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Chapter 1

Introduction

Itinerant ferromagnetism describes systems comprising microscopic magnetic moments
which are not localized in space but are instead mobile. This concept was introduced
back in the thirties by the British theoretical physicist Edmund Clifton Stoner, who first
devised a minimal model to describe a ferromagnetic instability in a homogeneous Fermi
gas driven by short-range repulsive interactions: in a free electron gas, the competition be-
tween the kinetic energy, given by the Pauli pressure, and the interaction energy, given by
the screened Coulomb potential, drives a paramagnetic to ferromagnetic phase transition,
leading the development of a finite magnetization [1]. This model is crucial to understand
the magnetic properties of everyday life magnets, made of common metals like iron, nickel
or cobalt [2, 3] in which the carriers of magnetism are the unsaturated d-band electrons,
which are extremely mobile and can be thought as a free gas. The possibility that pure
short-range repulsive interactions suffice to sustain ferromagnetism is still nowadays de-
bated. It is in fact experimentally extremely challenging to isolate the problem from many
additional ingredients typically present in solid-state physics such as flat dispersion bands,
multi-orbital exchange, or the presence of disorder.
In this thesis, I report our experimental investigations on the repulsive Fermi gas, studied
exploiting a mixture of ultra-cold 6Li atoms interacting through a Feshbach resonance.
Even with the unparalleled control and purity of ultra-cold atom experiments, evidence
confirming Stoner’s mechanism for ferromagnetism have remained elusive [4, 5]. The main
issue is that genuine strong short-range repulsive interaction, like the one obtained by
means of a magnetic Feshbach resonance [6], requires an underlying attractive potential
supporting a weakly bound molecular state [7]. As depicted in Figure 1.1, the energy
diagram of the many-body system across the Fano-Feshbach resonance includes two energy
branches: the repulsive (upper) branch and the attractive (lower) branch. For increasingly
(positive) large values of the scattering length the upper branch becomes progressively
unstable against the decay onto the lower-lying paired states via recombination processes
[8, 9, 10, 11].
In analogy with ultrafast pump-probe experiments in solid state [12, 13], I employ radio-
frequency (RF) spectroscopy to address these open problems and probe the physics of
the repulsive branch with unparalleled spectral and time resolution. I will present our
investigation of the upper branch and its dynamical properties describing two paradigmatic
experiments.
In the first, I study the limit of a few impurities strongly interacting with a fermionic bath
adopting a quasi-particle description [14, 15, 16, 17, 18]. I measure the repulsive Fermi
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Figure 1.1: Sketch of lowest two energy branches of the repulsive Fermi gas as a function
of the interaction parameter kFa: the attractive (or lower) branch in orange and the
repulsive (or upper) branch in green. For strong interactions the upper branch in unstable
to the decay in the lower branch trough three body recombination processes.

polaron properties such as energy, effective mass, quasi-particle residue and lifetime. In
particular, I find a regime of critical interactions above which the polaron energy exceeds
the Fermi energy of the bath, providing a clear signature of a ferromagnetic instability of
the upper branch in the impurity limit. Moreover, I find out that the polaron effective
mass diverges and even turns negative, thereby indicating that the repulsive Fermi liquid
state becomes thermodynamically unstable.
In a second experiment, I have characterized the energy spectrum and the out-of-equilibrium
dynamics of a balanced fermionic mixture quenched to strong repulsion. As mentioned
above, the interacting gas is naturally not stable at strong coupling against pairing. There-
fore, its evolution is expected to be driven by the competition between these two instabil-
ities: on the one hand recombination processes let the system decay in its paired ground-
state, on the other, the strong repulsion promotes the formation of a spin anti-correlated
state that wants to minimize the repulsive interaction. To disclose this intriguing and
complex intertwined many-body dynamics, I have developed a selective pump-probe radio-
frequency spectroscopy scheme: by the first pulse, I drive the system to selectively populate
the many-body repulsive branch, while the second pulse is used to monitor the system’s
evolution. In this way I have probed both the molecular formation and the onset of anti-
correlations, extracting for the first time, their growth rates. Both are found to arise on a
time scale of the order of few Fermi time. As a main result, I have found that the growth
of anti-correlations can be initially faster than pairing mechanisms. At long evolution
times, I have observed that the repulsive gas evolves under the interplay between both
the instabilities. The combined effect of these two mechanisms gives rise to a long-lived
emulsion state of atoms and dimers in which the inter-atomic anti-correlations survive for
long times. Our results clarify previous observations, which separately address the physics
of the strongly repulsive Fermi gas to a ferromagnetic state sustained only by atoms [4], or
to a complete absence of the upper-branch for strong repulsion due to the coupling with
the molecular branch, leading to an incoherent mixture of atoms and dimers [5].

1.1 Outline of the thesis

The structure of this thesis is the following:
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• In Chapter 2 I summarize the basic theory of a Fermi gas in the context of ultra-cold
atoms experiments. I start from the ideal Fermi gas trapped in a harmonic potential
and describe some key statistical properties of the system, focusing on the concept
of atom number fluctuation. Later I introduce how I can control the inter-particle
interactions between different fermions by exploiting a Feshbach resonance between
different scattering channels. Finally, I will report how the presence of interaction
modifies the many-body energy spectrum of the system, giving rise to the attractive
and repulsive branches.

• In Chapter 3 I give some details of our experimental setup, mostly focusing on the
imaging technique and the radio-frequency (RF) spectroscopy. Finally, I describe the
analysis routine I employ to extract the atom number fluctuations from the density
profiles obtained through absorption imaging.

• In Chapter 4 I characterize the repulsive Fermi polaron by measuring, as a function
of the interaction strength, its energy, its effective mass, its residue and its lifetime.
For strong repulsion, I observe the signature of a ferromagnetic instability in the
polaron energy exceeding the Fermi energy of the system. All the topics discussed in
this Chapter are published in PRL [19].

• In Chapter 5 I demonstrate that the upper branch of a balanced repulsive Fermi
mixture is well defined up to strong coupling, even for relatively low degeneracy
(T/TF ∼ 0.8), where TF is the Fermi temperature. Employing a pump-probe spec-
troscopy scheme, I quench the system in the upper branch and subsequently probe
its evolution. I study the evolution of the system for a wide range of timescales, from
few to thousands of Fermi time, showing that the interplay between the pairing and
the ferromagnetic instabilities produces a metastable state made of molecules and
atoms which preserves spin anti-correlations. The results discussed in this Chapter
are submitted to PRL and a preprint version is currently available on the arXiv [20].
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Chapter 2

Theory

The classical world is the reign of distinguishability, particles can be labeled and their
trajectory followed. In quantum mechanics, as soon as the wavefunctions describing two
identical particles overlap, the knowledge of their original identity is washed out. This
loss of information is the very foundation of the quantum statistics and deeply affects the
physical behavior of a system both in its microscopic and macroscopic domain. Thermo-
dynamics drastically changes as well as the way single particles interact with each other.
In this chapter, we will see this concept at work in one of the most paradigmatic systems
in nature: the Fermi gas.

We will start from the simplest case, the non-interacting ideal Fermi gas, we will derive the
grand-canonical partition function and extract equilibrium properties of the system. Then
we will introduce the two-components Fermi gas and show how they interact with each
other deeply reshaping their many-body energy spectrum. We will introduce the concepts
of the lower and upper branch, showing how the latter is unstable for strong interactions
to the relaxation into the lower one.

2.1 Basic theory of Fermi gases

2.1.1 Non interacting Fermi gas

Let us consider an ensemble of identical non-interacting particles, each sharing the same
energy spectrum. We name k the collection of quantum number univocally defining the
state of the system, |k〉 and εk the corresponding eigenvector and eigenvalue. The partition
function of the system within the canonical ensemble as [21] can be written as:

ZN =
∑
{nk}

exp
(
− β

∑
k

nkεk
)

=
∑
nk

exp
(
− β

∑
k

nkεk
)
δ(N −

∑
k

nk), (2.1)

where N is the total number of particle, nk is the occupation number of |k〉, β = 1/kBT
is the coldness, kB is the Boltzmann constant and T the temperature, which is fixed by
the system being in thermal equilibrium with a heat bath. The grand-canonical partition
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function is obtained by releasing the constraint of the fixed total number of particle:

ZGC =
∑
N

eβµNZN (2.2)

=
∑
N

eβµN
∑
nk

exp

(
−β
∑
k

nkεk

)
δ(N −

∑
k

nk) (2.3)

=
∑
{nk}

exp

(
−β
∑
k

(εk − µ)nk

)
(2.4)

=
∏
k

∑
nk

exp

(
−β
∑
k

(εk − µ)nk

)
=
∏
k

ξk, (2.5)

where

ξk =
∑
nk

e−β(εk−µ)nk (2.6)

and µ is the chemical potential. Let us now consider a system of identical fermions. The
Pauli principle allows only a single particle in each quantum state, hence the occupation
number nk can only be either 0 or 1. It follows:

ξk = 1 + e−β(εk−µ) (2.7)

Plugging this result in equation 2.2 we can write the average number of particle in the
state k, also known as the Fermi Dirac distribution:

〈Nk〉 =
1

eβ(εk−µ) + 1
. (2.8)
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Figure 2.1: Fermi-Dirac distribution for increasing degeneracy parameter µ/kBT , from
lighter to darker color.

