
dominated regime of interactions, a is abruptly changed to a variable final magnetic
field corresponding to a final scattering length af below the dipolar length. The
atoms are then held in the trap at af for a holding time th varying from 0 to
80 ms. Differently from what is done in the experiment, here the trap is always
kept on, and the scattering length is not quenched back to a higher value. This
allows to access the in-trap dynamics not only immediately after the quench of the
interaction, but also at longer times.

The calculated time evolution of the 1D integrated density profile n1(y, th) for
different values of af reveal a complex in-trap dynamics. Fig.4.11 shows plots
of the 1D integrated density distribution obtained for af between 60a0 and 45a0.
One can clearly distinguish three regimes. For af ≥ 53a0 the BEC is stable, and
one simply observes breathing modes of the BEC size. The quench to af ≤ 53a0

causes a stronger compression of the cloud with respect to the quench to 60a0,
and this explains the larger loss of atoms at the lower final scattering length.
For 52a0 ≤ af ≤ 48a0, after a consistent loss of atoms due to the initial cloud
compression, density modulations form at the centre of the trap. The amplitude of
the modulations increases for decreasing af , and is maximal at af = 48a0. Finally,
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Figure 4.11: In-trap time evolution. Calculated time evolution of the 1D integrated
density n1(y, th) after the quench of a to different values of af for the trap
indicated in the text. Before the quench, ai = 67 a0. af is indicated at the
top right of each plot. The color-scale for n1 is given in units of the initial
atom number N = 105 times the inverse of the harmonic oscillator length
lz. 129
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for af ≤ 47a0, after a similar appearance of density modulations, a completely
different dynamics takes place: high-density structures develop, survive for few
ms, and then merge in new structures with a lower density, until the atoms are
completely lost. The lifetime of the structures seems to decrease with decreasing
af . One can also note that the fuzzyness of the observed pattern gets stronger when
lowering af . Fig.4.12 shows cuts of the 1D integrated density profiles at relevant
holding times, in each of the three regimes of final scattering length discussed
above.

The three regimes observed in the real-space dynamics can be interpreted in
terms of the roton physics. For sufficiently high af , the roton mode is not excited,
and therefore the condensate remains the only state macroscopically occupied. For
af ≤ 52a0 the roton mode starts to be populated. When decreasing af , the roton
energy gap also decreases (see section 4.2.2), and may reach ∆2 < 0 in the course
of the dynamics for sufficiently low af . When this happens, the roton mode can get
macroscopically populated. The fact that the modulations in the 1D density profile
form at the centre of the trap (see Fig.4.12(b)), where the density of the cloud is
maximal, verifies the previously mentioned roton confinement in this intermediate
regime for the scattering length [123]. The distinct dynamics happening for af <
or > 47a0 can be explained by the latter evolution of the roton gap. For af > 47a0,
the population of the roton excitation seems to temporarily increase but then it
remains limited (not the full population of the BEC is transferred in a full contrast
modulation). This behaviour should be explained by a roton gap temporarily
reaching imaginary values, but recovering later a finite real value. This evolution
is possible thanks to the variation in time of the density that we observed (in
particular its decrease). A decrease of the density is induced either by the atom
losses or by the oscillation of the size of the BEC, as observed in Fig.4.11. Note that
oscillations of the size of the BEC also occur along x and z, leading to additional
peak density variations, which are not sensitive in Fig.4.11. For af < 47a0, on
the contrary, the roton exictation population increases up to forming very strong
modulations of the density profile (see Fig.4.12(c)). In this case, the dilute BEC
dissapears and one traditionally talks about collapse dynamics (see, for instance,
[120, 121, 122]).
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Figure 4.12: 1D integrated density profile n1(y) at various relevant th for three
different values of af . (a) The cut of n1(y, th) for af = 55a0 (Fig.
4.11(c)) at th = 42 ms shows a stable BEC profile. (b) A density-modulated
profile characterizes the centre of the cloud for af = 48 a0 (Fig.4.11(i)), at
th = 48 ms. (c) For af = 47a0 (Fig. 4.11(j)), the cut of n1(y, th) at th =
23 ms reveals the formation of high-density structures in the system. Note
the different scale on the y-axis of Figure (c) with respect to Figures (a)
and (b)

