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Introduction

At temperatures near absolute zero, the quantum nature of particles becomes

apparent, leading to fascinating phenomena which can be observed and in-

vestigated in nowadays experiments of ultracold atomic gases.

A key feature of quantum gases is the ultimate ability to experimentally

control all relevant system parameters, firstly the inter-particle interaction.

This allows to study and unveil with unprecedented precision a wealth of

complex phenomena that share similarities and interesting inter-connections

with other research fields like high-temperature superconductivity [14], quan-

tum chemistry [15], condensed matter [16] and few-body physics [17]. This

has lead in recent years to a much cross-fertilization between these various

fields.

The achievement of the first Bose-Einstein condensation in 1995 has marked

the beginning of a rapid growth in the field of ultracold quantum gases

[18, 19, 20]. A further important development has been the cooling of atomic

Fermi gases well below the degeneracy temperature, both via direct evapo-

rative cooling of a two-fermion mixture [8, 13] and via sympathetic cooling

with a bosonic species [9, 21, 6].

The vast majority of ultracold gases experiments performed so far employ

elements from the alkali series. These atomic species are appealing for their

simplicity both from the theoretical and experimental point of view: from

the theoretical side, they exhibit simple, isotropic short-range interaction

that allows for the quantum simulation of a variety of many-body hamil-

tonians [7, 10]. Furthermore and very importantly, from the experimental

point of view their simple energy level structure provides suitable optical



transitions for the implementation of laser cooling schemes, that are easily

accessible with the exploitation of relatively unexpensive diode laser sources.

The impressive progresses made in cooling and trapping alkali atoms have

stimulated studies on more exotic species, such as Cr [22, 23], Yb [5], Sr

[24, 25], Ca [26], and more recently Dy [27] and Er [28]. Two (rather than

one) valence electrons species exhibit a rich electronic structure of singlet and

triplet states, connected by narrow intercombination lines. Such transitions

of mHz-width are appealing in optical clock experiments and for metrolog-

ical applications, and the unique properties of these elements set the basis

of recently proposed schemes of quantum simulation, especially targeted at

the investigation of quantum magnetism and spin models. Moreover, atomic

species such as Cr, Er and Dy, which exhibit a large magnetic dipole moment,

have opened the route for the investigation of many-body physics dominated

by long-ranged, anisotropic dipole-dipole interaction, which allows to explore

qualitatively new phenomena in quantum systems.

However, from the experimental point of view, bringing to quantum degen-

eracy non-alkali atoms represents a challenge. Because of their complex elec-

tronic structure, these species exhibit a wide variety of optical transitions,

whose natural linewidth spans from few tens of MHz down to mHz. Further-

more, often the wavelength of the light required for laser cooling these atomic

species falls in the blue region of the optical spectrum, for which high-power

laser diodes are not available yet. Hence, usually such species require rather

expensive laser sources (such as Ti:Sapphire lasers) that are subsequently

frequency doubled by non-linear crystals.

In this thesis, we designed, developed and characterized an unexpensive and

conceptually simple 425.5 nm blue laser source. Our setup consists of a com-

mercial diode laser that injects a home-made tapered amplifier able to deliver

up to 3 Watts of infrared light at 851 nm; this is successively frequency dou-

bled by a non-linear crystal placed inside a home-built optical cavity. In

the near future, we will employ such a blue light source for laser cooling of

Chromium atoms. Importantly, our simple and easy-to-handle system can

be equally well employed for cooling and manipulating other atomic species

such as Sr, Ca, Er, Dy, and also Yb.
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This thesis is structured as follows. In Chap.1 we discuss the theoretical

basis of the Second Harmonic Generation. Chapter 2 explains our frequency

doubling cavity design. Chapter 3 describes the optical setup employed to

amplify our master laser light and to incouple it in an optical fiber. In Chap.

4 the optical setup needed for creation of the cooling light is explained as

well as details of our locking technique. Chapter 5 shows the results obtained

for our generated 425.5nm light. Finally, we conclude giving a short outlook

on the future developments and possible improvements of our setup.
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Chapter 1

Nonlinear Optics

In this chapter we give a theoretical description of the second harmonic ge-

neration (SHG) process. In section 1.1 we explain how a second order pola-

rization in non-centrosymmetric media under strong optical fields acts like

a source of second harmonic radiation. In section 1.2 we show how this

phenomenon critically depends on the relation between the wavevector of the

incident and the second harmonic field. We will see then how to evaluate the

efficiency of the SHG process in a plane wave approach and in the physically

relevant case of Gaussian beams (sect. 1.3), and in section 1.4 we discuss

how we choose the nonlinear crystals for our experiment.

1.1 Second Harmonic Generation Theory

The interaction between a dielectric medium and an incoming light radia-

tion is generally described by the relation between the induced polarization

density ~P of the medium and the incident electric field ~E.

Linear optics considers the case in which this relation is linear, and given by:

~P = ε0χ~E (1.1)

where ε0 is the permittivity of free space and χ is the electric suscepti-

bility of the medium. In writing this equation we have assumed that the

medium is non-dispersive, homogeneous and isotropic. Under these assump-

tions the vectors ~P and ~E are parallel at each space and time position, and we

7



1.1. Second Harmonic Generation Theory 8

can therefore treat them on a component-by-component basis (the so called

“scalar approximation”).

The electric displacement field is given by ~D = ε0
~E + ~P = ε0(1 + χ) ~E; the

fields in the medium are related by the Maxwell’s equations:
~∇ · ~D = 0

~∇× ~E = −∂ ~B
∂t

~∇ · ~B = 0

~∇× ~H = ∂ ~D
∂t

(1.2)

The quantity 1 + χ is the relative dielectric constant εr, so the displacement

field can also be expressed as ~D = ε0εr ~E = ε ~E.

A nonlinear dielectric medium, on the other hand, is characterized by a non-

linear relation between ~P and ~E. For a first understanding of this nonlinear

behaviour we briefly consider the Lorentz model [36], which describes the

atom as a harmonic oscillator. The electrons interact with the nucleus with

spring-like forces, and the equation of motion of each electron under an ex-

ternal electric field is given by1:

ẍ+ γẋ+ ω2
0x = −eE/m (1.3)

where we have considered a damping force of the form γmẋ, coming from

internal collisions in the solid and radiation emission, and we have taken

~E ‖ ~x; ω0 is the characteristic frequency of the electron.

Solving this equation for the case of a monochromatic field E(t) = Eeiωt

we find the well known expression for the electron displacement from its

equilibrium position due to the electric field:

x(t) =
−e
m

1

(ω2
0 − ω2) + iωγ

E(t) (1.4)

If we denote with N the number density of dipoles, the expression of the

1This treatment can be extended to the ions in a crystal, replacing the mass and the

charge of the electron with the ion’s ones.
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ω
0 ω

Im χ

Re χ

Figure 1.1: Lorentz model of the atom; the imaginary part of χ is responsible of media

absorptions.

(linear) polarization density P (1.1) reads:

P = −eNx =
Ne2

m

1

(ω2
0 − ω2) + iωγ

E = ε0χE (1.5)

The dependence of χ on ω is illustrated in Figure 1.1. The time dependence

of P resides in E; the induced dipoles will then oscillate at the same frequency

as the electric field E.

Let us see now what happens if we introduce an additional term of the form

ax2 in the equation of motion, by considering a restoring force of the kind:

~Frest = −mω2
0x−max2 (1.6)

Now the force is nonlinear in the displacement, and a is a parameter that

characterizes the strength of such nonlinearity. Since in real situations usu-

ally the non-linear effects are small, we can treat first the ax2 term as a

perturbation. Solving the equation of motion with the perturbation theory,

at first order in x we find again the relation (1.5). For the second order we

find a displacement (hence a polarization) that is quadratic in E and that

oscillates at a frequency that is twice that of the incident field. Namely, for

a monochromatic input field of frequency ω we find [2, 3]:

x(2) =
−a(q/m)2E2

(ω2
0 − ω2 − iωγ)2(ω2

0 − 4ω2 − i2ωγ)
e−2iωt + const (1.7)
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As we will see later, this second order term represents the source of second

harmonic generation and other related phenomena.

It is possible to estimate the magnitude of the nonlinear coefficient a by

noticing that the linear and nonlinear contributions to the restoring force

are expected to become comparable when the displacement x of the electron

from its equilibrium position is approximately equal to the size of the atom

[2]. Equivalently, we can think that nonlinear effects become sizeable when E

acquires values comparable to interatomic electric fields, which are typically

∼ 105 - 108 V/m. This is the main reason for which nonlinear optics has

been experimentally explored only after the invention of laser, which allows

to reach such high values of optical fields.

One last important feature that comes out from this model concerns the

physical structure of nonlinear media. If we consider the restoring force (1.6)

as an x-derivative of the potential acting on the electron, we easily see that

a quadratic contribution in the force corresponds to a cubic term in the

potential (see Figure 1.2). Such a term is odd with respect to x, so the total

potential will no longer be symmetric. Such a potential can exist only in

non-centrosymmetric materials2.

So far we have given a qualitative and intuitive description for the develop-

ment of a nonlinear polarization. In the following we discuss a more formal

approach that will allow us to describe more quantitatively the process of

second harmonic generation. We consider the Taylor’s expansion of the po-

larization P as a function of E:

P (t) = P (1)(t) + P (2)(t) + P (3)(t) + ... =

= ε0

(
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...

) (1.8)

where χ(n) is the n-order susceptibility.

2For a centrosymmetric material only even terms are possible in equation (1.8), which

can also bring higher order nonlinear phenomena.
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Figure 1.2: Nonlinear potential for a non-centrosymmetric medium.

For an incident field generally composed of two plane waves of frequencies

ω1 and ω2

E(t) = E1e
−iω1t + E2e

−iω2t + c.c. (1.9)

the corresponding second order polarization reads:

P (2)(t) = ε0χ
(2)E2(t) = 2ε0χ

(2)(|E1|2 + |E2|2)+

+ε0χ
(2)(|E1|2e−i2ω1t + |E2|2e−i2ω2t + 2E1E

∗
2e
−i(ω1+ω2)t + 2E∗1E2e

−i(ω2−ω1)t + c.c.)

(1.10)

Here we can distinguish three different components:

• a term that is constant in time.

• two terms oscillating with frequencies given by the double of the inci-

dent frequencies.

• two terms oscillating with a frequency given by the sum and by the

difference of the incident frequencies, respectively.

Each of these components can be regarded as a source of radiation at these

frequencies.
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In fact, by combining Maxwell’s equations (1.2) we can get the well known

wave equation:

~∇2 ~En −
εr(ωn)

c2

∂ ~En
∂t2

=
1

ε0c2

∂2 ~Pn
∂2t

(1.11)

where the n index stands for different frequency components. From here

we can see that the various components of the non linear polarization term

(1.10) act like sources of electrical fields with ω = ωn.

We release now some of the assumptions we made. In particular we consider

the case of a non isotropic medium. This will complicate the formalism, but

will allow us to treat the physically relevant case of non-centrosymmetric

media. Indeed, we will see that for second harmonic generation we need to

exploit birefringence, a feature peculiar of some non isotropic crystals. In

this more general case, we cannot use the scalar approximation anymore and

the susceptibility will be no longer a scalar quantity. Namely, it will be a

vector with generally three different i, j, k components along the three spatial

directions. Consequently Eq. (1.8) reads in this case as:

Pi(t) = ε0

∑
j

χ
(1)
ij Ej + ε0

∑
jk

χ
(2)
ijkEjEk + ... (1.12)

In the most general case, we assume that we can represent both the electric

field of the incident wave and the medium polarization as the discrete sum

of a number of frequency components as:

~E(~r, t) =
∑
n

~E(ωn)e−iωnt (1.13)

~P (~r, t) =
∑
n

~P (ωn)e−iωnt (1.14)

We define then the various elements of the second order susceptibility ten-

sor χ
(2)
ijk as the constants of proportionality relating the amplitude of the

nonlinear polarization to the product of field amplitudes according to

P
(2)
i (ωn + ωm) = ε0

∑
jk

∑
(nm)

χ
(2)
ijk(ωn + ωm)Ej(ωn)Ek(ωm) (1.15)
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The notation (nm) indicates that, in performing the summation over n and

m, the sum ωn + ωm is to be held fixed, although the single ωn and ωm are

allowed to vary.

Let us now focus on the second harmonic generation (SHG). In this case we

consider the mixing of two frequency components of the same monochromatic

wave with frequency ω1, which generates a field with frequency ω2 = 2ω1.

We obtain from (1.15):

P
(2)
i (ω2) = 2εo

∑
jk

dijk(ω2 = ω1 + ω1)Ej(ω1)Ek(ω1) (1.16)

where we introduced the nonlinear coefficients:

dijk =
1

2
χ

(2)
ijk (1.17)

It can be shown [2] that considering the symmetries of χijk, the nonlinear

coefficients tensor dijk can be contracted into a 3 × 6 matrix dij, and that

for fixed directions of propagation and polarization we can equivalently use

a scalar relation for the nonlinear polarization:

P (2)(ω2) = 2ε0deffE
2(ω1) (1.18)

where deff is the “effective nonlinear coefficient” that can be calculated given

dij, the incident field polarization direction and the material dispersions [35].

For most crystals one can find in literature and directly from the manufac-

turers simple formulas for calculating deff from the angle of propagation and

the incident field polarization direction [33].

1.2 Phase Matching

As we have seen, because of nonlinearities in the atomic response, each atom

of a nonlinear medium develops an oscillating dipole moment which contains

a component at frequency 2ω1 (“second harmonic wave”), when interacting

with a strong driving field of frequency ω1 (“fundamental wave”). In our

case we will deal with an infrared laser exciting a dipole moment which will

emit in the blue. The driving laser light ensures that atoms at different
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Figure 1.3: Simple phase matching scheme: on the left the dipoles generating second

harmonic light at different positions are not in phase; on the right they are in phase and

each blue wave will interfere constructively with the others.

positions absorb and emit infrared light in phase with respect to each other.

However, this in general is not the case for the second harmonic light: the

blue light emitted further along the path inside the nonlinear medium is not

necessarily in phase with the blue light already emitted. We want then to

find a condition for which the phase is the same for the fundamental and the

second harmonic wave, in which case also the blue light adds constructively

inside the medium.