Let us now discuss how to calculate the average total number of fermions, 〈N〉 =
∑

k〈Nk〉,
in two different cases relevant for this work: the free homogeneous gas and the trapped
gas.
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Homogeneous gas

For a free Fermi gas, in the volume V , the index k corresponds to the momentum of the
particle p. Provided that the volume is large compared to all the other length scales we
can replace the summation

∑
p with the integral V/~2

∫
4πp2 dp:

〈N〉 = 4π
V

~3

∫ ∞
0

dp p2 1

ξ−1eβεp + 1
=
V

λ3
Li3/2(ξ), (2.9)

where λ = ~/
√

2πmkBT is the thermal de Broglie wavelength, m the mass of the particle,
ξ = eβµ is the fugacity and Lis is the polylogarithm function1 of order s.

Trapped gas

The second very relevant case in ultra-cold atoms experiments is the trapped Fermi gas.
The density is not homogeneous anymore and increases with the depth of the trapping
potential Vtrap. Assuming this potential to vary slowly on the scale of the de Broglie
wavelength, we can take into account the inhomogeneities using the so-called local density
approximation (LDA)[22, 23, 24]. The assumption is that thermodynamic equilibrium
holds in every infinitesimal volume ∆V of the system. Each volume, described by its
position r, is considered as an independent system, characterized by the local chemical
potential µ defined as:

µ(r) ≡ µ0 − Vtrap(r), (2.11)

where µ0 is the maximum chemical potential, which is in the center of the trap. Dividing
equation 2.8 by the infinitesimal volume we obtain the local density:

n(r) =
4π

~3

∫ ∞
0

dp p2 1

e−βµ(r)eβεp + 1
=

1

λ3
Li3/2(ξ(r)). (2.12)

This result will be extremely useful from an experimental point of view because it allows
to estimate the temperature of the trapped sample studying its density distribution, which
is an experimental observable.

2.1.2 Energy per particle

Contrary to the classical case, because of the Pauli exclusion principle, the energy per
particle in a Fermi gas at zero temperature is different from zero. At T = 0 all the
particles of the gas fill all the energy states from the lowest up to the Fermi energy εF .
In the homogeneous case, in absence of any trapping potential, the energy is fixed by the
total number of particle N and the volume V :

N

V
=

∫ ∞
0

dερ(ε)n(ε)
T→0
=

gsm
3/2

√
2π2~3

∫ εF

0
dε
√
ε, (2.13)

1The polylogarithm function is defined by the series expansion:

Lis(ξ) =

∞∑
l=1

(−1)l+1ξl

ls
(2.10)
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where we introduced the density of states ρ in thee dimension is defined as:

ρ(ε) =
gsV√
2π2

m3/2

~3

√
ε, (2.14)

being gs the spin degeneracy (all the spin states are supposed to be equally populated).
In the second passage of equation 2.13 we used the zero temperature limit of the mean
occupation number:

nεT→0 =

{
0, if ε > εF

1, if ε < εF
. (2.15)

Solving for εF one obtains:

εF =
~2

2m

(
6π2

gs

N

V

)2/3

, (2.16)

from which the energy per particle is:

ε0 =
gsm

3/2

√
2π2~3

∫ εF

0
dε
√
εε =

3

5
εF . (2.17)

Energy per particle: trapped gas

If we now consider a trapped Fermi gas, we can find the Fermi energy by plugging in Equa-
tion 2.13 the proper density of states. In the case of harmonic confinement, characterized
by the frequencies ω = (ωxωyωz)

1/3, an energy state is univocally determined by three
quantum numbers nx, ny, nz corresponding to the harmonic oscillator level along the three
spatial axes:

εnx,ny ,nz = ~(ωxnx + ωyny + ωznz). (2.18)

Moreover, the density of state is [25]:

ρ(ε) =
ε2

2(~ω)3
. (2.19)

From here, the Fermi energy is given by:

εF = ~ω
(

6N

gs

)1/3

(2.20)

2.1.3 Atom number fluctuations

The atom number fluctuations, along with density, is a very important observable. In
Chapter 5 we will use this concept both to monitor the temperature and the possible
presence of magnetic domains in our system. Here we derive the expression of atom
number fluctuations for a non-interacting Fermi gas, which will be used in Section 3.3.8 as
a sanity check for our experimental and analysis procedure.
In order to intuitively understand how Fermi statistics affects the atom number variance
let us consider the simple picture of a few identical fermions inside a box as shown in
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Figure 2.3. Our observable is the number of particle Nv contained inside a smaller volume
v (orange square). Because of the Pauli principle, two identical particles can not have the
same quantum numbers, therefore, to take this into account, we can qualitatively think
that the minimum distance between two fermions should always be bigger than the de
Broglie wavelength λdB. As a consequence, while at high temperature λdB

T→∞
= 0 all the

particle can freely occupy any position in space, at low temperature, when λdB starts to
be of the order of the inter-particle spacing, the particles occupy more evenly the volume
of the box. While the mean number 〈Nv〉 of particles inside the volume v is not affected
by the temperature, the number fluctuations depend on it. In the high temperature limit
(sketch A in Figure 2.3) one finds the classical Poisson statistics [26]:

Var(Nv) = 〈Nv〉, (2.21)

while in the low temperature one, when the gas progressively becomes a degenerate Fermi
gas (sketch B and C), the atom number fluctuations are reduced [27, 28, 29, 30, 31].

From a purely intuitive point of view, in the high-temperature scenario of panel A, if one
measures many times the number of atoms inside the volume v, he will find a number
ranging freely from 0 to 10. On the other hand, in panel C, he will hardly find a number
of particles different from 1, 2, or 3, which results in a lower variance of the number of
atoms.

Figure 2.2: Illustration of the number fluctuations reduction in real space due to the
Pauli exclusion principle. One can think that two identical fermions cannot be closer
than the de Broglie wavelength, sketched as a dashed black circle. In panel A we show
the classical limit: the de Broglie wavelength is negligible and the particles can occupy
any position in space. In the observation volume, sketched as an orange square, the
number of particles follows a Poisson statistics [26]. As the temperature drops below
the Fermi temperature, as shown in panel B and C, the particles tend to fill up more
equally the volume because of Fermi pressure and the number variance in the observation
volume is therefore drastically reduced. In other words, while in panel A, for different
realizations, the number of particles inside the volume can freely vary from 0 to 10, in
panel C it is hardly different from 1 or 2. Since the mean number of particles is the
same, the ratio between variance and the average number decreases together with the
temperature.

In order to quantitatively write the atom number variance of a non-interacting Fermi gas
one can start from the definition of variance and of the grand-canonical partition function
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(see equation 2.8):

〈(∆N)2〉 =〈N2〉 − 〈N〉2 =
Z ′′GC
ZGC

−
Z ′2GC
Z2
GC

(2.22)

=

(
kBT

∂

∂µ

)
Z ′GC
ZGC

=

(
kBT

∂

∂µ

)2

log(ZGC) (2.23)

=kBT
∂〈N〉
∂µ

, (2.24)

where the apostrophe symbol indicates the derivative with respect to the chemical poten-
tial. This result is nothing else but the fluctuation-dissipation theorem [32], which links
together temperature and fluctuations, and allows us to use the atom number variance as
a thermometer for our gas.
In order to compare this result with experimental observables we first need to define our
observation volume V and explicitly differentiate the mean atom number contained in the
volume by the chemical potential. The volume V corresponds to a parallelepiped of which
the base is a pixel of our imaging (or super-pixel as we will describe in section 3.3) and the
height crosses all the atomic cloud. Since our sample is harmonically trapped, the local
density is given by equation 2.12, therefore we can write the mean and the variance of the
number of atoms in the volume as [33, 34, 35]2:

〈N col
i,j 〉 = A

∫ ∞
−∞

ni,j(z) dz =
kBT

~ωz
A

λ2
dB

Li2(ξi,j) (2.26)

and

(∆N col
i,j )2 = A

∫ ∞
−∞

(∆ni,j(z))
2

V
dz =

kBT

~ωz
A

λ2
dB

Li1(ξi,j), (2.27)

where ωz is the harmonic frequency of the trap along the imaging direction and the indexes
i and j define the position of the pixel (or super-pixel) of area A. One can notice that
these two expressions are identical except for the index of the polylogarithmic function.
By taking their ratio one can directly link two experimental observables to the fugacity:

(∆N col
i,j )2

〈N col
i,j 〉

=
Li1(ξi,j)

Li2(ξi,j)
. (2.28)

We can now numerically solve this equation for the local temperature T/TF to find the
relation between temperature and fluctuations (plotted in Figure 2.3). In the low tem-
perature limit, the variance per number of atoms increases linearly with the temperature,
making the fluctuations a very sensitive thermometer. For T > TF one recovers the Poisson
statistics expected for a classical gas [26].

2Here we use the following polylogarithm relation:∫ ∞
−∞

Lis(ξe−x
2

) dx =
√
πLis+1/2(ξ) (2.25)
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Figure 2.3: Atom number variance as a function of the temperature of the Fermi gas.
The curve is obtained by numerically solve equation 2.28. For T � TF the variance
grows linearly and can be used as a sensitive thermometer for the gas. For T � TF one
recovers the classical statistics, i.e. the Poisson distribution (∆N)2 = 〈N〉.