.
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Effect of quantum fluctuations In the last few years, the role of quantum
fluctuations has been theoretically and experimentally demonstrated to be of pri-
mary importance in determining the dynamics of a dipolar BEC when reaching the
regime where traditionally a collapse occur [135, 136, 137, 131, 26]. As discussed
above, this is exactly the case investigated here, and in particular in the regime
of Fig.4.12(c). In this regime, corresponding to the arising of the collapse, the
total mean-field energy of the dipolar BEC vanishes. Now, a special property of
dipolar BECs comes from the fact that this cancellation of the mean-field energy
is achieved through the competition of two interaction terms, the DDI and the
contact interactions, and in particular the mean-field energy cancels at non-zero
scattering length. For example, in our case, it seems to cancel at around a ∼ 50a0.
In this case, the energy contribution coming from the intrinsic quantum fluctu-
ations of the system, i.e. beyond the zeroth order mean-field energy, does not
cancel, and can thus dominate over the vanishing mean-field energy. This effect
has been proven to yield the stabilization of mean-field collapsing BECs and the
formation instead of so-called quantum droplets, constituting a novel metastable
liquid-like state of matter, primarily observed in Dy [32, 131, 142, 143] and later
in Er [26].

It is important to note that quantum droplets have been at first observed in
the form of assemblies in the case where a stronger confinement was applied along
the dipole orientation, either in pancake [32] or in cigar [131] traps. The forma-
tion of a structured metastable droplet assembly may have some connection to
short-wavelength instabilities of the roton type. The study of this connection con-
stitutes a very interesting question for future studies and better understanding of
the physics at play here.

In order to investigate the effect of quantum fluctuations on our system, I
repeated the time evolution simulations described in the previous section, but this
time I did not include the LHY contribution in the gNLGPE (4.17). The results
are presented in Fig.4.13, for relevant values of af , some of which are also used
in Fig.4.11, thus allowing for a direct comparison between the two cases with and
without quantum fluctuations included into the calculation.

In Fig.4.13 one can still observe the three regimes of scattering length discussed
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Figure 4.13: In-trap time evolution without LHY. Calculated time evolution of
the 1D integrated density n1(y, th) as in Fig.4.11, but without including
the effect of quantum fluctuations. Before the quench, ai = 67 a0. af is
indicated at the top right of each plot. The color-scale for n1 is given in
units of the initial atom number N = 105 times the inverse of the harmonic
oscillator length lz.
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in the previous section, corresponding to a stable system for sufficiently high af , an
intermediate regime with a density modulated profile corresponding to a populated
roton mode, and an unstable system for smaller af . The first noticeable effect of
the quantum fluctuations is that, in their absence, these three regimes are shifted
towards higher values of af . Now a roton population appears already at af = 57a0,
instead of 52a0, and the instability appears at af = 53a0 instead of 47a0, as
previously. This proves the stabilizing role of quantum fluctuations in a dipolar
BEC, pushing the energy gap of the roton to higher values. The second effect of
the quantum fluctuation is on the structures of the density pattern themselves. For
af in the unstable regime, one observes a much fuzzier and asymmetric dynamics,
indicating more intricate nonlinear effects, and in particular the possible occurrence
of density spikes (local collapses) not well described within the discrete numerical
method I have used. Also, the revival of the density modulation structure after the
first merging is in this case more limited than with the LHY contribution. Finally,
one can observe the formation of smaller and smaller structures when decreasing
af , which was not observed when quantum fluctuations were taken into account
(compare Figures 4.11(i), (j), (k) with Figures 4.13(g), (h), (i)).

In the af range where a limited population of the roton mode is observed,
between 57 a0 and 55 a0, I have checked that the wavelength of the modulations is
equal, within the errors coming from a sinusoidal fit of the modulations, to the one
obtained when the quantum fluctuations are accounted for in the calculations.