We consider now the incident wave as a plane wave propagating in the z

direction and fullfilling the Slow Varying Envelope Approximation (i.e. we

take
∣∣k ∂En

∂z

∣∣ � ∣∣∣∂2En∂z2

∣∣∣ ). Assuming the collinear case (~k1 ‖ ~k2), we obtain

from the wave equation (1.11):

dE(ω2, z)

dz
=
iω2

2deff
k2c2

|E(ω1, z)|2ei∆kz (1.19)

Here k1,2 = n(ω1,2)ω1,2

c
are the wavevectors of the fundamental and the SHG

waves inside the medium and ∆k represents the wavevector “mismatch”

∆k = 2k1 − k2. We take now the wave as propagating through a crystal

of length l (from z = 0 to z = l). In the low efficiency regime (also called

“undepleted pump regime”) we can assume the input intensity to be constant

during the propagation in the nonlinear medium. In this approximation we

obtain that the SHG field equals:

E(ω2, l) =
ω2

2deff
k2c2

|E(ω1)|2
[
ei∆kl − 1

∆k

]
(1.20)
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where we took E(ω2, 0) = 0, i.e. we assumed that there is no SHG field at

the input facet of the crystal. Correspondly, the SHG intensity reads:

I(ω2, l) =
cn(ω2)ε0

2
|E(ω2, l)|2 ∝ ω4

2d
2
eff |I(ω1)|2l2sinc2[∆kl/2]

= ω4
2d

2
eff |I(ω1)|24

sin2[∆kl/2]

(∆k)2

(1.21)

In Figure 1.4 (a) we show the function sinc2[∆kl/2] as a function of ∆k for

a fixed l; it features a narrow peak at ∆kl/2 = 0, which corresponds to the

situation of perfect phase matching ∆k = 2k1− k2 = 0. From Eq. (1.21), we

see that for perfect phase matching the second harmonic intensity increases

quadratically with the interaction length, since l2sinc2[∆kl/2] → l2 . In

contrast, whenever ∆k 6= 0, I(ω2) will feature a sinusoidal behaviour as a

function of l, with a maximum amplitude which decreases for increasing ∆k

(Figure 1.4 (b)). For a fixed ∆k 6= 0 we have in fact:

max [I(ω2, l)] ∝
1

(∆k)2
(1.22)

from which we see that the SHG maximum intensity drops lixe 1
(∆k)2

. This is

a crucial point for our purpose: in order to have a good conversion efficiency

we shall stay as close as possible to the perfect phase matching condition,

otherwise the efficiency will rapidly decrease. It is important to note that

also for the more physically relevant case of a gaussian-shaped wavefront this

trend qualitatively still holds, despite small quantitative differences (see sect.

1.3).

We will analyze the equations (1.19) and (1.21) in more detail in section

1.3. What we want to underline now is an important physical implication

of the SHG phase matching condition. If we take the momentum-frequency

relation for a photon inside a medium k = n(ω)ω
c

and we impose ∆k = 0 with

ω2 = 2ω1, we find:

2
n(ω1)ω1

c
=
n(ω2)ω2

c
⇒ n(ω1) = n(2ω1) (1.23)
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Figure 1.4: (a): sinc2(∆kL/2) for l = 15mm . (b): generated intensity for perfect

phase matching (blue), ∆k = 0.2mm−1 = ∆kFWHM (green), ∆k = 0.3mm−1 (purple),

∆k = 0.6mm−1 (red). We can see the sinusoidal behaviour with decreasing amplitude for

increasing ∆k explained in the text.

This condition is impossible to reach for an ordinary medium, where the

refractive index is a monotonically growing function of ω, as long as there

are no absorption lines nearby. Among other possibilities, such as the im-

plementation of quasi phase matching techniques [1], condition (1.23) can be

accomplished by exploiting the properties of birefringent crystals.

1.2.1 Birefringent Phase Matching

A light wave travelling through an isotropic medium experiences the same

refractive index n =
√
ε, independently on the propagation direction. In

other words, the first order tensor εij = 1 + χij is a diagonal matrix with

the same constant for the three spatial directions. This is in general not

the case for non-isotropic media, for which εij is a non-diagonal matrix.

However, in the case of non-absorbing materials, it can be shown that εij

is always symmetric [1]. Thus, it can be diagonalized with a rotation, that

corresponds to the transformation from laboratory reference frame to the

dielectric coordinates system.
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An uniaxial crystal in the dielectric coordinates system has a dielectric tensor:

εij =

 εo 0 0

0 εo 0

0 0 εe

 (1.24)

This means that in this kind of crystals two of the crystalline axes present the

same refractive index no =
√
εo, where the “o” stands for “ordinary”, while

the third axis is called optic axis (we choose it as the z axis) and presents an

“extraordinary” index ne =
√
εe. The crystal is said to be positive (negative)

if ne > no (ne < no).

For a biaxial crystal we have:

εij =

 εx 0 0

0 εy 0

0 0 εz

 (1.25)

A biaxial crystal exhibits then three different refractive indexes for each crys-

talline axis. The ordinary/extraordinary and positive/negative distinctions

are not so straight-forward for biaxial crystals but similar definitions can be

made [35].

We focus for the moment on uniaxial crystals. What we have right now

described means physically that a light wave propagating into the crystal

will experience a refractive index that depends on its polarization. In Figure

1.5 we schematically sketch the case of an unpolarized wave propagating in

the y − z plane inciding on an uniaxial crystal. In the medium we distin-

guish between the ordinary wave, with polarization direction perpendicular

to the optic axis, and the extraordinary wave, with polarization in the plane

containing the wavevector and the optic axis.

We can easily see from the figure that the electric field of an ordinary wave

always oscillates along the x axis; the propagation of such a wave is then

governed by the normal optics laws of a medium with refractive index no.

On the other hand, the electric field of an extraordinary wave will have

components both along the y axis and along the optic axis, so we may ask

ourselves what is the effective refractive index experienced by the e-wave.
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Figure 1.5: An unpolarized wave incident on a positive uniaxial crystal. The ordinary and

extraordinary components inside the crystal are separated: this phenomenon is known as

“birefringence”. In the figure is shown the simple case where the optic axis coincides with

one crystal edge.

Solving the wave equation for the extraordinary wave, we find a dispersion

relation given by:

k2

[
cos2(θ)

n2
o

+
sin2(θ)

n2
e

]
=
ω2

c2
(1.26)

where θ is the angle between ~k and the optic axis (Fig. 1.5); namely, the

inverse of the quantity in brackets can be regarded as the square of an angle-

dependent refractive index:

1

n2(θ)
=

[
cos2(θ)

n2
o

+
sin2(θ)

n2
e

]
(1.27)

One can easily verify that n(θ) reduces to ne for θ = π/2 and to no for θ = 0,

as expected from the definitions. For an e-wave the refractive index can then

be “tuned” with θ, by choosing the direction of ~k.

This is the key feature which can be exploited to reach the SHG phase match-

ing condition. Because of dispersion the condition (1.23) cannot usually be

satisfied, unless the polarization of the fundamental and of the SHG waves

is different. For a negative uniaxial crystal the direction at which the wave

enters the crystal is adjusted in such a way that n(θ, 2ω1) = no(ω1) , i.e.,

such that birefringence compensates exactly for dispersion (Figure 1.6). The

process is labeled in this case as “o-o-e” since the fundamental beam is an

o-wave and the SHG beam is an e-wave. For positive uniaxial crystals we
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have instead no(2ω1) = n(θ, ω1), and the process is labeled as “e-e-o”. For

biaxial crystals both combinations can be possible, and one will choose the

more efficient one.

0.2 0.4 0.6 0.8 1.0

1.64

1.66

1.68

1.70
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λ(μm)

n
(λ
)

Figure 1.6: Birefringent phase matching for uniaxial BBO crystal. Red line is no(λ);

blue line is ne(λ) for a phase matching angle θ = 27.5o. The phase matching condition

no(λ1) = ne(λ1/2) = 1.659 is satisfied for λ1 = 851nm.

When we exploit birefringent phase matching we have to take into account

an important effect, that is the emergence of a “walkoff” angle between the

generated and the incident waves.

In order to understand the origin of this feature, let us consider an incident

plane wave ~E = ~E0e
i(~k·~r−ωt) in an isotropic medium; from Eq. (1.2) we have:

~∇ · ~D = ε(
∂

∂x
Ex +

∂

∂y
Ey +

∂

∂z
Ez) = iε~k · ~E = 0 (1.28)

Namely, the wavevector ~k is always orthogonal to ~E (these are the so called

transverse waves).

For a non-isotropic medium, instead, the equation becomes:

~∇ · ~D =
∑
i

∂Di

∂xi
=
∑
i

εi
∂Ei
∂xi

= 0⇒ ~∇ · ~E 6= 0 (1.29)

where the index i refers to the dielectric coordinates.

The waves are in general no longer transverse; therefore the Poynting vector
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~S = ~E × ~H, associated to the energy flux of the optical wave, will be in

general no longer parallel to ~k.

This can be easily shown considering an o-wave and an e-wave propagating

in an uniaxial crystal with parallel wavevectors, like in the collinear SHG.

Let us write ~k in the dielectric coordinates in the vector form:

~k = k(0, sinθ, cosθ) (1.30)

For the o-wave the electric field ~E will be parallel to x, so we can write

~Eo = Eo(1, 0, 0) and ~Do = εoEo(1, 0, 0): in this case the wave is transverse.

For the e-wave the electric field instead will have components both along y

and z; in this case it is more convenient to write directly ~De using Eq. (1.29),

which ensures ~De ⊥ ~k, and to exploit the definition of e-wave, which ensures

zero component along the x axis. We can then write:

~De = De(0, cos(θ), −sin(θ))

⇒ ~Ee = De(0,
cos(θ)

εo
, −sin(θ)

εe
)

(1.31)

This equation shows that ~Ee is not parallel to ~De; moreover we can easily

calculate the expression for ~He to be:

~He =
cDe

n(θ)
(−1, 0, 0)

⇒ ~Se = ~Ee × ~He =
c|De|2

n(θ)
(0,

sin(θ)

εe
, −cos(θ)

εo
)

(1.32)

from which we see that the Poynting Vector is then not parallel to ~k; the

angle between them is the walkoff angle.

Figure 1.7 summarizes the various relations for the vector quantities of a

non-transverse wave; the walkoff angle ρ can be calculated from the refrac-

tive indices and angles of propagation through the crystal. What is important

for us is the fact that the energy flux of the generated e-wave in the SHG pro-

cess will propagate with a nonzero angle with respect to the incident wave,

and the overlap between them will go to zero after a certain distance. We
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Figure 1.7: Relations between ~E, ~D,~k, ~S for an e-wave. ~H is in the x direction, outgoing

from the yz plane. ρ is the walkoff angle.

will account for this in the SHG efficiency calculations.

The existence of the walkoff angle has another important effect for the experi-

mentally relevant case of gaussian wavefronts. Namely, it leads to a distortion

of the beam envelope as shown in Figure 1.8: summing the contribution of

different crystal slices to the SHG beam we obtain a beam which has no more

a pure Gaussian profile. This effect is stronger for higher ρ, and can lead to

quite elongated second harmonic beams (see Chapter 5).

We conclude this section mentioning the case of biaxial crystals. With the

convention used in Figure 1.9, we see that both for θ = π/2, 0 and for φ =

π/2, 0, the situation will reduce to the uniaxial crystals case. This is what

happens for the biaxial LBO and BIBO crystals that we use in our experiment

(see Table 1.1); for intermediate angles, the expression for the refractive index

will become more complex, and will exhibit a dependence both in θ and φ.
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Figure 1.8: Scheme of SHG contribution from different crystal slices, leading to a distortion

in the generated light profile (picture taken from [4]).

Figure 1.9: Axes frame for a biaxial crystal.
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1.3 SHG conversion efficiency η

In the previous sections we briefly described the theory of SHG, and we

outlined the importance of the phase matching condition. Here, we focus

our attention on the efficiency of the frequency doubling process, in order

to design our experimental set-up in the most convenient way; we follow the

treatment given in [2] and [29].

First of all we recall Eq (1.21) for plane waves in the perfect phase matching

condition ∆k = 0:

I(ω2, l) ∝ |I(ω1)|2l2 (1.33)

In writing it, we implicitly assumed to be in the low conversion efficiency

regime, i.e, we took the input intensity I(ω1) to be constant during the

propagation through the nonlinear medium. When the conversion efficiency

is high enough to significantly reduce the input intensity, the spatial variation

through the nonlinear crystal of the fundamental and the generated fields is

described by the following coupled equations:3

dE(ω1, z)

dz
=

2iω2
1deff
k1c2

E(ω2, z)E
∗(ω1, z)e

−i∆kz

dE(ω2, z)

dz
=

iω2
2deff
k2c2

|E(ω1, z)|2ei∆kz (1.34)

This system, together with the condition Itot = I(ω1)+I(ω2) = const, can be

solved with the definition of two adimensional real amplitudes u1(z), u2(z)

[2], related to the fields by the relation:

E(ωi, z) =

(
Itot

2niε0c

)1/2

ui(z)eiφi (1.35)

and satisfying the normalization condition:

u2
1(z) + u2

2(z) = 1 (1.36)

An analytic solution for the perfect phase matching case is given by:

u1(ζ) = sech(ζ) (1.37)

u2(ζ) = tanh(ζ) (1.38)

3we are still in the Slow Varying Envelope approximation.
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Figure 1.10: SHG conversion efficiency vs. crystal length in “characteristic length” units

(Eq. (1.39)). Solid blue and red lines are u1 and u2 respectively. Green dashed line is the

conversion efficiency η of Eq. (1.40); red dashed line is the efficiency in the low conversion

efficiency regime (Eq(1.33)).

where ζ = z/l′ and l′ is a “characteristic length” defined as:

l′ =
c
√
n(ω1)n(ω2)

2ω1deff |E(ω1, 0)|
(1.39)

In Figure 1.10 we report u1(ζ), u2(ζ) and the conversion efficiency defined

as

η =
u2(z)2

u1(0)2
(1.40)

We notice that in the low efficiency regime (η < 10%) η grows quadratically

(red dashed line) with z, as expected from equation (1.33); then, for long

crystals, it approaches one, meaning that the input light is totally converted

into the second harmonic beam.