2.2 Interacting Fermi gas

Ultra-cold gas experiments are one of the best platforms to study many-body phenom-
ena and the reason is simple: they let us start from what we know and gradually add
complications later on, in a bottom-up approach. With interactions, an incredibly rich
world emerges: one can study superfluidity and superconductivity in the so-called BEC-
BCS crossover, one can bring the physics taking place in neutron stars down to a tabletop
experiment in the unitary regime, one can explore the foundation of ferromagnetism from
short-range repulsive interactions. In this section we will introduce the scattering problem
between fermions and we will discuss how one can exploit the internal hyperfine structure
of lithium atoms to experimentally tune the inter-particle interactions via the so-called
Feshbach resonance [36, 37].

2.2.1 Introduction to the scattering problem

The collision between two particles can be represented in the center of mass reference frame
by the scattering of a single particle of reduced mass3 µ with the interaction potential V .
We can find the stationary states of the problem by solving the equation:

(H0 + V )|Ψ〉 = E|Ψ〉, (2.29)

whereH0 is the free-particle hamiltonian, E is the energy and |Ψ〉 the particle wavefunction.
The solution is given by the so called Lippmann-Schwinger equation [38]:

|Ψ〉 = |Φ〉+
1

E −H0 + iε
V |Ψ〉, (2.30)

which, in coordinate space can be rewritten as [39]:

Ψ(r) =
1

(2π)3/2

[
eik·r + f(k,k′)

eikr

r

]
, (2.31)

3The reduced mass µ is defined by µ = m1m2/(m1 +m2), where m1 and m2 are the masses of the two
particles involved in the collision
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where k is the initial wave vector and k′ the scattered one. We also introduced the
scattering amplitude f(k,k′) which is defined by:

f(k,k′) ≡ −(2π)2m

~2

∫
dr′

eik
′·r′

(2π)3/2
V (r)Ψ(r) (2.32)

This quantity represents the probability amplitude of the outgoing spherical wave as result
of an incoming plane wave and fully characterizes the interactions between the two particles.
Its modulus squared is the scattering cross section:

dσ

dΩ
= |f(k,k′)|2, (2.33)

where Ω is the solid angle. We can simplify this equation by considering the case of elastic
scattering and spherically symmetric scattering potential. From the first assumption we
know that |k| = |k′|, therefore, we can reduce the number of variables to just the scattering
angle, described by θ and φ, and the wave-vector modulus k = |k|. Moreover, the scattering
amplitude, which is a priori a vector if one considers the internal degrees of freedom of
the atoms, in the limit of elastic scattering, it is a scalar quantity. The second assumption
allows us also to exclude the angle φ, which describes the direction in the symmetry plane.
Both assumptions are well justified in the context of our experiments since the collision
cannot change the internal state of each particle (elastic scattering) and the inter-particle
potential (Van Der Waals) has spherical symmetry. In the end, we have:

f(k,k′)

elastic
scattering→ f(k, θ, φ)

central
potential→ f(k, θ). (2.34)

2.2.2 Ultra-cold scattering

Let us now discuss the specific case of scattering between lithium atoms at very low tem-
perature. The inter-particle interactions mostly come from the van der Waals force, which
is the result of the mutual dipolar interaction induced by fluctuations and of the short-
range Coulomb repulsion between the nuclei. The combination of the two is described by
the Lennard-Jones potential:

V (r) =
A

r12
− B

r6
, (2.35)

In the context of ultra-cold atoms experiments, this potential is short-range since it becomes
completely negligible as soon as r becomes of the order of magnitude of the average inter-
particle distance. Moreover, a great simplification of the scattering problem comes from
the fact that the collision process occurs at low momentum, corresponding to a wavelength
much larger than the range of the inter-particle potential: r0 � 1/k. In this regime, since
the atomic wave-function is delocalized with respect to r0, the details of the potential do
not influence the collisional properties and, as a consequence, the potential can be modeled
as the product of a regularized spatial delta function and a constant coefficient. One can
therefore fully characterize the interactions in the system using a single parameter.
In order to understand this concept, it is useful to expand the scattering wave function
on a spherical-wave basis. The reason is that only the very first few wave functions of the
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basis contribute to the actual scattering wavefunction, drastically simplifying the scattering
problem. This expansion can be written as:

ψ(r) =
∞∑
l=0

l∑
ml=−l

Y m
l (θ, φ)

uk,l,ml(r)

r
→

∞∑
l=0

Y 0
l (θ)

uk,l(r)

r
, (2.36)

where Y l
ml

are spherical harmonics and uk,l,ml is the radial wavefunction. In the second
passage we removed the dependence from the azimuthal angle φ exploiting the spherical
symmetry of the Lennard Jones potential. Plugging this result in the Schrödinger equation
2.29 one finds the effective one-dimensional equation for each radial wave function uk,l(r)
separately:[

d2

dr2
+ k2 − l(l + 1)

r2
− 2m

~2
V (r)

]
uk,l(r) = 0, (2.37)

The power of the partial spherical-wave expansion comes from the fact that, because of the
third term, i.e. the centrifugal term, in the ultra-cold regime all the waves with l 6= 0 can
be neglected. The reason is that, in this regime, the kinetic energy is much lower than the
centrifugal barrier and, in the scattering process, the incoming particle is simply reflected
and does not feel the details of the short-range potential (a more rigorous argument can be
found in reference [40]). Since the only partial wave affecting the scattering is the s-wave,
i.e. the one with l = 0, identical fermions do not interact in the ultra-cold regime. Their
wave function must, in fact, be antisymmetric, which corresponds to odd values of l.
From now on we will consider only the scattering between two distinguishable fermions,
which in our experiment are two lithium-6 atoms in a different hyperfine state. The solution
of equation 2.37 for s-wave scattering and large distances, i.e. r � 1/k, can be written as:

uk,0(r) ' sin (kr − δ0(k)) , (2.38)

where we introduced the s-wave phase shift δ0(k). In the low-energy limit the scattering
amplitude can be rewritten as [41]:

f =
1

k cotδ0(k) + ik
' 1

1
a + reff k2

2 + ik
, (2.39)

where we introduced the effective range re, which depends on the details of the interaction
potential, and the scattering length a which is defined as:

a = − lim
k→0

tan δ0(k)

k
. (2.40)

It is important to notice that if |k2reff| � |a−1 + ik|, the so called zero-range limit, the
scattering amplitude does not depend anymore by the details of the scattering potential and
the inter-atomic interactions are completely characterized by the scattering length and the
relative momentum. In the limit of k � a−1 the gas enters in the so called unitary regime,
in which the inter-particle interactions are the strongest allowed by quantum mechanics
[42] and are only limited by the collision momentum f = 1/(ik). Finally we can write the
s-wave scattering cross section for vanishing momentum (k → 0) as:

σ0 =
4πa2

1 + k2a2
. (2.41)
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A second important limit is (|a| � k−1), in which the only relevant parameter for the inter-
particle interactions is the scattering length a and we can write the scattering potential as
proportional to a delta-like function [42]:

V (r) =
4π~2

m
aδ(r). (2.42)

The bigger is a, the higher is the the interaction strength while its sign defines if the
interaction is attractive (a < 0) or repulsive (a > 0).

2.2.3 The Fano-Feshbach resonance

Up to now, we have completely neglected the internal structure of the two colliding atoms,
which, due to the coupling of the nuclear spin to the electron spin via the hyperfine
interaction, can drastically change the interaction property thanks to the so-called Fano-
Feshbach resonance [6]. The presence of these resonances is an additional tool that makes
6Li an exceptional element for ultra-cold gases experiments. They can, in fact, be exploited
to tune the inter-particle interactions at will, from attractive to repulsive, from the weak
interacting to the unitary regime.
For alkali atoms, the Feshbach resonance involves the presence of two different scattering
potentials, which correspond to the singlet and triplet configuration of the electron spin.
These two potential are coupled by the hyperfine interaction, which is not diagonal in the
total electron spin of the two colliding atoms [41].

triplet

singlet

bound state

Figure 2.4: Triplet (black solid line) and singlet (orange solid line) scattering potential
for two colliding atoms. The energy separation between the singlet bound state and the
scattering threshold (dashed gray line) can be experimentally tuned by applying a bias
magnetic field. The crossing of these two energies gives rise to a Feshbach resonance,
which can be exploited to control the inter-particle interactions in the system.

At low temperature, as soon as the difference between the asymptotic values of the singlet
and the triplet potential (see Figure 2.4) becomes much larger then the thermal energy, the
continuum states of the former potential stops to be available because of energy conserva-
tion and the channel is referred as closed channel. The triplet potential is instead called
open channel since the atoms can enter and leave the scattering region. If the energy of a
bound state of the closed channel potential approaches the energy of an incoming particle
in the open channel, the two potentials become coupled and the phase-shift δ0(k) of the
scattered wave is heavily affected giving rise to the so-called Feshbach resonance. Since the
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magnetic moment of the singlet and triplet potentials are different, we can experimentally
tune the energy splitting between open and close channel by changing a bias static mag-
netic field and therefore control the inter-particle interactions in the system at will. On a
phenomenological level, the effective scattering length close to a Fano-Feshbach resonance
can be written as [43]:

a(B) = abg

(
1− ∆B

B −B0

)
(2.43)

where abg is the off-resonance background scattering length, ∆B is the width of the reso-
nance and B0 its center. The Feshbach resonances between the three lowest lowest hyper-
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Figure 2.5: Scattering length as a function of the bias magnetic field for different hyperfine
mixtures of lithium-6 atoms. Positive values of scattering length correspond to repulsive
interactions, negative values to attractive ones. Data adapted from reference [44].

fine states of lithium-6, referred as |1〉, |2〉 and |3〉 are shown in Figure 2.5. These three
resonances have an extremely large width, around 300G, which is a very favorable feature
for cold-gases experiments for two main reasons. The first is practical: the larger is the
resonance, the easier is to experimentally tune the scattering length since less stability on
the bias magnetic field is required. The second is more fundamental: in the case of broad
Feshbach resonances the microscopic potential details are completely decoupled from the
scattering problem since the effective range of the scattering potential becomes smaller
than the Van Der Waals range itself [6].