Effect of three-body losses Because of its strong dependence on the conden-
sate density n, as ∼ n2, the three-body loss term in the gNLGPE (4.17) prevents
the density from becoming too high. In order to study the effect of three-body
losses on the dynamics of the system following the quench of the scattering length,
I perform numerical simulations of the time evolution without taking into account
the loss term. These results are presented in Fig.4.14 for the relevant values of af ,
and can be compared to the ones in Fig.4.11, where the losses are included into
the calculations, and all the other parameters are kept the same. The difference
between the two sets of calculations, with and without the three-body loss contri-
bution, is particularly striking at low values of af . From the plots in Fig.4.14, one
can again recognize a regime of stability of the BEC for af ≥ 53a0, and modula-
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tions of limited amplitude for 52a0 ≤ af ≤ 50a0. This indicates that for af > 50a0,
the instantaneous roton gap is destabilized and stabilized again by the breathing
oscillation of the BEC size.

For af ≤ 49a0, the density profile shows the formation of high density long-
lived structures, with a well-defined inter-structure separation distance, slightly
oscillating because of the breathing of the whole cloud itself (see, in particular,
Figures 4.14(g), (h), (i)). The stability of the structure contrasts with the short
time scale dynamics of merging and splitting of the structure observed in presence
of losses. One can see that both the size and separation distance of the structures
decrease for decreasing af , and the number of the structures increase.

The observed stable structures are very similar to the quantum droplets. It is
worth noticing that droplet arrays have been reported for a dipolar BEC of Dy
atoms in an elongated trap with a similar geometry as in our experiment [144]. In
that system, the stronger dipolar character of Dy with respect to Er is such that
smaller densities are necessary for stabilizing the droplet state. Thus, the roton
excitation might be interpreted as the triggering mechanism for an instability
leading to the formation of droplet arrays in dipolar BECs. As pointed out in
ref. [144], the observed droplet arrays do not constitute the ground state of the
system, but rather excited metastable states. This is indeed consistent with a
roton modulation instability obtained after a quench of the interaction energy,
which prevents the access to the ground state of the system.
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Figure 4.14: In-trap time evolution without three-body losses. Calculated time
evolution of the 1D integrated density n1(y, th) as in Fig.4.11, but without
including the effect of three-body losses. Before the quench, ai = 67 a0. af

is indicated at the top right of each plot. The color-scale for n1 is given in
units of the initial atom number N = 105 times the inverse of the harmonic
oscillator length lz. Note the different color-scale with respect to Figures
4.12 and 4.13.
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Conclusion and outlook

This thesis focuses on the experimental study of quantum gases with tunable
interatomic interactions of short- and long-range. During my PhD work I had the
opportunity to experience two fundamental aspects of an experimental ultracold
atomic physicist’s formation, that is designing an experimental apparatus, and
performing advanced measurements in a fully operating machine.

The first project is reported in Chapter 3. There, I presented the original
design of a new vacuum apparatus, which will be employed at LENS, in Florence,
for the production of BECs of 39K atoms. The aim of the new setup is to guar-
antee a high repetition rate of the experimental sequence for the production of
degenerate gases of 39K, large optical access onto the atoms, and tunability of the
interactions. These three tasks can be accomplished in the newly designed system.
In particular, the compact design of the 3D MOT chamber has been originally
developed in the context of this thesis. It is meant to allow 3D magneto-optical
trapping, the loading of the atoms in a in-vacuum resonator, and the optical trans-
port of the atoms into the science chamber. This latter, thanks to its shape and
position, spatially separated from the region of magneto-optical trapping, will al-
low a very large optical access onto the atoms, necessary for the implementation
of a high-resolution imaging optical setup and laser speckles (as in ref. [36]). A
proper configuration of magnetic field coils around each vacuum chamber has been
designed, allowing for magnetic trapping (in the 2D MOT and 3D MOT chambers)
and magnetic tuning of the interactions via Feshbach resonances (in the 3D MOT
chamber and science cell). Technical features of the chosen vacuum pumps are
given and motivated. Finally, a preliminary test of the optical setup that will be
used for the optical transport in the experiment is presented.