From Eq. (1.33) and from the quadratic dependence of I(ω2) on I(ω1), it

is apparent that the efficiency of the SHG can be increased significantly

if tightly focussed, rather than collimated beams, are employed. In this

case, what derived so far for plane waves must be modified, in order to

correctly account for the spatial variation of the beams propagating through

the crystal.
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The formal treatment of SHG for Gaussian beams was made by Boyd and

Kleinmann [29]. The basic idea is to divide the crystal into a sequence of

infinitesimal slabs of thickness dz: the total second harmonic field outside

the crystal is obtained by integrating the contribution of single slabs over the

crystal length l, taking their relative phase into account. Without entering

into the details of the calculation, we report here only the final expression

for the generated power:

P2ω = KP 2
ω lk1e

−αlh(σ,B, κ, ξ, µ) (1.41)

where

• K =
2ω2

1

πc3ε0n2(ω1)n(ω2)
d2
eff

• Pω is the total incoming power

• k1 is the fundamental wavevector inside the crystal

• α = α(ω1) + α(ω2)/2 is the “total” absorption coefficient per length

unit of the crystal

The function h(σ,B, κ, ξ, µ) is defined as:

h(σ,B, κ, ξ, µ) =
1

4ξ

∫∫ ξ(1+µ)

−ξ(1−µ)

dτdτ ′
e[iσ(τ−τ ′)−B

2

ξ
(τ−τ ′)2−κ(τ+τ ′)]

(1 + iτ)(1− iτ ′)
(1.42)

with parameters:

σ =
1

2
b∆k

B =
ρ
√
lk1

2

ξ = l/b

µ = (l − 2f)/l

κ =
1

2
αb

(1.43)

Finally, b = 2z0 = 2π
w2

0

λ
where z0 is the Rayleigh length of the fundamental

beam, f is the coordinate of its focus with respect to the crystal input facet,

and ρ is the walkoff angle (see Figure 1.11).
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Figure 1.11: Scheme of fundamental and SHG beams inside the crystal. The blue dashed

arrow indicates the propagation axis of the generated beam.

It is important to stress that the absorption coefficient α depends only on the

crystal properties, while deff , ρ, k1, n(ω1), n(ω2) depend also on the direction

in which fields propagate inside the medium. These quantities are then fixed

once the phase matching condition is defined (sect. 1.2.1). The crystal

length is taken here as a fixed parameter. On the other hand, σ, ξ, µ are all

parameters that can be adjusted to maximize h(σ,B, κ, ξ, µ). In Figure 1.12

we report the original plot of the function hm(B, ξ) = h(σm, B, ξ, κ = µ = 0)

of the Boyd-Kleinmann paper, where σm is the optimum σ. µ, κ are taken

equal to zero, i.e. the focus is assumed to be at half the crystal length, and

absorption are neglected.

Figure 1.12: Boyd-Kleinmann function hm(B, ξ) for different B parameters. Picture taken

from [29].
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We can see from the figure that:

• hm(B, ξ) has always one single maximum.

• the maximum of hm(B, ξ), hence the maximum efficiency, decreases for

increasing B, i.e. for greater walkoff angles.

It is worth also noticing that, based on the plane wave approximation de-

scribed in the previous section, we would expect the optimum “mismatch

parameter” σ to be equal to zero, corresponding to what we called “perfect

phase matching”. In contrast this reasoning is not perfectly accurate for the

case of focused gaussian beams, which can be considered as containing plane

waves having a range of propagation angles, i.e. having wave vectors “spread

out” over a cone. Figure 1.13 shows h(σ, ξ, B, κ = µ = 0) as a function of σ

for fixed ξ and for κ = µ = 0: we can see that the maximum is reached for

σ > 0, hence for ∆k > 0 4.
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Figure 1.13: h(σ, ξ) vs ξσ; the dashed line is the function 10× enlarged.

4This mismatch is a small correction to ∆k = 0, and corresponds to a ∆n = n(ω1) −
n(ω2) ≈ 10−5 to 10−6; it will be achieved experimentally by tilting the crystal or by

varying its temperature.
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1.4 Crystals choice and evaluation of η

So far we described the theory concerning the SHG process, from a simplified

plane wave approach to the realistic case of focused gaussian beam.

From what we have described, the best choice will be obviously to use a

crystal with high nonlinear coefficient deff , small walkoff angle and small

absorption coefficient. Actually, the choice of the crystal results as a com-

promise among these requests, and it also depends on other features as for

example the power damage threshold of the crystal, the crystal quality and

the available dimensions. In this work, where we want to obtain via SHG

blue laser light at 425.5nm, we focus our attention on 3 types of crystals:

“BBO” (BaB2O4), “LBO” (LiB3O5) and “BIBO”(BiB3O6): BBO is an uni-

axial crystal, while both LBO and BIBO are biaxial.

We developed a Mathematica code which allows us to evaluate all the quanti-

ties of interest described in previous sections (see Appendix 1). In particular,

the first thing we find is the propagation and polarization angles to fulfill the

phase matching condition, from which we find the nonlinear effective coeffi-

cient deff (Eq. (1.18)) with the formulas:

deffLBO = d32 cosφ (1.44)

deffBBO = d31 sin θ − d22 cos θ (1.45)

For the BIBO crystal the relation is rather more complicated and we took the

value of deff using the SNLO software (see Appendix A). Then we proceed

for estimating the efficiency η = P2ω/Pω of the SHG process for a given Pω

following these steps:

1. Set the crystal length

2. Calculate B given by Eq. (1.43)

3. Find the values of σmax and ξmax which maximize h(σ,B, κ, ξ, µ)

4. Calculate η from Eq. (1.41)
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The crystal length has to be optimized numerically in order to obtain the

maximum SHG efficiency. This optimization process will be explained in

section 2.6 (see Fig. 2.7). Here we can assume it is a fixed input parameter.

In Table 1.1 we summarize the specifications of our chosen crystals for SHG

at λ1 = 851nm.

BBO LBO BIBO

deff (pm/V ) 2.01 0.78 3.60

ρ (mrad) 65.0 14.85 52.7

α(ω1)(%cm−1) 0.2 0.1 < 0.1

α(ω2)(%cm−1) 0.5 0.5 < 0.1

n(ω1) = n(ω2) 1.66 1.61 1.85

θ 27.5o 90o 155.3o

ϕ −−− 27o 90o

Table 1.1: Specifications of BBO, LBO, BIBO for SHG at λ1 = 851nm. The values are

obtained both from our simulations and from a survey of different numbers coming from

manufacturers and papers [33].

LBO and BBO are commonly used crystals for SHG in the blue range; BIBO

is a more recently developed crystal, with very high deff , and therefore po-

tentially very interesting. However, a few recents papers [43, 44] report about

some instabilities in the SHG process for high values of incident power.

We can calculate now all the quantities of interest for our crystals; we report

them in Table 1.2 for 1.5W of incident power, a value close to the maximum

we can achieve amplifying our master laser (see chapter 3).

In Figure 1.14 we plot the single-pass efficiencies as a function of ξ.

Here one can see that the maximum efficiencies are very low, of the order

of 10−4 − 10−5. This is the reason why we will need the other fundamental

element of our work: the frequency doubling cavity, which will ensure high

incident powers on the crystal, ∼ 100 times the input power value (see sect.

2.4). Since the SHG beam power grows quadratically with the fundamental

beam power (Eq. (1.41)), the cavity will allow us to increase the overall
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efficiency by a factor 103 − 104.

BBO LBO BIBO

Length (mm) 12 15 10

B 12.5 3.1 9.7

ξm 1.43 1.55 1.45

σm 0.75 0.75 0.74

hm 0.05 0.2 0.07

w0(µm) 26.1 28.5 22.7

z0(mm) 4.2 4.8 3.4

η 9.6 ∗ 10−5 7.2 ∗ 10−5 2.7 ∗ 10−4

Table 1.2: Optimized parameters for BBO, LBO and BIBO crystals for 1.5W incident

power, obtained with our Mathematica code.

BIBO

BBO

LBO

10-2 0.1 1 10 100

5.×10-6

1.×10-5

5.×10-5

1.×10-4

ξ

η

Figure 1.14: Calculated efficiencies for BBO (blue; B=16), LBO (red; B=3.6), BIBO

(green; B=13.8) as a function of ξ for 1.5W input power.



Chapter 2

Frequency Doubling Cavity

The cavity is a fundamental element for increasing the efficiency of the SHG

process, providing a power on the crystal up to ∼ 100 times the laser power

at the cavity input. We choose to build a “bow-tie” ring cavity: it is a

travelling wave cavity, that provides a full spatial exploiting of the crystal

(in contrast to what happens with linear standing wave cavities). In this

chapter we describe first the cavity design, then we present the calculation

for the power enhancement factor and for the cavity spectrum.

2.1 Cavity Design

The cavity design we have chosen is sketched in Figure 2.1. It is a symmetric

bow-tie cavity composed of two planar mirrors (M1, M2) and two spherical

mirrors (M3, M4) with radius of curvature of 100mm. The light is coupled

into the cavity at M1, and the crystal is placed between the spherical mirrors.

As we will see later, the waist inside the crystal sensitively depends on the

relative distance between M4 and M3, and therefore it can be easily adjusted.

M4 is a dichroic mirror, with high reflectivity in the infrared region and high

transmittivity in the visible; this allows the blue light to leave the cavity

after it is generated inside the crystal. Therefore, M4 represents the output

of the cavity for the 425.5nm radiation.

As shown in the figure, the blue light is generated only in one direction, in

31
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Figure 2.1: Bow-tie cavity scheme; dashed line is the cavity symmetry axis. The incoupling

mirror M1 reflectivity is chosen to match the losses and conversion efficiency (Eq. (2.30)),

and the other mirrors have high reflectivity (> 99.9%) at 850nm and low reflectivity

(< 5%) for the 425nm light. For details see chapter 4.

contrast to what happens in linear cavities where light is emitted from both

sides of the crystal.

In general, the properties of a gaussian beam at a particular point z along

its axis can be encoded in the complex beam parameter q(z) [1]. This can

be calculated from the beam’s wavelength λ0, the radius of curvature R(z)

of the wavefront, and the beam waist w(z) according to:

1

q(z)
=

1

R(z)
− i λ

πw2(z)
(2.1)

We summarize below the expression of the principal beam parameters, which

will be useful in the following.

z0 =
πw2

0

λ

w(z) = w0

√
1 +

(
z

z0

)2

(2.2)

R(z) = z

[
1 +

(z0

z

)2
]

where z0 is known as the Rayleigh length.

The propagation of a Gaussian beam in the presence of optical elements
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is described by the well known ABCD law, which is based on ray transfer

matrices. A Gaussian beam, after passing through an optical element, will

change its properties in agreement with:

q2 =
Aq1 +B

Cq1 +D
(2.3)

Here q1 and q2 are the complex beam parameter in front of and behind the

optical element respectively. M =

[
A B

C D

]
is the ray transfer matrix of

the optical element, defined from the relation:(
y2

y′2

)
=

[
A B

C D

](
y1

y′1

)
(2.4)

where y is the coordinate of the point of incidence of the ray on the element,

taken with respect to the element optical axis, and y′ is the tangent of the

angle between the ray and the optical axis1. The indexes 1 and 2 are respec-

tively for incident and exiting rays. When we apply ray matrices to Gaussian

beams, the beam axis plays the role of the ray direction.

The important point of the transfer matrices formalism is that the propaga-

tion of a beam through a succession of optical elements can be described via

Eq. (2.4) using a matrix that is the product of single transfer matrices. The

round trip of our cavity can then be described with a single, easy-to-calculate

matrix; the properties of the beam propagating inside the cavity will come

out directly using the ABCD law with the “total” round trip matrix.

A stable solution for the beam inside the cavity will in fact remain unchanged

after a round trip; i.e. it will satisfy the condition:

q2 =
Aq1 +B

Cq1 +D
= q1 (2.5)

where A, B, C, D are the elements of the round trip matrix.

1In the paraxial approximation we approximate y′ directly with the angle. Sometimes

a different convention is used, where the slopes are multiplied by the refractive index. The

matrices in Table 1 change accordingly.
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Table 2.1: Transfer matrices for the principal optical elements.

To calculate our round trip matrix we need then to know the transfer matrices

of free space, planar mirrors, curved mirrors and planar boundaries (for the

crystal/air passage). These matrices can be evaluated from the definition

(2.3) and we report them in the Table 2.1.

We show now as an example how to calculate the matrix corresponding to

half a cavity round trip, taking the starting point in the center of the crystal.

With reference to Figure 2.2, we divide the propagation in five steps:

1. Propagation inside the crystal for l/2

2. Crossing of crystal/air interface

3. Free space propagation for (Z − l)/2

4. Reflection from spherical mirror M4

5. Free space propagation for (L− Z)/2

In step 5 we took into account that the reflection from the planar mirror M1

corresponds to the identity matrix (see Table 2.1).
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Figure 2.2: Half-cavity propagation scheme; round trip distance=L.

The half-round trip ray matrix is then calculated as:

Mhalf trip = M5 ·M4 ·M3 ·M2 ·M1 =

=

[
1 (L− Z)/2

0 1

]
·

[
1 0
2
r

1

]
·

[
1 (Z − l)/2
0 1

]
·

[
1 0

0 n

]
·

[
1 l/2

0 1

]
(2.6)

where n is the refractive index of the crystal (we take nair = 1). We find

in an analogous way the total round trip matrix. We calculate two different

versions of the round trip matrix: one taking z = 0 in the center of spherical

mirrors arm, the other one taking z = 0 in the center of the planar mirrors

arm. This is for the reason that we expect the cavity beam to have two foci

in those positions. Requiring the condition (2.5) to be satisfied for any of

these matrices we can calculate all the parameters of the cavity beam.

2.2 Cavity Spectrum

In this section we explain how we calculate the cavity spectrum. It can

be shown [1] that a complete orthonormal basis for describing the intensity
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profile of an arbitrary propagating beam is given by the so-called Gauss-

Hermite Modes TEMmq defined as:

TEMmq ∝ Hm

( √
2

w(z)
x

)
Hq

( √
2

w(z)
y

)
e
−x

2+y2

w(z)2 (2.7)

Where Hm are the Hermite polynomials:

Hm(x) = (−1)mex
2 dm

dxm
e−x

2

(2.8)

For our purposes we want to couple all the input power to the so-called

longitudinal TEM00 cavity mode which has a pure Gaussian profile and the

smallest size among all possible modes. If some of the power is coupled

to higher-order (so-called transverse) modes the SHG efficiency is reduced.