2.2.4 The attractive and repulsive branches

In the previous section, we have outlined the basic features of the atom-atom scattering
potential of a two-component Fermi gas and how we can experimentally control the interac-
tion strength exploiting a Feshbach resonance. Now we want to discuss the consequences of
these interactions on the energy spectrum of a many-body system consisting of a fermionic
mixture in two different hyperfine states. This is indeed a very challenging problem and
still a state of the art theoretical topic. As soon as the interaction parameter kFa becomes
of the order of 1, one can not find an obvious small parameter to characterize the system
and any theoretical description becomes extremely difficult [45]. In this section, we intro-
duce the problem in a qualitative way using the toy model developed in Reference [46].
The aim is to intuitively approach the concept of the upper and lower branch without any
claim of being quantitatively rigorous.
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Let us consider an ultra-cold Fermi mixture of N particles of mass m in two different
quantum states labeled as |i〉 and |j〉. We introduce the effect of the Pauli exclusion
principle by imposing that the particle wavefunction φ(r) must vanish on the surface of a
sphere of radius R, limiting this way to R the minimum distance allowed for the position
of two identical fermions [46]:

φ(r)
∣∣
|r|=R = 0, (2.44)

where the value of R can be obtained by comparing the zero-point energy of a particle con-
fined on a sphere of radius R, E = (N/2)(~2π2)/(mR2) to the energy of a non interacting
Fermi gas E = (3/5)NεF , which leads to:

R =
π

kF

√
5

3
(2.45)

In order to solve the Schrödinger equation is advantageous to introduce a second boundary
condition called the Bethe-Peierls condition (also known as contact condition):

lim
r→0

∂r(rφ)

rφ
= −1

a
(2.46)

This condition is equivalent to neglect the effective radius reff in the expression of the
scattering amplitude (see equation 2.39), which is indeed a good approximation for the
broad Feshbach resonances of lithium-6. The first two lowest energy solutions of the
Schrödinger equation are shown in Figure 2.6 as a function of the dimensionless interaction
parameter −1/(kFa), where kF is the Fermi wave-vector. As a sanity check for the model

4 2 0 2 4
1/(kFa)

2

1

0

1

2

E/
N 

(
F)

BEC

BCS

Figure 2.6: First two lowest energy solutions of the energy spectrum of an interacting
Fermi gas as derives by the two-body model described in Reference [46] (black solid
curves). The ground state is named lower or attractive branch. The first excited state,
upper or repulsive. For vanishing interaction strength the energy of a non-interacting
Fermi gas is recovered (orange dashed line): E/N kF a→0

= (3/5)εF .

one can notice that at the low interaction limit, i.e. |1/(kFa)| � 1, the total energy
approaches indeed the value expected for a non-interacting Fermi gas: E/N = (3/5)εF .
The two lowest energy solutions are usually named lower (attractive) and upper (repulsive)
branch.
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The lower branch

The lower branch is the ground-state of the many-body system. For positive scattering
length a two-body bound state emerges with binding energy given by [47]:

Eb = − ~2

ma2
(2.47)

This atom pair is also known as Feshbach molecule and has a characteristic size of the order
of the scattering length. At very low temperature, as soon as the collision energy is much
lower than the binding energy, the fermionic nature of the atoms becomes hidden and the
molecule starts to behave like a single boson. The gas can eventually form a Bose-Einstein
condensate and that’s why the a > 0 region of the Feshbach resonance is commonly named
BEC side. On the other hand, for negative values of the scattering length and sufficiently
low temperature, one expects the formation of Cooper-like pairs and a transition to the
superfluid BCS state as predicted by Leggett [48]. On top of the Feshbach resonance,
1/(kFa) = 0, the so-called unitary limit, the scattering amplitude saturates to 1/k and all
the relevant scales are set by a single parameter: the Fermi energy εF [24]. In this limit,
the model predicts a smooth transition between the BEC and the BCS side, the so-called
BEC-BCS crossover [49, 43, 50]. The energy of the system is positive but smaller than the
non-interacting Fermi gas, indicating an effective attraction.

The upper branch

The first excited state of the many-body system is called the upper or repulsive branch. In
this branch the inter-particle interactions are repulsive and short-range, making the system
a perfect candidate to study the physics of itinerant ferromagnetism, which describes the
properties of a material in which the magnetic moments are not localized in space but are
instead mobile. This concept was introduced by Stoner back in the thirties to describe
the magnetic behavior of mobile electrons in the conduction band of metallic materials
[1]. His physical idea, the Stoner model, describes how, when the screened Coulomb
interaction energy between electrons overcomes the Fermi pressure, a ferromagnetic phase
is energetically favored over a paramagnetic one.
In the language of ultra-cold atoms the model can be translated in the following exam-
ple: let us consider a two-component Fermi gas in a trap, with short-range tunable re-
pulsive interaction (for example the |1〉-|3〉 6Li mixture in the repulsive branch) at zero
temperature. In the zero interaction limit, the fermions fill all the trap levels up to
the Fermi energy εF as sketched in the left panel of Figure 2.7. In the opposite limit
of extremely large interactions, the two spin components strongly repel with each other
and the system minimizes the interaction energy by forming magnetized domains at the
cost of increased kinetic energy (right panel of Figure 2.7). The Stoner model predicts a
phase transition between these two regimes for a critical value of the interaction parameter
(kFa)c = π/2. More recent studies step beyond the mean field approximation and predict
the phase transition to occur at (kFa)c ' 1. Between them one can mention the References
[51, 52, 53, 54, 55, 56, 57, 58, 11, 59].
While the Stoner idea is very simple, the experimental test of his theory is extremely
challenging if not impossible. The main issue is that any strong short-range repulsive
interaction is fundamentally based on an underlying attractive potential which supports a
weakly bound molecular state [60]. In the ultra-cold language, this statement is equivalent
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Figure 2.7: Intuitive idea of the ferromagnetic phase transition in the Stoner model. For
low repulsive interaction parameter (left panel), the system consists of a paramagnetic
mixture of two spin components (black and orange). For strong repulsion (right panel),
the different atoms repel with each other and the system minimizes the interaction energy
by spatially separating the two spins forming two ferromagnetic domains. The paramag-
netic to ferromagnetic phase transition is driven by the competition between the repulsive
interaction energy and the Fermi pressure. The data are adapted from reference [46].

to say that the repulsive upper branch is not the real ground state of the system, hence it
is unstable to the decay into the lower branch.
From a purely formal point of view, in the Stoner model, the ferromagnetic phase is a
proper ground-state of the system and therefore it should not be possible to observe it in
ultra-cold gases experiments. On the other hand, real ground states can be rarely observed
in Nature, basically, everything is metastable and what really matters is the comparison
between the timescale associated with the physical phenomena we are probing and the
lifetime of the relative state. Following this idea, the itinerant ferromagnetism can be
regarded as a metastable and transitory phase which one can observe by rapidly quenching
the repulsive interactions in the system and monitor its response in time. This approach,
already exploited in Ketterle’s group at MIT [4, 61, 62, 5], is the one we adopted in the
work described in this thesis.