Once it will be constructed, the vacuum apparatus will be integrated with
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proper laser sources for cooling and optical trapping of 39K. The new system will
be flexible to many future studies. The first goal will be to investigate the role of
weak repulsive short-range interactions on a Anderson localized system in random
potentials, a very general problem of condensed matter physics which still poses
many open questions [28].

Long-range interactions are instead at the basis of the investigation presented in
Chapter 4. There, I reported on the first experimental observation of the popula-
tion of the roton mode, i.e. a mode at finite momentum in the low-energy excitation
spectrum, in a dipolar quantum gas [37], theoretically predicted by L.Santos and
coworkers in 2003 [35]. This work has been performed at the ERBIUM experiment
of the Experimental Physics Institute of the University of Innsbruck (Austria), on a
dipolar BEC of 166Er atoms. Despite previous theoretical works on rotons in dipo-
lar BECs were mainly focused on quasi-2D systems, for our investigation, aimed
at measuring the momentum distribution of the gas, we chose an axially elongated
trap geometry, providing an enhanced roton population signature in momentum
space, with respect to a quasi-2D trap. We measured the momentum distribu-
tion of the gas after a sudden decrease of the s-wave scattering length, achieved
by exploiting a Feshbach resonance, below the dipolar length (dipole-dominated
regime). For sufficiently low values of the s-wave scattering length, we observed a
clear signature of the population of the roton mode, in the TOF absorption images
of the gas, revealing the in-trap momentum distribution. We verifyed the predicted
linear scaling of the roton momentum with the inverse of the harmonic oscillator
length along the direction of tightest confinement, and the mild dependence of
the roton momentum on the scattering length, in the dipole-dominated regime of
interactions. To confirm our observations, we compared the measurements with an
analytical model and numerical simulations, specifically developed for our system
parameters. Both theoretical models reveal a good agreement with our experi-
mental data, thus confirming the roton softening of the excitation spectrum in our
system.

To have an insight on the in-trap dynamics induced by the sudden decrease
of the scattering length, I performed time evolution numerical simulations, com-
plementary to the above mentioned ones, reproducing the experimental sequence.
These simulations provided information on the real-space density distribution of
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the gas as a function of the holding time in the trap, which was not directly ac-
cessible in our system. The results have shown a complex in-trap dynamics. In
particular, for values of the scattering length sufficiently below the dipolar length,
the BEC density profile developed short-wavelength modulations, corresponding
to the onset of the roton mode population in the system. When the scattering
length was further decreased, an instability leading to a collpase dynamics has
been observed.

To gain knowledge of the specific role of quantum fluctuations and three-body
losses in the dynamics of the dipolar BEC, and particularly in the regime of mean-
field collapse (where the relevance of these two effects has been firmly estabilished
by previous theoretical and experimental works) I carried out additional dedicated
simulations. These simulations confirmed the stabilizing role of the quantum fluc-
tuations, and, showed that, in absence of three-body losses, long-lived high-density
structures form in the system, which are very similar to the recently observed quan-
tum droplets.

The work presented here paves the way for many future investigations on the
roton physics in dipolar BECs. A first goal, for instance, is the measurement of
the roton gap, which could be accessed via Bragg spectroscopy [145]. Also, by im-
proving the resolution of the imaging system it would be possible to directly probe
the in-trap real-space density modulations. These density modulations might con-
stitute an interesting link between the observed softening of the roton mode and
the existence of a supersolid phase in our system. Indeed, in a supersolid phase, a
phase-coherent density modulated ground-state is predicted to exist [146]. In the
reported experiment, we can only access density-modulated states which are not
the ground state of the system, but rather excited metastable states, as a conse-
quence of the interaction quench used to excite the roton mode. Therefore, one
would need to develope new strategies for directly probing the ground state of the
system and its coherence. First investigations in this direction have been reported
in ref. [144]. Thus, future research might be devoted to exploring the possibility
of a stable supersolid state in a dipolar BEC.