The power of these modes is in fact distributed in a spatial pattern of light

and dark zones (see fig. 4.3): the SHG process for transverse modes happens

then in different crystal regions, leading to a reduced intensity and conversion

efficiency (see Eq. (1.41)) and to a strongly distorted profile of the blue beam.

A Gauss-Hermite mode propagating in a medium for a distance z accumulates

a phase along its propagation axes given by [1, 2]:

φ(z) = kz + k
x2 + y2

2R(z)
− (m+ q + 1)ζ(z) (2.9)

The term

ζ(z) = arctan

(
z

z0

)
(2.10)

is known as the “Gouy phase” and it can be seen as the phase difference of

a Gaussian beam with respect to a plane wave. The resonant modes of the

cavity, hence the cavity spectrum, are set by the condition:

φtrip = 2πp p integer (2.11)

i.e. imposing that their round trip reflections interfere constructively. The

term kz in Eq. (2.9) corresponds to the phase of a plane wave. To calculate

this term for our cavity round trip we have to consider both the propagation
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inside the crystal (of refractive index n) for a length l, and in the air (nair = 1)

for a length L− l. We can easily get:

φtrip =
2πν

c
(L+ l(n− 1))− (m+ q + 1)ζ(L) (2.12)

For the round trip Gouy phase ζ(L) we have to remember the presence of

two foci inside the cavity with different Rayleigh lengths z0 (see Sect. 2.1).

Because z0 enters in the definition (2.10), we have to think our beam as

composed of two beams with different Rayleigh lengths meeting at the curved

mirrors edges with the same wavefront; we calculate the phase separately for

these fictitious beams and we sum them to find ζ(L).

Let us then consider for simplicity half a round trip like in Figure 2.2 and

let us split the beam in two: one first beam with focus inside the center of

the crystal, waist w01, propagating for a distance Z/2; the other with the

focus in the center of the planar mirrors arm, waist w02, propagating for a

distance (L−Z)/2. The Gouy phase of half a round trip is the sum of these

contributions:

ζ(L/2) = arctan

[
Z

2z01

]
+ arctan

[
L− Z
2z02

]
(2.13)

We obtain then for the total round trip phase:

φtrip =
2πν

c
(L+ l(n− 1))− 2(m+ q + 1)ζ(L/2) (2.14)

where we have used for the total Gouy phase ζ(L) = 2ζ(L/2).

With this relation we are now able to calculate the cavity spectrum. From

the condition (2.11) we find the resonance frequencies of the cavity to be:

νpmq =
c

L+ l(n− 1)

(
p+ (m+ q + 1)

ζ(L)

π

)
(2.15)

from which we can see that transverse modes with same m+ q value are de-

generate in frequency. The free spectral range (FSR), defined as the distance

between two successive longitudinal modes, is simply calculated as:

FSR =
c

L+ l(n− 1)
(2.16)
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The frequency spacing ∆νT between two adjacent transverse modes is calcu-

lated from equation (2.15) taking the same p and setting m2+q2 = m1+q1+1;

in this way we find:

∆νT = FSR
ζ(L)

π
(2.17)

We conclude this section reminding that what written so far holds for ideal

cavities. For a real cavity, inhomogeneities in the beam propagation along

the horizontal and the vertical axes can lead to different effective optical

lengths, thus to slightly different resonant frequencies for transverse modes

of the same order (see Sect. 5.1.1).

2.3 Finesse

Another important parameter for the cavity characterization is the finesse

F , defined as the ratio between the free spectral range and the TEM00 mode

linewidth:

F =
FSR

∆ν
(2.18)

This parameter depends only on the cavity losses, which are given in our

case by the mirror reflectivities, the crystal losses and the SHG process. n

expression for ∆ν can be found with an analysis of the interference of multiple

reflected beams inside the cavity [4].

Let us first consider the simple case of a linear cavity: with reference to

Figure 2.3, it is straightforward to obtain for the internal field:

Ecav = Eint1

∞∑
n=0

(r1r2e
2ikd)n = Ein

t1
1− r1r2e2ikd

(2.19)

where ri, ti are the mirrors amplitude reflection and transmission coefficients.

Evaluating the square modulus of eq. (2.19) the following relation for the

power inside the cavity is obtained:

Pcav = Pin
T1

(1−
√
R1R2)2 + 4

√
R1R2sin2(φ

2
)

(2.20)

where Ri = |ri|2, Ti = |ti|2, and φ = 2kd is the round trip phase.
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Figure 2.3: Linear cavity scheme. The multiple reflections from the mirrors interfere each

others, leading to Eq. 2.19

.

The linewidth of the cavity mode is obtained by the phase difference ∆φFWHM

corresponding to the FWHM (full-width-half-maximum) of the Lorentzian

curve described by Eq. (2.20):

∆φFWHM = 4arcsin

(
1−
√
R1R2

2(R1R2)1/4

)
(2.21)

Since for a given cavity length the phase difference is directly related to a

frequency difference as:

∆φ = 2∆kd = 4π
∆ν

c
d = 2π

∆ν

FSR
(2.22)

By inserting Eq. (2.21) into Eq. (2.22), and given the definition (2.18) we

find:

F =
π

2arcsin
(

1−
√
R1R2

2(R1R2)1/4

) ∼ π(R1R2)1/4

1−
√
R1R2

(2.23)

where we approximate arcsinα ∼ α, which is fully valid since we are consid-

ering high reflectivity mirrors (Ri ≥ 0.98).

The expression for the bow-tie cavity can be found with the same calculations,

with the only difference that we have to consider the presence of 4 mirrors.

We have for this case:

F ∼ π(RT )1/4

1−
√
RT

(2.24)

where RT =
∏4

i=1Ri. From Eq. (2.24) and from the definition (2.18) we

straightforwardly obtain the linewidth:

∆ν = FSR
1−
√
RT

π(RT )1/4
(2.25)
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Figure 2.4: Normalized cavity power Pcav of eq. (2.20) for different values of mirrors

reflectivities. We can see the ratio between the FSR and the linewidth of the peaks (i.e.

the Finesse) is getting smaller for lower reflectivities.

When we consider the cavity with the SHG crystal in it, the finesse is reduced

both for the losses Vc due to crystal absorption and reflection, and for the

losses η due to the SHG (single pass) process. The equation for the power of

the fundamental beam inside the cavity becomes then

Pcav = Pin
T1

(1−
√
RT (1− Vc)(1− η))2 + 4

√
RT (1− Vc)(1− η)sin2(φ

2
)

(2.26)

which is the same of Eq. (2.20), replacing RT → RT (1 − Vc)(1 − η). By

following the procedure described above, we find for this case a finesse F ′

and a linewidht ∆ν ′:

F ′ ∼ π(RT (1− Vc)(1− η))1/4

1−
√
RT (1− Vc)(1− η)

(2.27)

∆ν ′ = FSR
1−

√
RT (1− Vc)(1− η)

π(RT (1− Vc)(1− η))1/4
(2.28)

Solving Eq. (2.27) or Eq. (2.28) with respect to η is possible to estimate the

single pass SHG efficiency.



2.4. Power Enhancement 41

2.4 Power Enhancement

The cavity allows to store high optical power, which is fundamental to obtain

a significant increase in the SHG conversion efficiency. When performing the

calculations of the power inside the cavity, we have to consider the fact that

the cavity power is affected by losses, that losses depend on the SHG (single

pass) conversion efficiency, and that the efficiency depends on the power

incident on the crystal. We need then an iterative process to find the steady

amount of power within the cavity.

Ref. [30] provides a numerical analysis of the problem based on the Boyd-

Kleinmann theory (sect. 1.3). This analysis starts assuming a value of the

resonant enhancement factor ε = Pcav
Pin

of the ring cavity given by Eq. (2.26),

evaluated at resonance (φ = 0):

ε =
1−R1

(1−
√

(1− Vc)(1− η)R1R3
HR)2

(2.29)

where we take M2, M3, M4 (Fig. 2.1) to be equal high reflectivity mirrors

(RHR > 0.99). Maximizing Eq. (2.29) with respect to R1 we obtain the

optimum input mirror reflectivity and cavity enhancement:

Ropt
1 = (1− Vc)(1− η)R3

HR

εopt =
1

1−Ropt
1

(2.30)

We choose then R1 in accordance with this value, using for η the value found

with the iterative process we describe in the Section 2.6.

2.5 Cavity Stability

We report now some consideration about the cavity stability. Equation (2.15)

is often written as:

νqmn = FSR

(
p+ (m+ q + 1)

cos−1(±√g1g2)

π

)
(2.31)

where

g1 = 1− L− Z
r

, g2 = 1− Z

r
(2.32)
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and r is the radius of curvature of the spherical mirrors. These parameters

are important to understand whether our cavity is stable. From the ABCD

law, which gives imaginary waists outside the stable region, one can define a

stability criterion [1]:

0 ≤ g1g2 ≤ 1 (2.33)

When this condition is not satisfied the cavity does not produce periodic

refocussing of the intracavity beam, i.e. there are no stable solutions.

2.6 Our cavity

We report now the experimentally relevant parameters calculated on the

basis of what explained in the previous sections.

Cavity Design

We see from Table 1.2 of section 1.4 that the waists we want to have inside

the different kinds of crystal range between ∼ 23µm and ∼ 29µm. With a

Mathematica code (see Appendix A) we can easily modify the cavity parame-

ters in order to control the beam waist inside the crystal. Using mirrors with

100 mm radius of curvature we can obtain the optimal waists for example

by setting L − Z = 450 mm and Z = 107 to 109 mm. These are indicative

values useful to start setting up the cavity; what we will experimentally do

is to adjust the different parameters like mirrors relative distances, crystal

angle etc. in order to find the maximum output power in the most stable

configuration.

Cavity Spectrum

In Figure 2.5 we report an example of the calculated spectrum of our cavity

with the LBO crystal for L = 557mm and Z = 107mm, on the basis of what

we discussed above.

The red line is the TEM00 mode, i.e. the frequency ν1,0,0; next we see the

higher order transverse modes. The transverse mode nearest to the TEM00



2.6. Our cavity 43

ΔνT    

Δνmin

FSR

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

f (MHz)

sp
ec

tr
um

Figure 2.5: Calculated cavity spectrum for the LBO crystal. Only the central wavelengths

of the first 7 modes are plotted. The increasing modes are ordered in decreasing height,

i.e. the red highest mode is the TEM00, the orange is the TEM10/TEM01 and so on.

The red dashed line indicates the FSR; we can see transverse modes belonging to different

longitudinal modes overlapping.

is a third order mode (m + n = 3) overlapping from a different longitudinal

mode; the distance between them is ∆νmin ∼ 62MHz, and the Free Spectral

Range is ' 529MHz. We find similar values for the other crystals. At the

beginning of section 2.5 we said we wanted to avoid the coupling of the input

light with other modes than the longitudinal TEM00 mode. This requirement

is satisfied if:

1. the linewidth ∆νmaster of the master laser light injecting the cavity is

narrower than ∆νmin

2. the linewidth ∆ν of the cavity modes is narrower than ∆νmin

The first point in surely satisfied, since we will use a laser with a ∆νmaster <

1MHz. The second point is also satisfied, because we estimate a mode

linewidth of ' 2MHz (Eq. (2.28)). We know actually that we have to keep

free a wider spectral zone, of ' 12.5MHz, for the cavity locking (see chapter

4), but this does not represent a problem since we have ∆φmin > 12.5MHz.
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Power Enhancement and Optimal Crystal Length

The power enhancement factor is calculated with an iterative process using

a Mathematica program (Appendix A) that works as follows: first it cal-

culates the waist of the beam inside the crystal for a given crystal length,

corresponding to the optimum focusing parameter ξ; then we give as fixed

input parameters the cavity input power Pin, Vc and mirrors reflectivities.

The program finds the cavity power for an initial ε0 that we reasonably esti-

mate a priori as order of magnitude. Then the program calculates from Eq.

(2.29) the losses corresponding to ε0 and recalculates ε. The process goes on

until it converges. We underline that the cavity power will not grow linearly

with Pin: the power enhancement factor ε is in fact not a constant value.

The cavity losses due to the term η will grow for higher powers, reducing the

power enhancement (Figure 2.6). Both these effects are stronger for higher

cavity finesses.
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(a) Cavity power enhancement ε vs. Pin.
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(b) Cavity power Pcav vs. Pin.

Figure 2.6: Calculated values for the ε and Pcav.

With our code we obtain for the LBO crystal an enhancement factor ε = 74

for RHR = 0.9993, RM1 = 0.98 and Pin = 1W , a value close to the maximum

power we will inject into the cavity. The incident power on the crystal is then

Pcav = εPin = 74W , leading to ≈ 423mW of blue light (η = 0.005). The

“total” efficiency of the SHG process within the cavity, given by

ηtot = Pblue/Pin = ε ∗ η (2.34)
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Figure 2.7: Total efficiency as a function of crystal lengths for BBO, BIBO, LBO, for

different values of the total absorption coefficient (0.1, 0.2). Circles show our chosen

lenght.

is in this case ∼ 42%. For BBO we find similar values, while for BIBO we

have ηtot ∼ 61%. If we compare this value with the single pass process effi-

ciency given in section 1.4 we can see an increase by a factor 103.

The other important parameter we can optimize with this program is the

crystal length l. Varying the crystal length leads both to a variation in the

absorption Vc and in η; we can find then the optimal crystal length as the

one maximizing ηtot (see Figure 2.7). We can see all the maxima are for l

between 10 and 15mm; we choose then to use a length of 15mm for the LBO,

12mm for the BBO and 10mm for BIBO.

Cavity Stability

Our cavity works at the edge of the stability region; with our values for L

and Z we find g1g2 = 0.24. In Figure 2.8 (a) we can see then what happens

in the cavity spectrum when we change Z by a few millimeters: the modes

get closer to each other for negative values of dz, until odd and even modes

become degenerate and spaced of FSR/2 for a value Z ∼ 104.8mm. This

is the so-called “confocal configuration”; below this value the cavity is not

stable anymore.