Preparation of the repulsive Fermi gas

What do we mean by a quench in the interaction strength? And how can one produce a
repulsive Fermi gas avoiding to directly populate the ground state of the system during the
cooling procedure? What is the timescale associated with the hypothetic ferromagnetic
phase transition, and how it compares with the decay rate of the system into the lower
branch?
The main physical process which causes the decay of the upper branch population to the
lower one, as we will establish in chapter 5, is the molecular formation via three-body
recombination [63]. The process involves three atoms: two of them form a dimer and
the third ensures the conservation of energy and momentum, carrying away the excess of
kinetic energy. The rate associated with this recombination heavily depends on the shape
of the wavefunction of the final molecular state. The lower is the interaction parameter,
kFa → 0+, the higher is the binding energy of the molecule and the smaller is its size,
which qualitatively scales as the scattering length a [47]. The probability associated with



Chapter 2. Theory 19

the molecular formation depends on the Frank-Condon overlap between the wavefunctions
of the initial and the final states. As shown in Figure 2.8, the process related with the
creation of a deeply bound dimer is therefore suppressed because its wavefunction is more
and more localized for smaller a and it would require the three free atoms to be at a
progressively smaller relative distance to occur. As a consequence, for kFa � 1, the
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Figure 2.8: Qualitative behavior of the energy per particle in the upper branch (black
line) and the pairing rate (orange line). For kFa � 1 the weakly repulsive gas is stable
and can not decay into the lower branch because the wavefunction overlap between the
atomic and the molecular state is negligible. On the other hand, as soon as kFa becomes
of the order of 1, the decay channel from the upper to the lower branch becomes very
efficient and the repulsive gas rapidly decays into the ground-state of the many-body
system. The pairing rate is expressed in the unit of the inverse of Fermi time calculated
using the three-body recombination theory in Reference [63] which is compatible with
our measurement shown in chapter 5.

molecular formation is practically suppressed and the upper branch is the lowest accessible
energy state of the system. Exploiting this property one can produce a weakly repulsive
Fermi gas by cooling the gas at a sufficiently low scattering length (see section 3.1.3).
In order to study the physics of itinerant ferromagnetism one needs to approach interaction
strengths of the order of kFa = 1. In this region the size of the Feshbach molecules
becomes of the order of the inter-particle spacing and the decay into the lower branch
becomes extremely fast, on a timescale of the order of few Fermi times, which is namely
the minimum collective response time in interacting fermionic systems [64] and it is defined
starting from the Fermi energy as τF = ~/εF . It is therefore extremely challenging to
experimentally quench the interaction parameter in the system in such a short time. One
possibility, exploited by the MIT group [4, 61, 62, 5], is to rapidly sweep the Feshbach
magnetic field to change the scattering length. Our strategy is instead to adopt a pump-
probe scheme, which is widely used in solid-state experiments [12, 13]. We use a series
of two radio-frequency pulses to first selectively quench the system into the upper branch
and then to probe its out-of-equilibrium dynamics. As we will report in chapter 4 and 5,
this technique will allow us to probe the upper branch of the repulsive Fermi gas up to
strong coupling and finally study the interplay between the pairing and the ferromagnetic
instabilities.
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Chapter 3

Experimental setup

In this chapter, I describe the experimental sequence we follow to cool and probe clouds
of fermionic 6Li atoms. In the first part, I relate about the experimental setup and the
cooling sequence, which allows us to repeatedly produce degenerate non-interacting Fermi
gas clouds, the starting point of all the experiments described in this work. Here the basic
setup is only quickly sketched and details about the experimental infrastructure can be
found in reference [65].
In the second part of the Chapter, I describe the two main probing techniques we employ
in our experiments: the radio-frequency (RF) spectroscopy and the absorption imaging. I
describe how we employ RF pulses to both calibrate the Feshbach field and to probe the
energy spectrum of the gas. Moreover, I sketch our experimental scheme, describing the
amplification circuit and the antenna.
I introduce the basics of the absorption imaging in low and high-intensity light conditions
and about the calibration of the number of atoms. I give details of the optical system and
the acquisition apparatus, describing their features and limitation concerning the spatial
resolution, the signal to noise and the acquisition speed. Moreover, I present a dispersive
imaging technique, the phase contrast imaging, which allows to produce signals with oppo-
site signs from two different hyperfine spin states. I conclude by illustrating the procedure
we employed to extract information about the density and spin density fluctuations and
the calibration of the method exploiting the known equation of state of an ideal Fermi gas.

3.1 Production of a weakly repulsive Fermi gas

In this section we will outline our experimental scheme to repeatedly produce cold non-
interacting Fermi gas clouds, the starting point of all the experiment reported in Chapter
4 and 5. We will describe the vacuum system and the cooling technique, mostly focusing
on the last evaporation stage.

3.1.1 Ultra-high vacuum system

Our vacuum system, sketched in Figure 3.1, consists in the oven, the Zeeman slower and
the science chamber. Inside the oven an artificially enriched 6Li sample is heated up
to 420◦ to produce a significant vapor pressure and create an atomic beam which is then
collimated by a copper cold finger. The beam passes through the Zeeman slower [41, 66, 67]
which decelerates the atoms down to around 60m/s before they finally enter in the science
chamber where they are captured in a magneto-optical trap (MOT)[41, 66, 67]. The

21
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Figure 3.1: Sketch of the Ultra-High-Vacuum system. The lithium vapor is first produced
in the oven (not drawn), it is decelerated via the Zeeman slower and it’s finally cooled
and trapped in the science chamber. The actual experiment takes place inside the science
chamber, where the pressure is ∼ 10−11 mBar.

science chamber is a custom-made octagonal stainless-steel cell from Kimball Physics, on
its vertical axis it has two large re-entrant view-ports allowing for a high-resolution imaging
system. The pressure in this last segment is kept below 10−11 mBar in order to guarantee
a sufficiently long lifetime of the atomic sample [68]. The pressure gradient between the
oven and the science chamber is achieved by using three Agilent 75 l/s ion pumps and by
the non-evaporative getter (NEG) coating applied to the chamber’s walls. The detailed
description of the ultra-high vacuum system can be found in Reference [65].

3.1.2 Laser sources

For all the experiments reported in this thesis, we used four different light sources: two red
lasers for the first cooling stages and for the imaging, and two infrared ones to generate an
optical dipole trap (ODT) [41].
The hyperfine structure of 6Li is reported in Figure 3.2, on the left we sketch the D1 and
D2 lines at zero magnetic field, on the right the magnetic field dependence of the hyperfine
structure of the 22S1/2 and 22P3/2 states [69]. The hyperfine splitting of the ground state
manifold is 228MHz large, allowing a single light source for cooling and repumper, both
in the MOT and in the D1 cooling stage. We use two Toptica TA-Pro lasers and two
MOPA amplifiers to increase the available power. The two lasers are set to work around
671 nm, locked to the D1 and D2 lithium-6 transitions respectively. The fine tuning of the
wavelength is controlled by a chain of Acousto-Optical Modulators (AOMs)[65]. The D2

laser is also used for the imaging, driving the transition from one of the mj = −1/2 states
to the mj = −3/2 manifold.
For our optical dipole trap we use two high power infrared beams: the IPG, which is
a 1073 nm multi-mode ytterbium fiber laser with a maximum power of 200W, and the
Mephisto, a 1064 nm Nd-YAG laser with a maximum output power of 50W. The power of
these two lasers is set and stabilized by two acousto-optic modulators (AOM) controlled via
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Figure 3.2: On the left the D1 and D2 line structure of 6Li at zero field. The D2 line
is used for the MOT, the imaging and the optical blasting, while the D1 for sub-Doppler
cooling. The orange arrows represent the cooling transitions while the purple one the
repumper, which brings the atoms from the 22S1/2F = 1/2 back to the F = 3/2 state.
On the right the ground state and D2 line splitting in the presence of a bias magnetic
field. The bottom three energy states at high field, labeled as |1〉, |2〉 and |3〉, are the
one used during the experiments described in this thesis. In particular, we will exploit
the fact that the energy distance between them is of the order of 80MHz, which allow us
to transfer the atomic population from one to the other with radio-frequency radiation.

a feedback loop consisting of a photo-diode (Thorlabs DET36A/M), measuring a fraction
of the total light from a transmission leak of a mirror in the laser path, and an analog PID
controller (SRS SIM960). As shown in Figure 3.3 both beams are focused in the center of
the science chamber and they cross each other with an angle of 14◦. They have a similar
waist of about 40µm. In order to increase the trapping volume, the position of the IPG
waist is rapidly varied along the y direction by modulating out of phase the amplitude and
the frequency of the AOM driving signal, increasing the effective waist of the beam up to
80µm.
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Figure 3.3: Sketch of the cooling lights in the science chamber in a top view. In dashed
orange, we show the Zeeman slower beam, in solid red the MOT beams along the x and
y direction. In violet, we show the two crossing optical dipole trap (ODT) beam, the
IPG, and the Mephisto. They cross each other with an angle of 14◦ and an angle of 7◦

and −7◦ with respect to the y MOT beam.

3.1.3 Cooling to quantum degeneracy

In this section, we will present a short overview of our scheme to produce a degenerate
Fermi gas starting from the collimated high-temperature atomic beam quitting the oven.
A detailed explanation of each step can be found in Reference [65].

1. A Zeeman slower [41, 66, 67] decelerates the beam from an average velocity of 800m/s
down to around 60m/s.

2. The slow atomic beam is captured in a magneto-optical trap (MOT) [41, 66, 67]
which loads 109 atoms with a temperature of ∼ 500µK in about 5 seconds.

3. The MOT is switched off and the gas is cooled down to about 50µK with an efficient
sub-Doppler scheme based on gray molasses which exploits the D1 transition [70, 71,
72, 73]. This method was tested for the first time on 6Li atoms by our group and its
detailed description is published in Reference [74].

4. The sample is transferred into the optical-dipole trap and it is cooled down to quan-
tum degeneracy through evaporative cooling [66].