In the long term, an interesting perspective which connects the two projects of
my PhD work, might be the study of dipolar systems in disordered potentials. The
many-body localization problem in dipolar system has been studied theoretically
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(see, for instance, ref. [147]), but not yet investigated in experiments. At present,
as I already mentioned, the interplay of disorder and short-range interactions is
itself not full understood. Once new insights on this problem will be achieved,
degenerate gases of strongly magnetic atoms of Er could constitute an optimal
platform for studying the generalization of the many-body localization problem to
dipolar systems.
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Becher, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Observation of the
Roton Mode in a Dipolar Quantum Gas, arXiv:1705.06914 (2017).

[38] K. Huang, Statistical Mechanics, Wiley, New York (1987).

[39] S. N. Bose, Plancks gesetz und lichtquantenhypothese, Zeitschrift fur Physik
26:178 (1924).

144



BIBLIOGRAPHY 145

[40] D.A. Steck, Quantum and Atom Optics, available online at
http://steck.us/teaching (revision 0.9.9, 18 March 2014).

[41] NIST Atomic Weigths and Isotopic Compositions,
http://physics.nist.gov/PhysRefData/Compositions/index.html.

[42] T.G. Tiecke, Properties of Potassium,
http://www.tobiastiecke.nl/archive/PotassiumProperties.pdf

[43] A. Frisch, Dipolar Quantum Gases of Erbium, PhD Thesis, LFU Innsbruck
(2014).

[44] H. Ban, M. Jacka, J. Hanssen, J. Reader, and J. McClelland, Laser cooling
transitions in atomic erbium, Opt. Express 13, 3185 (2005).

[45] C. Cohen-Tannoudji and D. Guéry-Odelin, Advances in Atomic Physics,
World Scientific Publishing (2011).

[46] H. Metcalf and P. van der Straten, Laser cooling and trapping, Springer-
Verlag, New York (1999).

[47] M. Landini, A tunable Bose-Einstein condensate for quantum interferometry,
PhD thesis, University of Trento (2012).
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Grimm, P. S. Julienne, and J. M. Hutson, Feshbach resonances, weakly bound
molecular states, and coupled-channel potentials for cesium at high magnetic
fields, Phys. Rev. A 87, 032517 (2013).

[78] S. Giovanazzi, A. Görlitz, and T. Pfau, Tuning the dipolar interaction in
quantum gases, Phys. Rev. Lett. 89, 130401 (2002).

[79] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-
Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999).

[80] N. Bogoliubov, On the Theory of Superfluidity, J. Phys. (Moscow) 11, 23
(1947).

[81] E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and
C. E. Wieman, Dynamics of collapsing and exploding Bose-Einstein condensates,
Nature 412, 295-299 (2001).

[82] T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and Eigenfunctions of a
Bose System of Hard Spheres and Its Low-Temperature Properties, Phys. Rev.
106, 1135 (1957).

[83] E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento
20, 454 (1961).

[84] L.P. Pitaevskii, Vortex Lines in an Imperfect Bose Gas, Sov. Phys. JETP 13,
451 (1961).

[85] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose-Einstein
Condensation in Trapped Dipolar Gases, Phys. Rev. Lett. 85, 1791 (2000).

[86] M. Landini, S. Roy, G. Roati, A. Simoni, M. Inguscio, G. Modugno, and M.
Fattori, Direct evaporative cooling of 39K atoms to Bose-Einstein condensation
Phys. Rev. A 86, 033421 (2012).

148



BIBLIOGRAPHY 149

[87] J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications,
Roberts and Company Publishers, (2007).

[88] C. B. Alcock, V. P. Itkin, and M. K. Horrigan, Vapor pressure equations
for the metallic elements:298-2500K, Canadian Metallurgical Quarterly, 23-309,
(1984).

[89] J. Catani, P. Maioli, L. De Sarlo, F. Minardi, and M. Inguscio, Intense slow
beams of bosonic potassium isotopes, Phys. Rev. A 73, 033415 (2006).