When getting too close to the confocal configuration we will reach a point
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where some power starts to couple with transverse modes, i.e. the condition

∆ν,∆νmaster < ∆φmin doesn’t hold anymore. In figure 2.8 (b) we can see

how the cavity spectrum is modified varying the total cavity length main-

taining Z = 107mm: we can see the spectrum is much less sensitive to this

variation. Varying Z has another important effect, shown in figure 2.8 (c),

that is a significant variation of the waist inside the crystal: this is a relevant

point since the conversion efficiency has a strong dependence on the focusing

parameter ξ, as discussed in sect. 1.3. In our cavity design we have then to

take into account this critical role of Z.
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Figure 2.8: Cavity spectrum for variations of (a) Z and (b) L with respect to Z = 107mm

and L = 557mm (b). The intersection of a horizontal line at a given value dZ or dL with

the colored curves gives the frequency of higher order modes; the red dashed line indicates

the FSR. (c): waist inside the crystal for a variation of Z with respect to Z = 107mm.



Chapter 3

Infrared Light

In this chapter we explain how we produce and manipulate the infrared light

at λ = 851nm that we inject into the frequency doubling cavity. The process

can be divided in two steps: first, the power amplification of our master laser

light, then the coupling into an optical fiber, whose output will be injected

into the cavity.

3.1 Experimental Setup

In Figure 3.1 we represent the experimental setup of the light source and

frequency doubling cavity. The 851nm laser source is a DL Pro from Toptica;

it is an extended-cavity laser diode with tunable wavelength, and maximum

output power of 170mW. For our purposes, we need to increase the infrared

power to ≈ 3W in order to obtain 500 to 800mW of blue power. In fact, we

expect a coupling efficiency of ∼ 60% for the infrared light into the fiber (see

section 3.1.2), and a conversion efficiency of about 45% (see section 2.4). In

order to obtain such a high power we use a Tapered Amplifier.

3.1.1 The Tapered Amplifier

As suggested by the name, a Tapered Amplifier (TA in the following) is a

semiconductor device which has a (lateral) tapered gain region. This device

can in principle work both as an amplifier or as a laser, depending upon how

48
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Figure 3.1: Scheme of the infrared light setup. Before the input collimator COLLIN there

is the part designed for the amplification of the master laser light. The light outgoing

from COLLOUT is coupled into the cavity described in sect. 2.1. PBS: Polarizing Beam

Splitter; TA: Tapered Amplifier; OI: Optical Isolator. The cavity set up is described in

details in chapter 4.

the input and output facets are coated, to provide either small or large facet

reflectivities. Population inversion in the TA medium is achieved through

electrical pumping. In order to obtain a uniform pumping the thickness of

the chip has to be constant over the length of the TA.

The design of the TA consists of two sections monolithically integrated on

one chip: an index-guided ridge-waveguide, and a gain-guided broad pumped

area, designed to obtain high output power. As light propagates from the

narrow end of the taper to the large end, the input beam expands laterally,

owing to diffraction, and thereby fills the expanding cross-section of the de-

vice. If we consider e.g. a Gaussian beam at the input facet, it is easy to

see that as the beam propagates it becomes more and more uniform in lat-
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eral profile and eventually approaches the top-hat distribution. This occurs

because the gain along the central axis of the tapered region saturates first

because of the larger initial intensity in the centre of the beam. Hence, the

edges experience higher gain until the whole wavefront saturates to a nearly

uniform intensity. Of course, current spreading at the outer edges of the

taper, diffusion of the carriers, non-linear effects in the gain medium, ther-

mal effects and non-uniform current injection make the real beam description

much more complicated, as we will see later.

(a) (b)

Figure 3.2: (a): schematic representation of the TA. (b): real image of the TA chip m2k

TA-0850-3000.

The TA we use is the GaAs-based device TA-0850-3000 from m2k Laser; the

length of the tapered region is 4.3 mm; the output aperture is 256µm wide

and the input aperture width is ≈ 3µm; the full angle of the taper is 6o.

In figure 3.2(a) we can see the cavity-spoiling elements, consisting of grooves

etched down through the active region in the ridge-section, and angled with

respect to the axis of the tapered structure to deflect and scatter undesired

modes with wavefronts parallel to the two facets.

The thermal stabilization of the TA is a very important point; since the

refractive index of the gain medium increases with increasing temperature,

thermal gradients will tend to focus the beam and hence promote filaments

formation and beam instability. Thermal control is achieved with a Peltier

element, put in contact with the copper basis where the TA is housed.
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Figure 3.3: TA housing as seen from the output side (left) and from the top (right). We

can see LOUT and the electrical connections for the pumping current (down) and for the

Peltier cell (up). The Peltier element is placed between the copper basis and the aluminium

housing.

The features of the TA outgoing beam depend on several parameters. Con-

cerning the beam shape and propagation, we can immediately notice that

the beam will be elliptic. In a first approximation we can in fact consider

the output facet of the TA as the focus of a beam, with waists w0x,y in the

horizontal and vertical directions given by the dimensions of the output aper-

ture. This will lead to different divergence angles θx,y = λ
πw0x,y

during the

free-space propagation (see Fig. 3.4).

The output power of the beam, once the injection is optimized (see next

section), will mostly depend on three parameters (Fig. 3.5):

• The pumping current

• The input power

• The chip temperature

In Fig. 3.5(a) we can see the output power vs. pumping current, with a

threshold around 1.5A; we also see that we can reach an amplification factor

of ≈ 103. In Fig. 3.5(b) we can see the output power vs. input power. We see
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Figure 3.4: Propagation of an elliptical beam; the beam shape changes as the beam

propagates.

that the output approximately grows linearly until it starts to saturate for

an input power of ≈ 30mW . In Fig. 3.5(c) the temperature dependence is

shown. For a lower temperature the power slightly increases, but we cannot

arbitrarily decrease the temperature since below 16 − 18oC (depending on

the room temperature and humidity) we get condensation of water on the

cold surfaces which might damage the TA chip.

TA Injection Procedure

We describe now the procedure for optimizing the injection of the TA in

order to have the highest power amplification.

We first shape properly the input beam; as we have noted before, the chip

input aperture is a square of side l ≈ 3µm; to optimize the input coupling

we want then to focus our beam at the TA aperture with approximate waists

w0x,y ≤ l/2. Since the input beam is roughly collimated we can use simplified

relations for the the beam propagation through a thin lens; in our calculations

we use then the relation:

w′0 =
λf

πw0

(3.1)

where w0 and w′0 are respectively the waist of the collimated beam before

the lens and the waist of the beam at the lens focus. The telescope com-

posed by L1 and L2 in Fig. (3.1) first expand the DL Pro beam by a factor
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pumping currents. Input power: 30mW.

Figure 3.5: Tapered Amplifier output power dependencies.
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2 (f1 = 50mm, f2 = 100mm). We choose then the input lens LIN with

focal length fIN = 3mm; using equation (3.1) we calculate then a waist

in the focus of ≈ 1.5µm. Since the master laser beam is slightly elliptical

(w0x ≈ 320µm, w0y ≈ 230µm) we expect small mismatches in the focus

along horizontal and vertical directions.

To optimize the TA injection we proceed as following: we provide some cur-

rent to the TA, high enough to observe the spontaneous emission of the active

medium; this florescence light will be emitted both from the input and the

output of the chip. What we do then is to collimate the input side florescence

by placing LIN at a distance d ≈ fIN from the TA. Afterwards we adjust

the vertical and the horizontal position of the lens such that the fluorescence

on the input facet is not distorted or bent in horizontal or vertical direction.

This requires a very precise alignment of LIN on a (sub-)micrometer scale.

After this operation, we ensure a correct injection by superimposing the laser

beam and the florescence. This is done via a “beam walk” with the mirrors

M1 and M2: we measure the output power of the TA with a power meter

and we act sequentially on M1 and M2 screws until we reach a maximum.

Successively, we can slightly vary the position of LIN (or equivalently slightly

change the relative position of L1 and L2 to adjust the collimation) and then

repeat the beam walk process, until we reach the maximum power at the TA

output. Finally, a λ/2 waveplate before the TA allows to adjust the polar-

ization of the injection beam: this is because both the emission power and

the output shape will depend on it. This depends on the model; for our TA

it should be p-polarized.

Beam Shaping of the Output Beam

Once optimized the injection of the TA, we want to shape the output profile

in order to make it as similar as possible to a gaussian profile. This is essen-

tial for obtaining a good mode-matching at the cavity input. To achieve this

we use a combination of the output lens LOUT with fOUT = 4.5mm and the

cylindrical lens CL with fCL = 50mm. The combination of these two types

of lenses is necessary to correct the beam ellipticity and astigmatism: with
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the first lens we collimate the beam in the vertical direction, leaving it still

expanding horizontally; the cylindrical lens will then act only on this direc-

tion. The focal lengths are chosen in order to obtain a beam approximately

symmetric.

The procedure at the output has two steps: first to place LOUT in order to

collimate the output beam along the vertical direction, then to place CL to

collimate it in the horizontal direction. Again the position of LOUT has to

be adjusted such that the beam is not distorted or bent in the horizontal

and vertical directions. This is a crucial point since the output lens has a

small diameter, and hitting the lens not in its center leads to distortion like

stripes and haloes. The light outgoing from the TA has moreover a strong

divergence: if the output lens is not correctly placed the beam will hit the

lens edges, leading again to distortions. Immediately after the cylindrical

lens we put an optical isolator to avoid back reflection on the TA chip: every

eventual reflection entering the TA from the output side will be also ampli-

fied, which can lead to permanent damage.

In Figure 3.6 we report the intensity profile of the beam after the two lenses:

as we can see, it has anyway a very irregular profile. This problem occurs in

all tapered amplifiers, because of the inhomogeneities in the semiconductor

layer and in the chip temperature, and because of nonlinear effects in the

gain medium already mentioned. This, as we will see in the following, will

be the principal cause of losses for coupling into a fiber.

3.1.2 Fiber Coupling

An important point for the infrared light part is the coupling of the TA

amplified light into an optical fiber. This coupling is necessary mainly for

two reasons: the first is that the fiber acts like a spatial filter for the beam

intensity profile. A single mode fiber will in fact accept only a pure Gaussian

intensity distribution, that is exactly what we want to inject into the bow-tie

cavity (see section 2.5). The second reason is that the presence of the fiber

will make the TA part of the set-up independent from the cavity one. As

we will see in chapter 4, the alignment of the infrared light injected into the
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Figure 3.6: Output intensity profile after the collimation with LOUT and CL for Pout ∼
0.5W . With such a beam we obtain ∼ 53% coupling efficiency.

cavity is crucial. Once the fiber output collimator is fixed, we will not worry

if there are misalignments before the fiber input: this will at most reduce the

fiber incoupling, in which case we will only need to realign what is before the

fiber input, without touching the optics on the blue light side.

We choose to use a Photonic Crystal fiber model NKT-LMA-PM-15 from

NKT Photonics: this kind of fiber has a larger core diameter (≈ 15µm)

with respect to an ordinary single-mode fiber (8 to 10µm). This will make

the coupling easier; furthermore, the fiber has a higher damage threshold

at high powers. The drawback of this fiber is that the propagation mode

does not have a pure Gaussian intensity distribution, but presents a typical

hexagon-like shape, which reflects the internal fiber structure (Fig. 3.7).

The fiber is provided with adjustable collimators both for the input and the

output side; at the input we use an “APC” (“Angled Polished Connector”)

type which ensures less back reflection from the fiber.

Coupling Procedure

As a first operation, we roughly couple some light into the fiber, and we ad-

just the position of the output collimator lens in order to obtain a collimated

beam; then, we measure its waist. This operation enables us to know the

waist of the fiber mode at our wavelength: with the telescope composed by

the lenses L3 and L4 (f3 = 100 mm, f4 = 200 mm) we reduce our beam size
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Figure 3.7: Fiber radial structure (left) and propagation mode (right). In orange we can

see the “stress rods” structure for maintaining polarization.

according to this measure. Moreover, we invert the fiber, putting the side

with the freshly adjusted one at the input: in this way, once we arrive at the

input with the correct waist and collimation, we should in principle obtain a

good coupling.

Actually the coupling is very sensitive on the beam collimation, position and

angle of incidence, and the previous “by-eye” arrangements are not sufficient

to guarantee the best coupling efficiency; what we do is then to follow an

iterative process. For example, we slightly change the collimation in one di-

rection by moving the cylindrical lens or LOUT ; then we do a beam walk on

the mirror M3 and on the collimator mounting to adjust the position and the

angle of the beam, and we move a bit the input collimator lens. Repeating

this process we finally arrive at a maximum coupling efficiency of the order

of 50− 60%. This is a typical best value one can obtain from high-power TA

chip, but it strongly depends on the individual chip and also on the power.

Optical fibers always exhibit some degree of birefringence, even if they have a

circularly symmetric design, because in practice there is always some amount

of mechanical stress or other effect which breaks the symmetry. As a conse-

quence, the polarization of light propagating in the fiber gradually changes

in an uncontrolled (and wavelength-dependent) way, which also depends on

any bending of the fiber and on its temperature. Since we need a well de-

fined polarization for the SHG process, the fiber we use is a polarization
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maintaining fiber. This kind of fiber presents a strong built-in birefringence.

Provided that the polarization of light launched into the fiber is aligned with

one of the birefringent axes, this polarization state will be preserved even if

the fiber is bent. We ensure that infrared light is polarized along one of the

fiber axes putting a λ/2 waveplate before the input collimator, and putting

at the output side another waveplate followed by a polarizing beam splitter.

To align the incident polarization with one of the fiber axes we make a beam-

walk with these two waveplates to minimize the power on the reflection side

of the cube. In this way we maximize the extinction ratio and then minimize

the ellipticity out of the fiber.



Chapter 4

Blue Light

In this chapter we describe how we build the frequency doubling cavity de-

signed in chapter 2, and we show the locking scheme used to keep the cavity

resonant with the 851nm light.

4.1 Cavity Setup

In figure 4.1 we present the complete setup scheme for the generation of the

blue light, and in figure 4.2 we show a real image of it.

The cavity mirrors M2, M3, M4 are high reflectivity mirrors in the infrared

(RH = 0.9993±0.0003) chosen to ensure a high cavity Finesse; the incoupling

mirror M1 has a reflectivity R1 = 0.980± 0.005 in order to match the cavity

losses (see sect. 2.4). M4 is a dichroic mirror with an antireflection coating

that ensures < 5% reflection for the blue. M2 is a very small mirror (6.35mm

diameter, 1mm thick) in order to be piezo-actuated as fast as possible (see

section 4.1.1).