The evaporation sequence is not straightforward but requires careful control of the inter-
particle interaction strength involving several stages which are optimized for different tem-
peratures of the gas. As anticipated in the previous Chapter, the interactions are intro-
duced by exploiting a Feshbach resonance between two different Zeeman hyperfine states,
which can be tuned via a static bias magnetic field. The field is generated using a pair
of large coils in a quasi-Helmholtz configuration, which can produce up to 1000G and a
magnetic curvature up to 5Hz. The coils consist in 8 vertical and 7 horizontal windings of
a hollow core copper wire of section 4.6×4.6 mm. A water flow circulating inside the wire
guarantees sufficient cooling to allow a current of about 140A for 8 seconds without over-
heating the system. The magnetic field is stabilized with a feedback loop which controls
the current by monitoring it with a hall transducer. The precise value of the magnetic field
is calibrated using radio-frequency spectroscopy as described in section 3.2.2.
The scheme of the evaporation sequence is the following:
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1. The IPG beam is turned on at a power of ∼ 140W, corresponding to a trap depth
of about 1mK, to maximize the transfer from the MOT. Immediately after, an ex-
ponential ramp of ∼ 20ms on the laser current brings down its power to ∼ 30W.
Along with this first evaporation section, the Feshbach field is switched on at 832G,
which correspond to the unitary regime of the |1〉-|2〉 mixture, making evaporation
and thermalization extremely efficient.
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2. After this initial very fast evaporation stage in the IPG, the Mephisto beam is
switched on and its power is set to match the IPG one in the waist position. During
the rest of the evaporation, we keep fixed the relative power between the beams by
checking with the vertical imaging the tilt of the atomic cloud. This way we avoid to
excite unwanted oscillation modes which potentially lead to a heating of the sample
and to a decreased signal to noise in our measurements given by lower stability of
the center of mass position.

3. After about one second of evaporation the molecular ground state of the many-body
system becomes accessible leading to the formation of dimers. Since our goal is to
prepare a weakly interacting Fermi gas we anticipate this process by sweeping the
Feshbach field down to 300G where ground state of the system is a weakly attractive
BCS gas, which is stable.
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4. After about one more second of evaporation we transfer the state-|2〉 population
to the state-|3〉 in order to increase the evaporation efficiency since, at 300G, the
scattering length a13 is about three times larger than the a12. To efficiently transfer
the population we first sweep the field to 585 G, where the scattering length of the |1〉-
|2〉 coincides with the one of the |1〉-|3〉 mixture. Here we perform a radio-frequency
(RF) rapid adiabatic passage (RAP) to adiabatically transfer the |2〉 population into
the |3〉 state. The process consists in a 20ms RF pulse during which the frequency
is swept from 10KHz below the bare 2-3 energy splitting up to 10KHz above, which
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allows for a transfer efficiency higher than 99%. Finally, the Feshbach field is swept
back to 300G. The reason why we could not pump the system into the |1〉-|3〉 mixture
before in the evaporation sequence, is because if the temperature is too high we
observe decoherence effects during the RAP, probably induced by collisions, which
do not allow for high transfer efficiencies.
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5. At this point the gas is evaporated until the temperature reaches a temperature of
about 0.1TF , where TF = εF /kB is the Fermi temperature. The measurement of
the temperature is performed through a polylogarithmic fit (see section 3.3.9) of
the density profile of the cloud after we set the Feshbach field to 575G where the
scattering length is negligible and the sample is a trapped non interacting Fermi gas.
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Following this procedure, we are able to produce a degenerate |1〉-|3〉 Fermi mixture at a
temperature of 0.10(1)TF in about 15 seconds. From now on this will be considered as the
starting point for all the experiment described in this thesis.

3.2 Radio-frequency spectroscopy

In this section, I will introduce the radio-frequency (RF) spectroscopy as an essential tool to
probe the energy spectrum of our system and to quench the Fermi gas out of equilibrium,
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into the repulsive upper branch. This is possible because the RF field can couple two
hyperfine states of 6Li atoms and allows for a coherent transfer of the population between
them. We will start by describing its working principle in a two-level system framework
in which two hyperfine levels are coupled by a radio-frequency photon. We will introduce
the effect of interactions in the system within a mean field model and the effect of a finite
temperature of the system within the framework of the impact theory of pressure-induced
effects on spectral lines [75]. A more rigorous description, which extends the RF coupling
to the case of a many-body system, including beyond mean-field effects, is reported in
Chapter 4, where we will connect the spectroscopy signal with the properties of the Fermi
polaron. I will conclude this section outlining the RF scheme employed in our experiment,
describing our RF sources, amplifiers, and finally the RF antenna design.

3.2.1 Rabi flopping in a two-level system

Let us consider two hyperfine manifolds of the ground states of 6Li, |i〉 and |f〉. The Breit-
Rabi energy splitting at high magnetic field is of the order of 80MHz, which corresponds
to a wavelength of a few meters, hence the momentum transferred to the atoms in the
absorption process is completely negligible and the RF transition can be regarded as a
pure spin-flip operation. By setting to zero the energy of the |i〉 state and to ν0 the one
of the state-|f〉, we can write down the Hamiltonian which describes the coupling between
the RF field and the atom as:

H = H0 + VRF =

[
hν0 0
0 0

]
+

~Ω

2

[
0 e−i2πνt

ei2πνt 0

]
, (3.1)

where H0 is the Hamiltonian of the unperturbed atom and VRF is the radiation-atom
coupling term. We also introduces the RF frequency ν and the Rabi frequency Ω, which
is defined as:

Ω =
di,fB
~

(3.2)

where di,f is the magnetic dipole matrix element and B the magnetic field vector. By
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Figure 3.4: Rabi oscillation for zero detuning (black solid line) and for δ = Ω/10 (orange
dashed line). In the presence of a resonant RF field the atomic population oscillates
between the state |i〉 and |f〉 with a frequency Ω. A RF pulse with a duration of t = π/Ω,
which completely transfers the population between the first and the second state, is
named π-pulse.
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working in the so-called rotating frame, we can write the Schrödinger equation as:

i~
d

dt

[
cf
ci

]
= ~

[
2πδ Ω

2 e
−i2πt

Ω
2 e

i2πt 0

] [
cf
ci

]
(3.3)

and look for a solution in the form of |ψ(t)〉 = ci(t)|i〉 + cf (t)ei2πνt|f〉. Assuming that at
t = 0 the system occupies the state |i〉, the time evolution of the occupation probability of
the state |f〉 if given by:

|cf (t)|2 =
Ω2

Ω2
eff

sin2

(
Ωeff

2
t

)
, (3.4)

where we define the effective Rabi frequency as Ωeff =
√

Ω2 + (2πδ)2. The solution, shown
in Figure 3.4, oscillates at the effective Rabi frequency, which has its minimum on top of
the resonance (δ = 0). Moreover, the smaller is the detuning, the higher is the transfer
efficiency, which reaches 1 for a resonant π-pulse, i.e. for t = π/Ω.

3.2.2 Calibration of the Feshbach field

An important use of the RF spectroscopy in our experiment is to finely calibrate the
Feshbach magnetic field, which is fundamental to precisely tune the inter-particle interac-
tions. The high field energy splitting between two of the lowest hyperfine states of lithium
denoted as |i〉 and |f〉 depends on the magnetic field via the Breit-Rabi relation [76] as
shown in Figure 3.5. Once one has measured the energy splitting via RF spectroscopy,
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Figure 3.5: Breit-Rabi splitting between the hyperfine levels |1〉 and |2〉 of 6Li atoms
as a function of the bias magnetic field. Exploiting this relation one can calibrate the
magnetic field measuring the energy splitting via radio-frequency spectroscopy.

he can invert this relation and retrieve the value of the magnetic field. In practice, the
spectroscopy run consists in irradiating a spin-polarized Fermi gas in the state-|i〉 with a
rectangular radio-frequency pulse slightly shorter than a π-pulse (typically 0.8π), scanning
the frequency ν and monitoring the transfer of the atomic population to the hyperfine
state |f〉. In Figure 3.6 we show a typical spectroscopy signal which is fitted using equa-
tion 3.4 to extract the value of ν0. Moreover, its spectral width can be used to verify the
stability of the Feshbach magnetic field. The signal plotted in Figure 3.6 has a 1/e2 width
of ∼ 350Hz which corresponds to a maximum fluctuation of the magnetic field of 50mG:
a larger noise would introduce an additional broadening in the spectroscopy signal. Such
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stabilization, necessary for our spectroscopy measurements described in Chapter 4 and 5,
is achieved controlling the current flowing into through the Feshbach coils via a feedback
loop comprising of an analog PID control (SRS SIM960) which drives the current power
supply and a Hall probe that measures the current flow.
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Figure 3.6: Example of a spectroscopy signal around the |2〉-|3〉 resonance of a spin
polarized Fermi gas. The central frequency is extracted by fitting the signal with equation
3.4. The spectral width of the peak is ∼ 350Hz (Gaussian sigma) which corresponds to
a stability of the magnetic field of about 50mG.