[90] J. Léonard, M. Lee, A. Morales, T. M. Karg, T. Esslinger and T. Donner,
Optical transport and manipulation of an ultracold atomic cloud using focus-
tunable lenses, New J. Phys. 16 (2014).

[91] J. M. Lafferty, Foundations of Vacuum Science and Technology, Wiley & Sons
(1998).

[92] M. Mancini, Realizzazione sperimentale di un gas quantistico degenere di
atomi di Itterbio, Master Thesis, University of Milano (2012).

[93] http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/Radia

[94] T. Gustavson, A. Chikkatur, A. Leanhardt, A. Görlitz, S. Gupta, D. Pritchard
and W. Ketterle, Transport of Bose-Einstein Condensates with Optical Tweez-
ers, Phys. Rev. Lett. 88 3–6 (2001).

[95] http://www.optotune.com

[96] https://www.zemax.com/os/opticstudio

[97] http://www.optotune.com/products/focus-tunable-lenses/lens-drivers

[98] P. Kapitza, Viscosity of Liquid Helium Below the λ-Point, Nature 141, 74
(1938).

[99] J. F. Allen and A. D. Misener, Flow of Liquid Helium II, Nature 141, 75
(1938).

149



BIBLIOGRAPHY 150

[100] H. Kamerlingh-Onnes, The Superconductivity of Mercury, Comm. Phys. Lab.
Univ. Leiden 120b (1911).

[101] L. Tisza, Transport Phenomena in Helium II, Nature 141, 913 (1938).

[102] L. Landau, Theory of the Superfluidity of Helium II, Phys. Rev. 60, 356
(1941).

[103] R. P. Feynmann, Atomic theory of the Two-Fluid Model of Liquid Helium,
Phys. rev. 94, 2 (1954).

[104] M. Cohen and R. P. Feynman, Theory of Inelastic Scattering of Cold Neu-
trons from Liquid Helium, Phys. Rev. 107, 13 (1957).

[105] D. G. Henshaw and A. D. B. Woods, Modes of Atomic Motions in Liquid
Helium by Inelastic Scattering of Neutrons, Phys. Rev. 121, 1266 (1961).

[106] D. R. Allum, R. M. Bowley, and P. V. E. McClintock, Evidence for Roton
Pair Creation in Superfluid 4He, Phys. Rev. Lett. 36, 1313 (1976).

[107] F. London, On the Bose-Einstein Condensation, Phys. Rev. 54, 947 (1938).

[108] L. Onsager and R. Penrose, Bose-Einstein Condensation and Liquid Helium,
Phys. Rev. 104, 576 (1956).

[109] F. Dalfovo and S. Stringari, Helium nanodroplets and trapped Bose–Einstein
condensates as prototypes of finite quantum fluids, J. Chem. Phys. 115, 10078-
10089 (2001).

[110] A.L. Fetter, Ground state and excited states of a confined condensed Bose
gas, Phys. Rev. A 53, 4245-4249 (1996).

[111] L. Pitaevskii and S. Stringari, Bose-Einstein condensation and superfluidity,
vol. 164 Oxford University Press (2016).

[112] J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Excitation Spectrum of
a Bose-Einstein Condensate, Phys. Rev. Lett. 88, 120407 (2002).

150



BIBLIOGRAPHY 151

[113] D.H.J. O’Dell, S. Giovanazzi, and G. Kurizki, Rotons in gaseous Bose-
Einstein condensates irradiated by a laser, Phys. Rev. Lett. 90, 110402 (2003).

[114] R. Mottl, F. Brennecke, K. Baumann, R. Landig, T. Donner, and T.
Esslinger, Roton-Type Mode Softening in a Quantum Gas with Cavity-Mediated
Long-Range Interactions, Science 336, 6088 (2012).

[115] M.A. Khamehchi, Y. Zhang, C. Hamner, T. Busch, and P. Engels, Measure-
ment of collective excitations in a spin-orbit-coupled Bose-Einstein condensate,
Phys. Rev. A 90, 063624 (2014).