Let us discuss now how we couple the output light from the fiber into the

cavity. With the lens L1 we modify the beam in order to match it to the

cavity mode found in section 2.1. As we have seen, the cavity mode has one

focus between the planar mirrors and one in the middle of the spherical ones,

and we calculated the waists for both of them. As we see from Figure 4.1, the

incoupling takes place at the planar mirror arm: with the lens L1 we focus

59
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Figure 4.1: Detailed cavity setup. PD: photodiode; PZT: piezoelectric translator; OSC:

oscilloscope; CAM: camera. See main text for details. The feedback part of the setup is

shown in section 4.1.1.

Figure 4.2: Real image of the cavity section of the setup.
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the beam into the planar mirrors arm center, obtaining at the focus the waist

calculated in our simulations. This allows to optimize the mode matching.

The cavity beam shape is indeed essentially independent from the one of the

incoming beam, since it is defined only by the distance between the mirrors,

by their radius of curvature and by the crystal properties. If we inject a

beam with a different waist and focus position, only a fraction of it will be

resonant within the cavity. The Gauss-Hermite modes of the cavity define

in fact a proper complete basis (sect. 2.5); if we inject a random beam in

the cavity, only its projections on the cavity modes are allowed to resonate.

We calculate then what is the best lens to use, choosing a focal length of

1000 mm. The incoupling mirrors IM1 and IM2 ensure the beam to enter

the cavity with the correct angle; we set their position and angles before we

mount the cavity by making the beam propagate parallel to the table surface

and edges. We place then the cavity mirrors following the design described in

section 2.1, ensuring the beam to hit each of them in the center. As already

discussed in Chapter 2, the cavity properties are very sensitive to variations

in the distance between the spherical mirrors. For this reason the mirror M4

mounting has a micrometric screw which allows to vary finely tune position.

Cavity Alignment

The cavity alignment is initially achieved without the crystal and with the

help of a camera placed behind the spherical mirror M3 (see Figure 4.1),

which collects the light transmitted through it. When the cavity is not prop-

erly aligned and the beam inside of it is not resonating, we see on the camera

one spot corresponding to the sole transmission of the first reflection from

M2. Acting on the screws of the cavity mirrors we align the beam in order

to superimpose the successive round trips; when this starts to happen we see

appearing on the camera the interference of the various beam round trips.

Optimizing the alignment, we make the beam resonate gradually in lower or-

der modes until we see on the camera the fundamental TEM00 mode. Since

the cavity is not yet locked, any small vibration will modify the mirrors align-

ment and positions without any compensation, perturbing then the cavity
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mode. At this stage we can’t see thus the TEM00 mode alone, but we al-

ways see a succession of different modes alternating on the camera. In figure

4.3 we report a collection of camera frames showing 12 different cavity modes.

Figure 4.3: Cavity Gauss-Hermite modes. The camera is saturated in correspondence of

the bright lobes; different frames are taken with slightly different zooms.
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Figure 4.4: An example of cavity spectrum (one FSR) as seen on the oscilloscope after

aligning the mirrors while looking at the camera.

The operations described above are useful to get the cavity roughly aligned.

Further improvements are achieved replacing the camera with the photodiode

PD2 and observing the transmitted cavity spectrum on the digital oscillo-

scope1. For this purpose we send a voltage ramp (10 to 20 V , 50 to 100 Hz

scanning frequency) to the piezoelectric translator (PZT in figure 4.1). The

mirror M2 is glued on top of it, so it will move back and forth during the piezo

motion, modifying periodically the cavity length. Triggering the oscilloscope

to the piezo ramp we observe then the sequence of cavity peaks. We will give

a detailed analysis of the cavity spectrum in section 5.1; for the moment we

report in Figure 4.4 an example of the cavity spectrum for one free spectral

range as it appears after the coarse alignment done with the camera. We can

see the presence of several peaks: the highest two correspond to the TEM00

mode: if the cavity was perfectly injected and aligned, we should see only

these peaks, i.e. all the incident power should be coupled to the fundamental

mode. Otherwise the beam projection on the cavity Gauss-Hermite basis will

present non-zero higher order components; the heights of the peaks represent

the coefficients of this decomposition.

1The camera can still be used for reference, placing it after the mirror M4. This

position is not the optimal one when blue light begins to appear, because it is almost

totally transmitted and often saturates the camera.
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Figure 4.5: Cavity spectrum on the oscilloscope obtained reducing the height of other

peaks acting on the incoupling mirrors and on the lens position. We can see still the

presence of one peak, meaning that the incoupling lens does not perfectly match the beam

waist inside the cavity.

The photodiode signal tells us not only what is the status of the coupling

efficiency, but also gives us some indications on how to optimize it. We can

easily see acting on the mirrors IM1, IM2 that the peak intensities depend

on how good is the alignment of the incident beam in the vertical and in

the horizontal directions. We can transfer the power going into higher order

peaks to the fundamental one acting on the mirrors screws. The peak labeled

as “20” in the Figure 4.4 corresponds to the TEM02 mode. This mode is

much more difficult to suppress: that can be an indication of a non-ideal

matching of the incident beam dimension and collimation. We can reduce

its height modifying the lens position. We underline the crucial role of these

operations related to the fact that the blue light power scales quadratically

with the infrared power: e.g. if we loose 10% of the input power in other

modes, we will have no more than the 80% of the blue power we would ideally

expect. We report in Figure 4.5 the optimized cavity spectrum. We can still

see the presence of the TEM02 peak, meaning that the waist matching can

still be improved.

The role of the photodiode PD1 is related to the cavity locking, as we will see

later; anyway it also can be helpful for the cavity alignment. This photodiode
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collects both the reflected light from the mirror M1 and the transmitted light

outgoing from the cavity through the same mirror M1. If we are in resonance

and perfectly matched these two components interfere destructively, leading

to a dip in the observed spectrum (see figure 4.6). This can be useful to

estimate how good is the coupling of the infrared light, looking how deep is

the TEM00 dip. For a perfect injection we expect in fact to see the TEM00

dip reaching a value close to the zero, so we can act on the mirrors/lens in

order to increase the peak depth. For the actual configuration we find an

incoupling efficiency of ∼ 70− 75% (Fig 4.6). For the cavity alignment it is

anyway recommended to use the photodiode PD2, which has a cleaner signal

because it only collects the light resonating in the cavity, which acts as a

low-pass filter with timescale given by the cavity ring-down time.
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Figure 4.6: Transmission (blue) and reflection spectra (red) compared. The transmission

signal is made smaller to avoid the overlap of the peaks. We can see in the reflection

spectrum that the dips are not reaching the zero, suggesting that the infrared light is not

perfectly coupled into the cavity. We also notice that the signal is noisier than the PD2

one, as explained in the text.

Insertion of the Crystal in the Cavity

Once the cavity has been aligned, we insert the crystal in the middle of the

spherical mirrors arm. All the crystals we use are cut in a cuboidal shape,

with 3mm×3mm input and output facets, and the cuboid axes don’t coincide
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with the crystal dielectric axes. The cutting angles in fact are chosen in order

to satisfy the perfect phase matching condition for a normal incidence at the

crystal facet (see sect. 1.2). The crystal is put in an oven mounted on a

5-axis translation stage. The oven will ensure the crystal to maintain the

temperature for which the perfect phase matching condition is ensured; we

chose this temperature to be around 20.0oC. We insert the crystal in the

cavity trying to let the infrared light propagate straight through it; in this

way we get the crystal roughly aligned, and if this operation is correctly done

we can see immediately some blue light “flashes”, signalling that the crystal

is already close to the right position. When we insert the crystal into the

cavity, the spectrum on the oscilloscope changes: what we expect to see is a

shift in the peaks, due to the fact that the crystal changes the cavity optical

length, modifying the FSR and the mode spacing (see section 2.5). We also

expect to see higher order mode peaks appearing, for the simple reason that

the crystal will not be initially perfectly aligned with the cavity beam. To

optimize the crystal alignment we act then on the the micrometric screws on

the 5-axes translation stage, varying the crystal tilting angles until we obtain

again a clean spectrum.2

4.1.1 Cavity Locking

At this point we proceed to get the cavity locked to the TEM00 peak. What

we need is a feedback system which maintains the mirrors at the right dis-

tance to ensure the amplification of only the fundamental mode, correcting

for any external perturbation which modifies the cavity length, allowing other

modes to resonate. Such a feedback is achieved following the logic scheme of

figure 4.7.

An error signal, calculated as the difference between a reference value and the

output value of our system measured from PD1, is generated. The controller

reads its value and sends to the system an input, varying the system output in

order to minimize the error signal (such a system is called negative feedback

2Generally, once the crystal is in the cavity we need also to operate a bit again on the

mirrors screws.
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Figure 4.7: Negative feedback system logic scheme.

Figure 4.8: Cavity locking scheme. The local oscillator (LO) modulates the laser frequency;

the light reflected from M1 is collected by PD1, whose output goes to the Mixer. The

Mixer generates the error signal, which is sent to the PID controllers, which modify laser

current and piezo length in order to keep the cavity locked.

system). In practice, we realize this scheme as shown in figure 4.8: the

controllers we use are PID controllers, whose output is a voltage sent both

to the piezo and to the master laser current, respectively. The sensor is

the photodiode PD1, which collects the light reflected from the input mirror.

Such a configuration is only temporary, since in a final configuration the laser

will be directly locked on the Chromium spectroscopy. At the moment the

master laser is free running and to “help” the piezo we give some feedback

also on the current. Our error signal is generated through a Pound-Drever-

Hall (PDH) scheme [47, 48, 51]. A high frequency modulation is applied to

the master laser: if we consider our laser beam as monochromatic, and we
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modulate it with a frequency Ω, we obtain:

E(t) =E0e
i(ω0t+βsinΩt) ' E0e

iω0t(1 + iβsin(Ωt)) =

=E0(eiω0t +
β

2
ei(ω0+Ω)t − β

2
ei(ω0−Ω)t)

(4.1)

where we used sin(α) ∼ α, i.e. we took a modulation with small amplitude β.

Equation (4.1) describes a field composed by the original carrier frequency

plus two small side-bands with frequencies ω0 ± Ω. When such a field is

injected inside the cavity, the reflected field hitting PD1 can be written as:

Erefl = E0(r(ω0)eiω0t + r(ω0 + Ω)
β

2
ei(ω0+Ω)t − r(ω0 − Ω)

β

2
ei(ω0−Ω)t) (4.2)

where r(ω) is the incoupling mirror reflection coefficient of the E-field. We

are actually more interested in the reflected field intensity, since our photo-

diode is sensitive on it rather than on the field itself. The reflected intensity

is given by the square modulus of Eq. (4.2):

Irefl =|Erefl|2 = E2
0 |(r(ω0)|2 + E2

0

β2

4

(
|r(ω0 + Ω)|2 + |r(ω0 − Ω)|2

)
+

+E0β (Re[K(ω0,Ω)]cos(Ωt) + Im[K(ω0,Ω)]sin(Ωt)) +O(Ω2)

(4.3)

where K(ω0,Ω) = r(ω0)r∗(ω0 + Ω)− r∗(ω0)r(ω0 − Ω).

The reflected intensity will thus contain several frequency components: a

DC intensity, two components oscillating at the modulation frequency from

the sidebands, and higher-order components from the interactions between

the sidebands. We can extract then the information about the phase of the

reflected field, provided that we separate one of the oscillating terms of Eq.

(4.3), for example the term ∝ sin(Ωt). This can be done using a mixer and a

low-pass filter: the mixer will multiply Irefl from the photodiode with a term

sin(Ωt) coming from the PDH local oscillator, resulting in a DC component

and a cos(2Ωt) term. Isolating the DC component with the low-pass filter

results in the Pound-Drever-Hall error signal:

e(ω) = E0βIm[r(ω0)r∗(ω0 + Ω)− r∗(ω0)r(ω0 − Ω)] (4.4)



4.1. Cavity Setup 69

Figure 4.9: Normalized PDH error signal and modulated incident field. Picture taken

from Digilock 110 manual from Toptica Photonics.

In Figure 4.9 we report a plot of e(ω) as a function of the cavity resonance

frequency detuning with respect to the laser frequency, for the case in which

the frequency modulation Ω is much larger than the laser linewidth ∆ν.

Such a signal is antisymmetric, and in the region of the cavity linewidth it

is linear with a large slope around zero, an ideal condition for a servo loop

to operate. Outside that region the signal is no longer linear, but it has still

the correct sign within a frequency range of 2Ω.

Now that we have defined our error signal, the rest of the Pound-Drever-

Hall technique consists of using it to adjust our system parameters in order

to match the cavity mode with the laser frequency. This is achieved via a

PID controller, which is a filter with adjustable proportional, integral and

derivative parts. The proportional part provides fast linear negative feed-

back, attempting to zero the input. The integral part is used to eliminate

any residual offsets that persist over longer time, i.e. it slowly corrects very

small offsets which the proportional part cannot cancel out. The derivative

term accounts for predicted future values of the error, based on its current

rate of change, i.e. it provides the fastest responds, but is very sensitive to

noise and therefore difficult to adjust. In our setup we currently do not use

a D part. As we can see in Figure 4.8, our locking scheme provides the use

of two PID sections, whose outputs act on the piezo and on the laser current



4.1. Cavity Setup 70

Figure 4.10: Cavity reflection (grey) and transmission (blue) signal in correspondence of

the TEM00 peak; PDH error signal (red). We can see the presence of the sidebands.

Modulation frequency: 12.5MHz.

respectively. The piezo can in fact change its position with a maximum rate

of 5kHz; to correct higher frequency noise components we act then also on

the laser current.

We proceed experimentally as it follows: once we have ensured to be in a

region where the master laser is single mode, we send a periodic voltage

ramp to the piezo; we thus set our reference signal in correspondence with

the position of the TEM00 peak. We engage then the PID controller, starting

with low gain values and separately increasing the P and I components, in

order to keep the cavity locked on the TEM00 mode while minimizing the

noise. If we modify the cavity input power, the error signal intensity will

change, so we have either to readjust the gains or to use some intensity

filters to ensure always the same power on PD1. We report in figure 4.10 the

error signal as it appears during the piezo scanning.