3.2.3 Probe of the inter-particle interactions

In the previous sections, we introduced the Rabi dynamics driven by an RF field in an
isolated two-level system. We now want to release this boundary and study the effect of
interactions in the radio-frequency signal. This will allow us to probe the energy spectrum
of the many-body system consisting in a two-component Fermi gas with repulsive inter-
actions, both in the impurity limit in Chapter 4 and in the balanced Fermi mixture in
Chapter 5. In order to study this problem let us consider the specific case of lithium atoms
interacting through a Feshbach resonance. In Figure 3.7 we show on the left panel the
energy splitting between the lowest three hyperfine Zeeman levels named as |1〉, |2〉 and
|3〉, and on the right panel the scattering length of the |1〉-|2〉 and |1〉-|3〉 mixture for a bias
magnetic field ranging from 600 and 700G. In this range the scattering length a13 is much
larger than a12, hence, for simplicity, we will approximate the latter to zero. Let us now
consider the states |2〉 and |3〉 as our two level system, while the state-|1〉 as an external
bath which introduces finite interactions to the |3〉 level. For the moment let us consider
the limit of zero momentum collision by approximating the forward scattering amplitude
with the scattering length (<[f(k → 0)] ' −a) and the limit of weak interactions. These
two conditions allow for a mean field description of the interaction energy between |1〉 and
|3〉, which can be expressed as:

EMF =
4π~2n1

m
a, (3.5)

where m is the lithium mass and n1 the state-|1〉 atomic density. As sketched in Figure
3.8, in the presence of finite interactions in the final state, the radio-frequency driving
the transition from state-|2〉 to state-|3〉 will be shifted by EMF/h. Experimentally this
energy shift can be precisely measured by comparing the resonance peak position of the RF
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Figure 3.7: On the left the Breit-Rabi splitting of 6Li at high magnetic field. We sketch
in blue, green and red the lowest three hyperfine Zeeman states (|1〉, |2〉 and |3〉). On
the right we plot the scattering length of the |1〉-|2〉 and |1〉-|3〉 mixture around the
1-3 Feshbach resonance. The RF spectroscopy allows to study the 1-3 interactions by
probing the |2〉 → |3〉 transition.

spectroscopy signal in presence and in absence of the state-|1〉 atoms, i.e. with or without
interactions in the final state.
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Figure 3.8: Sketch of the effect of mean field interaction on the radio-frequency spec-
troscopy signal relative to the |2〉 → |3〉 transition. The final energy level is shifted by
the interaction EMF as described in Equation 3.5. This shift can be spectroscopically
measured by probing the 2-3 resonance frequencies νMF and ν0, in presence and ab-
sence of state-|1〉 atoms respectively. The interactions energy shift is finally obtained as
EMF = h(νMF − ν0).

It is important to mention that the same RF pulse used to probe the interactions in the
system can be used also to quench the interaction in the fermionic mixture. This will
be exploited in chapter 4 and 5 in the so-called pump-probe spectroscopy scheme, which
consists of two RF pulses with delay time in between. The first pulse creates a strongly
repulsive mixture |1〉-|3〉 pushing the system out of equilibrium, while the second probes
its evolution as a function of the waiting time.
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3.2.4 Effect of finite collision energy on the RF signal

Let us now release the limit of zero-momentum collision introduced in the previous section
and discuss the effect on the RF spectroscopy signal given by the finite temperature in the
system. We will adopt the framework of the impact theory of pressure-induced effects on
spectral lines [75] which links the shift and the broadening of the spectroscopy signal with
the real and imaginary part of the forward atom-atom scattering amplitude respectively:

h∆ =
2π~2

µ
<(〈f〉)n, (3.6)

hω = 2
2π~2

µ
=(〈f〉)n, (3.7)

where ω is the full width at half maximum of the spectroscopy signal, µ the reduced mass,
n the atomic density and 〈f〉 the average of f over all the atom-atom collision energies
Ecoll = ~2k2

coll/(2µ). For s-wave collision the scattering amplitude can be written as (see
section 2.2.1):

f(kcoll)

a
= − 1

1 + (kcolla)2
+ i

kcolla

1 + (kcolla)2
. (3.8)

We can explicitly rewrite the RF shift and its broadening normalized by the Fermi energy
as:

h∆

εF
= − h

εF
hn

2

m

a

1 + (ka)2
= − 4

3π
kFa

1

1 + εcol
εb

n (3.9)

and

hω

εF
= − h

εF
hn

2

m

ka2

1 + (ka)2
= − 8

3π
kFa

√
εcol
εb

1 + εcol
εb

n, (3.10)

where we introduced the mean collisional energy εcol = ~2k2/m and the binding energy
εb = ~2/(ma2). Moreover, we used the definition of Fermi energy εF = ~2k2

F /(2m) and
the Fermi wave vector kF = (n6π2)1/3. In Figure 3.9 we plot the ratio between the real
and imaginary part of the forward scattering amplitude and the scattering length, which
is the relative correction to the mean-field radio-frequency signal concerning the resonance
shift and the spectral broadening respectively, as a function of the collision energy. This
plot qualitatively describes the effect of a finite temperature in the spectroscopy signal.
A higher temperature, corresponding to a higher collision energy, slightly decreases the
interaction energy shift and increases the width of the spectroscopy signal. In Chapter 5
we will exploit this latter property to exclude the presence of finite momentum collision
effects in our spectroscopy measurements.
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Figure 3.9: Real (left panel) and imaginary (right panel) part of the forward scattering
amplitude as a function of the collision energy, which correspond to the relative change
of the energy shift and broadening of the spectroscopy signal respectively.

3.2.5 Radio-frequency scheme

In the previous sections, we introduced the basics of the interactions between our atomic
sample and radio-frequency pulses, now we will describe how we experimentally generate
and control the field. The RF signal is initially generated from two different oscillator
sources, an HP 83752A synthesized sweeper and a DDS AD9958. Having two distinct
sources is fundamental for the pump-probe spectroscopy protocol which requires a sequence
of two pulses within a small time window and different frequencies. Since we only have
one antenna, the two signals are combined via an RF mixer. After the mixer a variable
attenuator (Mini-circuits ZX73-2500S+) allows us to switch on and off the RF output signal
via a TTL channel of our control board DIO64. This is fundamental to precisely control
the duration of the pulses and the delay between them. The signal is then amplified
by a Mini-circuit amplifier ZHL-100W-GAN+ directly connected to a circular antenna
consisting in a single wire loop with a diameter of 5 cm and 1mm thickness. The antenna
is placed close to the atomic sample (about 3 cm), inside the lower reentrant window of
our science chamber, in order to maximize the atom-field coupling. In order to maximize
the output RF field generated by the antenna, we built an impedance matching circuit,
shown in Figure 3.10, consisting in a resonator centered on a frequency of about 80MHz,
the hyperfine Zeeman splitting between the states |2〉 and |3〉 at high field ∼ 600G (close
to the |1〉-|3〉 Feshbach resonance). The matching condition is obtained by changing the

Figure 3.10: Impedance matching circuit of the RF antenna consisting of a 5KΩ resistor
and two compensators with a capacitance range between 10 and 60 pf. The antenna
consists of a single loop of copper with a diameter of ∼ 50mm and a section of 1mm.

capacitance of two compensators and looking at the absorption as a function of the signal
frequency with a network analyzer. The absorption profile of our antenna, placed close to
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the science chamber, is shown in Figure 3.11. One can see that we achieved a coupling
efficiency better than 90% (−20 dBm) in a frequency range between 78 and 83MHz, which
corresponds to the energy splitting between the state-|2〉 and state-|3〉 for a bias magnetic
field ranging from 600 to 700G. The efficiency will be relevant for the experiments described
in chapter 4 and 5, where we will need the strongest possible RF field to maximize the
Rabi frequency between these two states.
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Figure 3.11: Absorption of the RF antenna as a function of the signal frequency. The
matching circuit is optimized by acting on the two compensator to be resonant around
80MHz, which is the 6Li hyperfine Zeeman splitting between the states |2〉 and |3〉 for a
bias field of about 600G. The final coupling is better than 90% (−20 dBm as marked by
the orange dashed line) in the frequency range between 78 and 83MHz.

3.3 Imaging

The imaging is the bridge that allows us to gather information about the gas sample
contained in our vacuum chamber. In ultra-cold atoms experiment the most important
observable is the density: n(x, y, z). In this section I will describe our imaging system and
present different imaging techniques that we exploited during the work described in this
thesis. I will start introducing the basics of the absorption imaging, the most common
imaging technique in ultra-cold atoms experiments. I will describe its calibration protocol
for probing atomic cloud with high intensity light. Then, I will present a dispersive imaging
technique which allow to probe two hyperfine states in the same imaging shot. Finally I
will describe the procedure we followed to measure the atom number fluctuations in our
atomic sample and some technical setting to the image acquisition sequence we adopted
to improve the signal to noise ratio in the measurement.

3.3.1 Imaging apparatus

Our setup has two different imaging paths, one along the horizontal and one along the
vertical direction. The former has a wide field of view given by a low magnification M =
0.49(2) which allows to image the full size of the cloud trapped in the MOT. The imaging
light has a linear polarization perpendicular to the quantization axis of the Feshbach field
which reduces the atomic scattering cross section by a factor of two. The setup consists
in two lenses in a 2− f telescope configuration, the first one has a focal length of 150mm
and 1 inch diameter, the second one has a focal length of 75mm and a 2 inches diameter.
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The light profile is finally probed with a Stingray CCD camera1. As sketched in Figure
C
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Figure 3.12: Sketch of the vertical imaging 4 − f telescope which focuses the image of
the atomic cloud on the CCD camera chip with a magnification of M = 13.0(2) and
a resolution of about 1.5µm. The razor blades in the middle of the four lenses limit
the light reaching the CCD to a small rectangle containing the atomic cloud, which is
essential to acquire several images within a small time delay exploiting the fast-kinetic
acquisition mode (FKS) of our CCD as described in section 3.3.5.