[116] S.-C. Ji, L. Zhang, X.-T. Xu, Z. Wu, Y. Deng, S. Chen, and J.-W. Pan,
Softening of roton and phonon modes in a Bose-Einstein condensate with spin-
orbit coupling, Phys. Rev. Lett. 114, 105301 (2015).

[117] L.-C. Ha, L.W. Clark, C.V. Parker, B. M. Anderson, and C. Chin, Roton-
maxon excitation spectrum of Bose condensates in a shaken optical lattice, Phys.
Rev. Lett. 114, 055301 (2015).

[118] V. Galitski and I.B. Spielman, Spin–orbit coupling in quantum gases, Nature
494, 49–54 (2013).

[119] N. Gemelke, E. Sarajlic, Y. Bidel, S. Hong, and S. Chu, Parametric amplifi-
cation of matter waves in periodically translated optical lattices, Phys. Rev. Lett.
95, 170404 (2005).

[120] S. Ronen, D.C.E. Bortolotti, and J.L. Bohn, Radial and angular rotons in
trapped dipolar gases, Phys. Rev. Lett. 98, 030406 (2007).

[121] A.D. Martin and P.B. Blakie, Stability and structure of an anisotropically
trapped dipolar Bose-Einstein condensate: Angular and linear rotons, Phys. Rev.
A 86, 053623 (2012).

[122] P.B. Blakie, D. Baillie, and R.N. Bisset, Roton spectroscopy in a harmonically
trapped dipolar Bose-Einstein condensate, Phys. Rev. A 86, 021604 (2012).

[123] M. Jona-Lasinio, K. Łakomy, and L. Santos, Roton confinement in trapped
dipolar Bose-Einstein condensates, Phys. Rev. A 88, 013619 (2013).

151



BIBLIOGRAPHY 152

[124] R.M. Wilson, S. Ronen, and J.L. Bohn, Critical superfluid velocity in a
trapped dipolar gas, Phys. Rev. Lett. 104, 094501 (2010).

[125] S.S. Natu, L. Campanello, and S. Das Sarma, Dynamics of correlations in a
quasi-two-dimensional dipolar Bose gas following a quantum quench. Phys. Rev.
A 90, 043617 (2014).

[126] A. Frisch, M. Mark, K. Aikawa, S. Baier, R. Grimm, A. Petrov, S. Ko-
tochigova, G. Quéméner, M. Lepers, O. Dulieu, and F. Ferlaino, Ultracold Dipo-
lar Molecules Composed of Strongly Magnetic Atoms, Phys. Rev. Lett. 115,
203201 (2015).

[127] K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, and F. Ferlaino, Reach-
ing Fermi Degeneracy via Universal Dipolar Scattering, Phys. Rev. Lett. 112,
010404 (2014).

[128] S. Baier, An optical dipole trap for Erbium with tunable geometry, Master
thesis, LFU Innsbruck (2012).

[129] J.L. Bohn, R.M. Wilson, and S. Ronen, How does a dipolar Bose-Einstein
condensate collapse?, Laser Physics 19, 547–549 (2009).

[130] N.G. Parker, C. Ticknor, A.M. Martin, and D.H.J. O’Dell, Structure for-
mation during the collapse of a dipolar atomic Bose-Einstein condensate, Phys.
Rev. A 79, 013617 (2009).

[131] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observa-
tion of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116,
215301 (2016).

[132] A.R.P. Lima and A. Pelster, Quantum fluctuations in dipolar Bose gases,
Phys. Rev. A 84, 041604 (2011).

[133] A.R.P. Lima and A. Pelster, Beyond mean-field low-lying excitations of dipo-
lar Bose gases, Phys. Rev. A 86, 063609 (2012).

[134] Y. Kagan, B.V. Svistunov, G.V. Shlyapnikov, Effect of Bose condensation
on inelastic processes in gases, JETP Lett. 42, 209 (1985).

152



BIBLIOGRAPHY 153
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