When the cavity is locked and the PIDs gains are optimized, we observe on

the oscilloscope a stable signal like the one in figure 4.11, with a signal to

noise ratio going from ∼ 15 to ∼ 3 in correspondence of noise peaks. This
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Figure 4.11: Signal on PD1 during the piezo scan (red) and for locked cavity (blue).

signal can be improved, but as we can see in figure 4.2, our cavity is directly

mounted on the optical table, without any insulation from the outside. The

cavity is so sensitive on external perturbation that we can see the signal

oscillating if someone speaks at a distance of 2 meters. For this reason, in a

final configuration the cavity will be placed in a metallic box, which could

be evacuated in order to reduce acoustic noise.

We show in figure 4.12 the blue light emitted from the cavity when locked. We

can see the blue beam transmitted by the dichroic mirror, and the reflected

blue light that travels in the cavity, hitting the other mirrors, that partially

transmit it. When the cavity is locked we can further adjust the crystal

and the mirrors alignment looking directly on the blue power. In particular,

we can act with a beam walk on the incoupling mirrors IM1, IM2, and we

can slightly change the crystal orientation acting on the translation stage

screws. We find in fact a configuration stable enough to keep the cavity

locked while doing these adjustments. The same is not true for the cavity

mirrors: touching their screws perturbs the cavity in a way that we loose the

lock almost immediately.
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Figure 4.12: Locked cavity for 350mW measured blue power. We can see the blue beam

passing through the dichroic mirror M4; we see moreover some reflected blue light hitting

all the cavity mirrors.



Chapter 5

Results and Data Analysis

In this chapter we present and discuss our experimental results. We analyze

first the cavity spectra. We then characterize the generated blue light, com-

paring all the results with the theoretical calculations outlined in chapter

2.

5.1 Cavity Spectrum Analysis

The quantities we want to measure for our aligned cavity spectra are the free

spectral range, the linewidth and the finesse. We recall below the results

found in chapter 2 for these parameters when the cavity is empty:

FSR =
c

L
(5.1)

∆ν =
FSR

F
=
c

L

1−
√
RT

π(RT )1/4
(5.2)

where RT =
∏

iRi and Ri are the cavity mirrors reflectivities.

We estimate the free spectral range for our spectra using Eq. (5.1), since it

depends only on the cavity length, a quantity easy to measure with a small

relative error. We measure separately the mirrors relative distances with an

uncertainty of 1 mm, finding for the cavity total length L = (558 ± 2)mm.

Thus we obtain:

FSRempty = (537± 2)MHz (5.3)

73
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We proceed then to measure the cavity linewidth. For this purpose we send a

rectangular voltage on the piezo, which linearly and periodically changes the

resonance frequency of the cavity, on the basis of what described in section

4.1.1. We detect then with the photodiode PD2 (Fig. 4.1) the transmitted

light from the cavity mirror M3, which is measured on the oscilloscope as a

function of the scanning time. In this way we can scan our cavity resonance

frequency through the whole free spectral range or around one single peak,

depending on the amplitude of the piezo ramp.

For our spectra analysis we need then to convert the oscilloscope time scale

to a frequency scale. This can be done by exploiting the sidebands generated

by the master laser modulation (sect. 4.1.1), which appear in the spectrum

when the cavity is resonating at their frequency, and whose distance with

respect to the TEM00 peak is 12.50MHz. Using them as a reference we can

estimate the linewidth in frequency units with the simple relation

∆ν(MHz) =
∆ν(s)

∆side(s)
× 12.50MHz (5.4)

Where ∆ν(s) is the peak FWHM in time units, and ∆side(s) is the sidebands

temporal distance from the peak center (Fig. 5.1 (b)). We do not use this

method for a direct measurement of FSR since the piezo scanning is not

perfectly linear for the voltage range needed (15 to 20V ). Moreover, the

limited oscilloscope resolution will make the peaks fit less accurate. For the

evaluation of the linewidth we reduce piezo non-linearities since we scan only

a small region around the TEM00 peak (1 to 2V ); in this way we also fully

exploit the oscilloscope resolution. The ratio between the calculated FSR

and the measured linewidth gives us the cavity finesse, Eq. (5.2).

We summarize in Table 5.1 the measured and the calculated cavity parame-

ters. The peaks center positions and widths are found with Lorentzian fits.

Piezo non-linearities and external perturbations can significatively alter dif-

ferent acquisitions, so we evaluated these quantities from several of them,

taking the mean values and estimating the errors as the standard deviations.

The errors for the calculated values of the finesse and of ∆ν are estimated by

evaluating Eq. (5.2) for the maximum and the minimum value of RT compat-

ibly with the mirrors tolerances (R1 = 0.980±0.005, RHR = 0.9993±0.0003).



5.1. Cavity Spectrum Analysis 75

FSR

Sideband

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t(ms )

A
m
pl
itu
de

(V
)

(a)

0 , 0 0 6 0 , 0 0 7 0 , 0 0 8 0 , 0 0 9 0 , 0 1 0
0 , 0 0

0 , 0 5

0 , 1 0

0 , 1 5

0 , 2 0

∆s i d e ( s )

 

 

Am
plit

ud
e (

V)

t  ( s )

∆ν ( s )

∆s i d e ( s )

(b)

Figure 5.1: (a): scanning the piezo over one FSR. The modulation amplitude is to enhance

the visibility of the sidebands: we can see the sidebands close to the TEM00 peaks. (b):

scanning around the TEM00 peak to evaluate the linewidth with a lower modulation.

Blue: data, red: 3 peaks Lorentzian fit. Both the picture are taken with BBO inside the

cavity.
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Calculated value Measured value

∆ν (MHz) 1.9± 0.5 1.9± 0.2

F 280+100
−60 280± 30

Table 5.1: Calculated and measured values for the empty cavity.

We find a quite big error due to the critical dependence of F on the mirrors

reflectivities. We see that all the measured values agree very well with the

calculations.

LBO and BBO

The cavity parameters in the presence of the crystal change accordingly to

(Sect. 2.3):

FSR =
c

L+ l(n− 1)
(5.5)

∆ν =
FSR

F
= FSR

1−
√
RT (1− Vc)(1− η)

π(RT (1− Vc)(1− η))1/4
(5.6)

It is useful to stress again that:

1. FSR is fixed once the crystal is in the cavity.

2. ∆ν and F depend on the conversion efficiency η, thus on the power

inside the cavity.

We calculate first the FSR, which is independent on the cavity power, taking

again L = (558 ± 2)mm and lLBO = 15 mm, lBBO = 12 mm, nBBO =

1.610, nLBO = 1.659. We find:

FSRLBO = (528± 2)MHz

FSRBBO = (527± 2)MHz
(5.7)

We evaluate then the linewidth and the cavity finesse as described for the

empty cavity. We take our measurements for two different values of the
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cavity input power Pin, in order to see if there is a variation in the finesse

due to an increasing of η for high powers. Furthermore, from Eq. (5.6) we

can in principle estimate the crystal total losses term (1− Vc)(1− η), where

we recall that Vc takes into account crystals reflections and absorption. We

report in Table 5.2 the values found; we include for comparison the cavity

empty measurements previously found:

∆ν(MHz) F
Empty cavity 1.9± 0.2 280± 30

LBO @ Pin = 180mW 2.2± 0.3 240± 35

LBO @ Pin = 800mW 2.2± 0.4 240± 45

BBO @ Pin = 180mW 2.3± 0.2 230± 20

BBO @ Pin = 800mW 2.2± 0.4 240± 40

Table 5.2: Measured values for the LBO linewidth, finesse and losses.

We see as expected that the finesse is higher for the empty cavity. The

values obtained for the LBO and the BBO are equals within their error.

We do not see moreover any variation in the cavity finesse and linewidth

between low and high powers, meaning that most likely the crystal losses

term is dominated by Vc in this range of powers.

5.1.1 Higher Order Modes

As we have seen in section 4.1, it is sufficient to slightly misalign the cavity

incoupling mirrors to see higher order modes appearing in the spectra. We

can easily isolate each one of them by scanning the piezo in a small range

(1 to 2V) around each peak. In this way, looking at the camera we are able

to label each of them. We report in figure 5.2 a collection of some spectra

zoomed in to enlarge the higher order peaks.

We immediately notice that the transverse modes are not degenerate, i.e.

that the TEM0y and the TEMx0 modes have different frequencies. As we

have noticed in section 2.5, this can be due to the fact that the cavity optical
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Figure 5.2: A collection of four cavity spectra with BBO crystal and for the empty cavity.

The TEM00 peaks are truncated since the spectra are zoomed to enlarge the smaller peaks.

Varying the spherical mirrors relative Z leads to different peaks spacings and positions

(Eqns. (5.8), (5.9)).

path along the vertical and the horizontal direction is not exactly the same.

When the crystal is inside the cavity, it might introduce an anisotropy, due

to its birefringence. Anyway, we observe this effect also for the empty cavity,

even if reduced. A possible reason for this behaviour can be the astigmatism

introduced by the spherical mirrors when these are hit at an angle. Even

though we do not know the exact reason for this observed shift we can model

it easily, recalling the equations for the mode spacing and for the cavity

resonance frequencies:

∆φ = FSR
ζ(L)

π
(5.8)

νpmq =
c

L+ l(n− 1)

(
p+ (m+ q + 1)

ζ(L)

π

)
(5.9)

The TEM0y “vertical” modes perfectly follow the values predicted by equa-

tions above. In contrast, the TEMx0 “horizontal” modes are slightly shifted

from these values. If we consider that these modes acquire an additional

phase shift δ during each round trip with respect to the vertical modes, their
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spacing and frequencies become:

∆φ = FSR
ζ(L) + δ

π
(5.10)

νpmq =
c

L+ l(n− 1)

(
p+ (m+ q + 1)

ζ(L) + δ

π

)
(5.11)

We have determined the value of δ from the spectra, and it turns out to be

fairly constant around −0.4rad. With this value we get a perfect matching

of the spectra, both for the empty cavity and for the cavity with the crystal

(figure 5.3). We are still investigating about the origin of this phase shift.
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Figure 5.3: An example of observed (blue) and calculated spectrum (colored lines) for the

empty cavity. We can see all the peaks matching very well.

5.2 Observed SHG efficiency

5.2.1 LBO

In figure 5.4 we report the measured blue power vs. the infrared power

injected into the cavity.

The data are fitted with a function with a quadratic and a cubic term:

P (ω2) = aP 2(ω1) + bP 3(ω1) (5.12)
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Figure 5.4: SHG power for the LBO crystal. Solid blue line: best fit to the data with

fitting function Eq. (5.12). Blue shaded region: confidence interval expected considering

25% of incoupling power losses. Red shaded region: confidence region of SHG evaluated

for perfect incoupling.

This can be easily understood from what we noticed in section 2.4: the SHG

power does not grow quadratically with the incident infrared power as a

consequence of the cavity losses. A negative cubic term describes well this

behaviour. In Table 5.3 we report our best fit parameters.

Fit Function P (ω2) = aP 2(ω1) + bP 3(ω1)

a (0.479± 0.001)W−1

b (−0.143± 0.007)W−2

Table 5.3: Best fit parameters for the LBO SHG efficiency.

We already noticed in section 4.1 that our incoupling is not perfect: that is

signalled from the fact that the dips in the transmitted spectra do not reach

the zero. From the ratio between the dip depth and the maximum value of

the reflected signal we estimate the incoupling losses to be on the order of

∼ 25% (see fig. 4.6). The blue shaded region in Figure 5.4 indicates the region

where we expect our measured data to fall into. It is evaluated considering

incoupling losses and modifying the parameters that mainly influence the
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cavity power within their tolerances, like the mirrors reflectivities and the

waist inside the crystal. For the waist we assume to have w0 = (28± 2)µm,

considering its dependence on the spherical mirrors distance Z (figure 2.8

(c)) and assuming Z = (108± 1)mm. The red shaded region is evaluated in

the same way, but considering an ideal cavity incoupling.

We see that our data lay almost at the top of the expected region. A further

improvement of the cavity incoupling is required if we want to achieve higher

efficiencies. A possibility is to try different incoupling lenses/telescopes to

modify the injected beam waist. We can compare our results with the one

in reference [43], for which SHG is obtained with an LBO crystal for exactly

the same wavelengths we use, with a similar set-up and in a smaller range of

powers. In figure 5.5 we see the data are fully consistent.
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Figure 5.5: Comparison between our data and Kobstev et al. [43].

5.2.2 BBO

We report in figure 5.6 the measured blue power obtained with the BBO

crystal. We followed the same procedure of previous section, considering

now w0 = (26± 2)µm, L = (557± 2)mm, Z = (107± 1)mm.

Because of time reasons, we did not manage to optimize the cavity as well

as we did for the LBO, especially for what concerns the cavity locking, so we
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Figure 5.6: SHG power for the BBO crystal. Solid green line: best fit to the data with

fitting function Eq. (5.12). Green shaded region: confidence interval expected considering

25% of incoupling power losses. Orange shaded region: confidence region of SHG evaluated

for perfect incoupling.

took less data points in a smaller power region. We see anyway that our data

are still at the top of the expected range up to Pin ∼ 600mW , beyond which

both the data and the fit seems to go to the lower limit of the expected region.

The fitted curve is anyway “brought down” from the last data point, which

was taken with a quite noisy signal. We thus expect that a better efficiency

can be obtained by further optimizing the lock parameters for higher input

powers. Below we report the BBO best fit parameters:

Fit Function P (ω2) = aP 2(ω1) + bP 3(ω1)

a (0.46± 0.04)W−1

b (−0.19± 0.06)W−2

Table 5.4: Best fit parameters for the BBO SHG efficiency.

As expected from the calculation of previous sections (see Fig. 1.14 and 2.7)

the generated blue power of BBO does not differ much from the one provided

by the LBO crystal. We compare them in figure 5.7.
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Figure 5.7: Comparison between LBO and BBO blue powers data.

5.3 Blue Light Intensity Profile

As we explained in sect. 1.2, we expect that the generated blue light beam

has an elliptic shape, due to the fact that the walk off introduces a distortion

in the direction of the infrared light polarization. We show in figure 5.8 a

camera image of the SHG beam profile for the LBO crystal taken at d ∼ 10cm

from the output dichroic mirror; the beam dimensions present an aspect ratio

of ∼ 1/5. Such an ellipticity has to be taken into account when we want to

couple the blue light into an optical fiber. Nevertheless, this issue should be

easily solvable by employing a mode matching similar to the one described

in section 3.1.2.
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Figure 5.8: LBO blue light intensity profile. Camera frame (a); intensity distribution for

the central horizontal (b) and vertical line (c).



Conclusions

The results obtained in this work, even if preliminary, confirm our under-

standing of the second harmonic generation process, both from a theoretical

and from an experimental point of view. The observed power of the 425.5nm

light is consistent with what expected from the theory and with the liter-

ature [32, 43]. Our simple setup, therefore seems a good, easy-to-handle,

and unexpensive alternative to commercial systems currently employed in

experiments. As future outlook, we plan to improve the infrared section of

the setup, trying a Tapered Amplifier output lens of longer focal in order

to make the fiber incoupling easier and more stable. On the cavity side we

will optimize the beam mode matching to reduce incoupling losses and gain

further SHG power. We plan then to assemble the cavity in a metallic box

to isolate it better from vibrations and acoustic noise, and we will try to

improve the cavity locking using a faster piezo, to correct higher frequency

noise components, in a range of ∼ 20kHz. The experiment will proceed

then with the locking of the master laser to the 53Cr spectroscopy. When

a more stable and efficient configuration is found, we will proceed in testing

of the BIBO crystal, which has a higher nonlinear coefficient than LBO and

BBO and might be promising. The measurements on the BIBO will give us a

complete view of the advantages and the drawbacks of BBO, LBO and BIBO

crystal respectively, allowing us to choose which one to use. The last step

will consist in the coupling of the blue light into a fiber, for which a shaping

of the blue beam will be surely needed.
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Appendix A

Here we report a simplified version of the Mathematica code we developed

for the calculations of the SHG efficieny. The notation is the same used in the

text. We do not report here the code for the phase matching and for the cavity

design. If needed, one can use the open source program “SNLO”, which

provides lots of useful functions for different kinds of nonlinear processes and

also for the cavity setup.
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SpeedOfLight = 299792 458;
Mu0 = 4 π 10-7;

Epsilon0 = 1  Mu0 * SpeedOfLight2;

goal = {Automatic, 3};

In[481]:= BOYD - KLEINMANNSINGLEPASS EFFICIENCY

BKh[sigma_?NumericQ, beta_?NumericQ, xi_?NumericQ,

mu_?NumericQ, kappa_?NumericQ] := Re
1

4 xi
Exp[2 mu xi kappa]

NIntegrateReExp-kappa (τ0 + τ1) + ⅈ sigma (τ0 - τ1) - beta2 (τ0 - τ1)2 

((1 + ⅈ τ0) (1 - ⅈ τ1)), {τ0, -xi (1 - mu), xi (1 + mu)}, {τ1, -xi (1 - mu),

xi (1 + mu)}, AccuracyGoal → goal[[1]], PrecisionGoal → goal[[2]];

(* find optimum σ and ξ, returns {ξm,σm,hm}, β=B ξ (note 2),

κ=α*L/(2ξ) (note 3), α in 1/m, L in m*)

BKhmm[B_, mu_, α_, L_] := Block{max, x, s},

max = FindMaximumBKhs, B  x , x, mu, α L / (2.0 x), {s, 0.5, 0.6},

{x, 1.5, 1.0}, AccuracyGoal → goal[[1]], PrecisionGoal → goal[[2]];

{x /. max[[2]], s /. max[[2]], max[[1]]}(*return {ξm,σm,hm}*)

;

BKhmm[B_] := Block{max, x, s},

max = FindMaximumBKhs, B  x , x, {s, 0.5, 0.6},

{x, 1.5, 1.0}, AccuracyGoal → goal[[1]], PrecisionGoal → goal[[2]];

{x /. max[[2]], s /. max[[2]], max[[1]]}(*return {ξm,σm,hm}*)

;

(* K*k1, eq. 2.20 in SI units, see Ramazza, Lechner, Masada, etc.;
λ1 in mu, n=n1=n2, deff in pm/V; *)

BKK[λ1_, n_, deff_] :=
16 π2

Epsilon0 SpeedOfLight λ13 n2
deff2 * 10-6;

(* conversion efficiency, eq. 2.22, units = W*1/(W*m)*m*1 = 1;
αtot=α1+α2/2 from eq. 2.10 in 1/m and L in m; *)

BKeff[P1_, KK_, hh_, αtot_, L_] := P1 KK L hh Exp[-αtot L];

(*cavity power enhancement ϵ = Pcavity/Pin;*)

Enh[ηSHG_, Lc_, RHR_, Rin_] :=
1 - Rin

1 - Rin (1 - Lc) (1 - ηSHG) RHR3
2
;

EnhMatch[Rm_] :=
1

1 - Rm
; (*for R1=Rm=(1-Lc)(1-LSHG)RHR3*)

CAVITYPOWER
(* calculate power inside cavity;*)

CavityPower[P1_, ηP1_, Lc_, RHR_] := Block{Pc},

Pc = IfTrue, (*if True analytical solution, otherwise use FindRoot*)

-P1 + P1 RHR3 - Lc P1 RHR3 +P1 - P1 RHR3 + Lc P1 RHR3
2
+
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4 P12 RHR3 ηP1 - Lc RHR3 ηP1  2 RHR3 ηP1 - Lc RHR3 ηP1,

Pc /. FindRootP1 EnhMatch(1 - Lc) 1 - ηP1
Pc

P1
RHR3 - Pc, {Pc, P1},

AccuracyGoal → goal[[1]], PrecisionGoal → goal[[2]]

;

Pc, EnhMatch(1 - Lc) 1 - ηP1
Pc

P1
RHR3, ηP1

Pc

P1
, (1 - Lc) 1 - ηP1

Pc

P1
RHR3

;

(*same as before but does not use optimal incoupling mirror*)

CavityPower[P1_, ηP1_, Lc_, RHR_, Rin_] := Block{Pc},

Pc = Pc /. FindRootP1 EnhηP1
Pc

P1
, Lc, RHR, Rin - Pc,

{Pc, P1}, AccuracyGoal → goal[[1]], PrecisionGoal → goal[[2]];

Pc, EnhηP1
Pc

P1
, Lc, RHR, Rin, ηP1

Pc

P1
, (1 - Lc) 1 - ηP1

Pc

P1
RHR3

;

OPTIMIZEDEFFICIENCY

(* optimize cavity for SHG;
calculation with realistic values of {LBO,BBO};
checked for LBO with Beier et.al., Apl.Phys.Lett.71, 315 (1997);*)

tmp = Block

crystal = 1,
(*input parameters*)
ηc = 1.0(*cavity coupling efficiency*),
RHR = 0.9993(*HR mirror reflectiviy*),
name = {"LBO_0.1", "BBO_0.2", "BiBO_0.2"}, (*crystal name*)

Rc = {0.2, 0.2, 0.2} 10-2(*reflection of crystal at λ1, single surface*),
α1 = {0.1, 0.2, 0.2}
(*absorption coefficient of crystal at λ1 in 1/m=%/cm*),
α2 = {0.5, 0.5, 0.5}(*absorption coefficient of crystal at λ2=
λ1/2 in 1/m=%/cm*),

P1 = 1(*input power in W*),
λ1 = 0.851(*fundamental wavelength in mu*),
n1 = {1.6098, 1.6590, 1.813}
(*phase matched refractive index at λ1 and λ2*),
deff = {0.777, 2.01, 3.61}(*effective nonlinear coefficient in pm/V*),
ρ = {14.89, 65.09, 52.82}(*walkoff angle in mrad*),
L = {15.0, 12.0, 10.0}(*crystal length in mm*),
μ = 0.0, (*relative position of focus to center of crystal, 0=center*)
(*optimizable parameters*)
w0 = 31.1(*waist inside crystal in my*),
Rin = 0.98(*incoupling mirror reflectiviy*),
Lvar = {0, 2, 40, 2},
(* if 3 entries vary length of crystal {start,end,step} in mm*)
(*variables*)
B, KK, ϵ, η, Pc, ξm, σm, hmm, α, αtot, Lc, b, info, Rm, result, hdr

2     SHGefficiency.nb
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,

info := Block{},

Print["B = ", B];
Print["b = ", L / ξm,
" mm, Rayleigh length = b/2 = ", L / (2 ξm), " mm"];

Print"w0 = ", w0, " μm (1/e2) = ", w0 / 2,

" μm (σ-Gauss) = ", w0 2 Log[2] , " μm (FWHM)";

Print"Δn = n1-n2 = ",
2 λ1 σm

4 π L / ξm
* 10-3;

Print["ξm = ", ξm];
Print["σm = ", σm];
Print["hmm = ", hmm];
Print["ϵ = ", ϵ];
Print["η = ", η];
Print["Rin = ", Rin];

Print"F = ",
π Rin RHR3

1 - Rin RHR3
, " (w/o crystal)";

Print"Fc = ",
π Rin

1 - Rin2
, " (with crystal)";

Print["P1 = ", P1, " W, ηc = ", ηc];
Print["Pc = ϵ*P1 = ", Pc,
" W ( ΔPc/Pc = ", P1 Enh[η, Lc, RHR, Rin] / Pc - 1.0, " ) ", ϵ * P1];

Print["P2 = η*Pc = ", η * Pc * 1000.0, " mW"];
Print["ηeff = P2/P1 = η*ϵ = ", η ϵ, ", ( ", η * Pc / P1, " )"];

Print"I1 = ",
2.0 P1

Pi (w0 10-4)
2
, " W/cm^2, I1c = ",

2.0 Pc

Pi (w0 10-4)
2
,

" W/cm^2, I2 = ",
2.0 η * Pc

Pi (w0 10-4)
2
, " W/cm^2 (inside crystal)";

;

name = name[[crystal]];
Rc = Rc[[crystal]];
α1 = α1[[crystal]];
α2 = α2[[crystal]];
n1 = n1[[crystal]];
deff = deff[[crystal]];
ρ = ρ[[crystal]];
L = L[[crystal]];
P1 = ηc * P1;

B =
ρ

2
L

2 π

λ1 10-3
n1 * 10-3;

α = α1 - α2 / 2;
αtot = α1 + α2 / 2;

Lc = 1 - (1 - Rc)2 1 - α1 L 10-3;

(*single-pass crystal loss at λ1, abs+2x ref *)

(*μ=(L-2f)/L;*)

SHGefficiency.nb    3
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KK = BKK[λ1, n1, deff];

b =
2 π w02

λ1
n1 * 10-3;

Print["cavity efficiency for λ1 = ", λ1 * 1000.0, " nm, L = ", L, " mm:"];

ξm = L / b;
σm = 0.0;

hmm = BKhσm, B ξm , ξm, μ, 0.5 α b 10-3;

Print["\ninput parameters:"];

η = BKeffP1, KK, hmm, αtot, L 10-3;

Print["ηSP = ", ScientificForm[η], " at ", P1, " W"];
{Pc, ϵ, η, Rm} = CavityPower[P1, η, Lc, RHR, Rin];
info;

Print["\noptimized parameters:"];
(* optimize input parameters *)

{ξm, σm, hmm} = BKhmmB, μ, α, L * 10-3;

w0 =
L / ξm λ1

2 π n1
* 103 ;

η = BKeffP1, KK, hmm, αtot, L 10-3;

Print["ηSP = ", ScientificForm[η], " at ", P1, " W"];
{Pc, ϵ, η, Rin} = CavityPower[P1, η, Lc, RHR];
info;

IfLength[Lvar] ⩵ 3,

Print["\nvary length of crystal and optimize cavity:"];
hdr = {"L/mm", "B", "xim", "sm", "hmm", "w0/mu",

"dn", "Pc/W", "enh", "eff", "Rin", "Pout/W", "eff_eff"};

result = TableFlattenLv,
ρ

2
Lv

2 π

λ1 10-3
n1 * 10-3, BKhmm

ρ

2
Lv

2 π

λ1 10-3
n1 *

10-3, μ, α, Lv 10-3, {Lv, Lvar[[1]], Lvar[[2]], Lvar[[3]]};

result = MapJoin#, 
#[[1]] / #[[3]] λ1

2 π n1
* 103 ,

2 λ1 #[[4]]

4 π #[[1]] / #[[3]]
* 10-3,

CavityPowerP1, BKeffP1, KK, #[[5]], αtot, #[[1]] 10-3,

1 - (1 - Rc)2 1 - α1 #[[1]] 10-3, RHR &, result;

result = Map[Join[#, {#[[8]] #[[10]], #[[9]] #[[10]]}] &, result];
Print[TableForm[result, TableHeadings → {None, hdr}]];
Print[Export[NotebookDirectory[] <> "CrystalLength_" <> name <> ".txt",

result, "Table", TableHeadings → hdr]];

Print[Show[
ListPlot[result[[All, {1, 12}]], PlotStyle → {{Blue}}, PlotRange → All],

4     SHGefficiency.nb
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ListPlot[result[[All, {1, 13}]], PlotStyle → {{Red}}, PlotRange → All],

Frame → True, Axes → False,
FrameLabel → {"L/mm", "Pout/W (blue), ηeff (red)"}, PlotRange → All

]];

;

result;

RESULTS
cavity efficiency for λ1 = 851. nm, L = 15. mm:

optimized parameters :

ηSP = 7.23728 × 10-5 at 1. W

B = 3.14356

b = 9.67405 mm, Rayleigh length = b/2 = 4.83702 mm

w0 = 28.5294 μm (1/e2) = 14.2647 μm (σ-Gauss) = 33.5908 μm (FWHM)

Δn = n1-n2 = 0.000010518

ξm = 1.55054

σm = 0.75126

hmm = 0.215677

ϵ = 76.5013

η = 0.00553661

Rin = 0.986928

F = 205.888 (w/o crystal)

Fc = 119.377 (with crystal)

P1 = 1. W, ηc = 1.

Pc = ϵ*P1 = 76.5013 W ( ΔPc/Pc = -4.32987 × 10-15
) 76.5013

P2 = η*Pc = 423.558 mW

ηeff = P2/P1 = η*ϵ = 0.423558, ( 0.423558 )

I1 = 78215.7 W/cm^2, I1c = 5.9836 × 106 W/cm^2, I2 = 33128.9 W/cm^2 (inside crystal)

SHGefficiency.nb    5
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