3.12 , the vertical imaging system, along the z-axis, consists in a 4 − f high resolution
telescope which consists in four 2 inches lenses with focal lengths of 32, 250, 150 and
250mm respectively (from the science chamber to the CCD camera). The first lens has a
high numerical aperture of around 0.61 which allows us to achieve a resolution of about
1.5µm. The imaging light is finally probed with an Andor IXon3 EMCCD camera2 which
is cooled down to −70◦ to drastically reduce the dark count noise. As shown in Figure
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Figure 3.13: The MOT beam and the imaging beams share the same path entering the
science chamber from the bottom window. The two beams are divided by the combination
of a wire grid polarizer (WPG) and a λ/4 wave-plate which reflects the σ+ polarized MOT
light and let through the σ− polarized imaging one. The imaging light is collected by an
aspheric lens and imaged on the CCD camera chip.

3.13, the vertical MOT beam and the imaging light follow the same path, hence, in order to
separate them, we exploit a wire-grid polarizer plus a λ/4 wave-plate to reflect σ+ polarized

1AVT Stingray F-145B. 1388 (H) × 1038 (V) resolution. 6.45µm squared pixel.
2Andor iXon3 X-9260 CCD camera. Model number CCD201-20-1-179. 1024×1024 resolution. 13µm

squared pixel.
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MOT light and let through the σ− polarized imaging one. The overall magnification of the
setup is M = 13.0(2).

3.3.2 Absorption imaging

Absorption imaging consists in imaging the shadow of an atomic sample illuminated by
resonant light. The atoms absorb the incoming radiation causing a reduction of the trans-
mitted intensity. The "shadow" of the atoms is finally imaged on a CCD chip. To model
this process let us consider the atoms as two-level systems coupled with the radiation field
of the imaging light. The relevant parameters are:

• ω0: the atomic resonance (angular) frequency, corresponding to the energy splitting
of the two-level system (~ω0).

• Γ: the linewidth of the atomic transition, corresponding to the spontaneous emission
rate.

• δ: is the detuning in half linewidths,

δ ≡ ω − ω0

Γ/2
. (3.11)

• s = I/Isat: the saturation parameter, i.e. the ratio between the imaging field intensity
and the transition saturation intensity, defined as:

Isat =
~Γω3

0

12πc2
(3.12)

The fluorescent power, i.e. the rate of energy emitted by a sample of N atoms can be
written as [67]:

PF = N~ω0
Γ

2

s

s+ 1

1

1 +
(

δ√
1+s

)2 (3.13)

This relation can be obtained by integrating the Maxwell-Bloch equations (or optical Bloch
equations) where the spontaneous emission term is introduced "by hand" as decay from the
upper to the lower level [66]. It is important to notice that without the relaxation process
given by the spontaneous emission, the atoms would perform Rabi oscillations between
the ground and the excited states, therefore being on average transparent to the imaging
beam. In order for the atoms to cast a "shadow", it is necessary for the Rabi oscillation to
be dumped during the imaging pulse. This condition is easily fulfilled in ultra-cold atoms
experiment: the damping time tD is given by the inverse of the spontaneous emission rate
of the atomic transition Γ, e.g., for lithium tD ∼−1∼ 1/(2π 6MHz) ∼ 25ns, while the
imaging pulse length is always ≥ 1µs.
From equation 3.13, exploiting the conservation of energy, one can calculate the drop of
the laser intensity while the beam travels through the atomic medium. In a distance dz
traveled in the gas, the light intensity decreases by dI:

dI = − 1

A
PF (dz) = −~ω0

Γ

2

s

1 + s

1

1 +
(

δ√
1+s

)2ndz, (3.14)
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where A is the laser beam cross section and n is the atomic density. Solving this equation
one can link the intensity drop to the atomic density, which is exactly the purpose of the
imaging. In the special case of low imaging light intensity (s� 1) and resonant frequency
(δ = 0) the equation 3.17 can be rewritten as:

dI = −~ω0
Γ

2

I

Isat
ndz = −I 3λ2

0

2π
n dz, (3.15)

Starting from this result it is possible to measure the density profile of an atomic cloud.
In the following, I will describe the most common way to measure it experimentally.

3.3.3 Absorption imaging: the experimental implementation

Let us now consider a cloud with a density distribution n3D(x, y, z) and a resonant imag-
ing beam propagating along the z direction with an intensity profile given by I0(x, y).
The density profile is integrated along the direction of the imaging beam and the only
measurable quantity is the integrated density profile:

n2D(x, y) ≡ n(x, y) ≡
∫ ∞
−∞

n3D(x, y, z)dz (3.16)

The intensity profile of the imaging beam after the atomic cloud I(x, y) can be obtained
integrating the equation 3.15 and it is given by the Lamber-Beer law:

I(x, y) = I0(x, y)e−σ0n(x,y), (3.17)

where we introduced the absorption cross section σ0 = ~ω0Γ/(2Is). The density profile is
therefore given by:

n(x, y) =
1

σ0
log
(
I0(x, y)

I(x, y)

)
(3.18)

The intensity profiles I(x, y) and I0(x, y) can be measured using a CCD camera with two
different imaging pulses: the first with the atomic cloud and the second without it. The
CCD actually measures the number of photons that reach each pixel, therefore the intensity
is obtained by:

I(x, y) = C(i, j)
~ω0

g

1

M Apx tpulse
, (3.19)

where C are the CCD counts, M is the magnification of the imaging system, Apx = L2
px is

the area of the CCD pixel of dimension Lpx×Lpx, tpulse is the duration of the imaging light
pulse and g is the CCD gain, i.e. the conversion between number of photons and counts
(see section 3.3.8). The CCD pixel indexes i and j correspond to a position in the object
plane given by the scaling x → i × Lpx/M and y → j × Lpx/M . Finally, the integrated
density profile can be obtained as:

n(x, y) ≡ n
(
i× Lpx

M
,
j × Lpx

M

)
=

1

σ0
log
(
C2(i, j)− Cbg(i, j)

C1(i, j)− Cbg(i, j)

)
, (3.20)

where C1 are the CCD counts with the atom cloud, ∝ I, and C2 without the atom cloud,
∝ I0. We also introduced Cbg, that corresponds to a CCD acquisition without imaging
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light. Csat is called background or the dark image and it is necessary to remove the offset,
present in every acquisition, mainly introduced by the dark current, i.e. the presence of
thermal electrons accumulating in the CCD3. This result is valid for resonant light and
low saturation parameter (s � 1) which is the relevant case concerning our horizontal
imaging. In the next sections I will describe how to obtain the density profile when these
two conditions are not fulfilled.

3.3.4 High intensity imaging

Working in the regime of low imaging light intensity is not always feasible: the higher are
the optical thickness of the atomic sample and the magnification of the imaging system,
the higher is the imaging intensity required to keep constant the signal to noise ratio of
the measured density profile [77].
In order to obtain the integrated density profile for s ≥ 1 one has to integrate directly the
equation 3.17. The result is [78]:

n(x, y) = σ0

[
log
(
C2(i, j)− Cbg(i, j)

C1(i, j)− Cbg(i, j)

)
− C2(i, j)− C1(i, j)

Csat

]
, (3.21)

where we introduced Csat that are the measured CCD counts for an imaging beam with
an intensity I = Isat. In order to find these constant several strategies are available. One
is to estimate the light intensity in the position of the atomic cloud, which can be done
either measuring the power and waist of the imaging beam or the light intensity on the
CCD chip and the magnification of the imaging system. Both these methods end up with
a big uncertainty on the value of Csat. In the first case, most of the experimental error
comes from the determination of the total beam power using a power-meter, while in the
second from the estimation of the light losses of all the optical elements between the atoms
and the CCD chip. Another possible method, which ends up to be the most precise for our
setup, is to calibrate the saturation intensity directly with the atomic cloud: first of all,
we optimize the evaporation sequence to prepare an atomic sample with lowest possible
shot-to-shot total atom number fluctuations. Then we measure the number of atoms using
our low-resolution horizontal imaging, which has a very low magnification (M = 0.49)
and does not suffer from saturation problem since the imaging intensity is much lower
than Isast. Once we know the total atom number we switch to the vertical high-resolution
imaging. At this point, as we can see in the left panel of Figure 3.14, if we do not use
the high-intensity correction to calculate the optical density, as soon as we change the
imaging intensity, the OD drastically changes. Darker colors correspond to low imaging
light intensity, the optical density is big and the signal very noisy. As soon as we increase
the imaging light power, the OD drops and the signal gets cleaner.

3Some CCD camera, like the Andor iXon3 we use, add an artificial baseline or bias level to the output
signal to ensure that the displayed signal level is always a positive number of counts. The Cbg is also
needed to subtract this offset.
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Figure 3.14: On the left the azimuthal average many optical density profiles calculated
without the correction for s ≥ 1 (using equation 3.20). Every line corresponds to a
different experimental run where the imaging beam intensity has been changed by two
orders of magnitude. Darker colors correspond to lower intensity: the optical density
profile is saturated near the center of the atomic cloud, where the optical density is
higher, and the signal to noise ratio is lower. Lighter colors correspond to higher imaging
light intensity: the optical density profile has a better signal to noise but its value is
underestimated because of the saturation of the atomic transition. On the right the
optical density is calculated on the same images using the linear correction for high
imaging intensity (equation 3.21). The optical density profiles collapse one on top of the
others, i.e. they are independent on the imaging light intensity.

Since the atom number in the atomic cloud is constant, the measured optical density must
be constant as well. We can, therefore, find the best value of Csat as the one that minimizes
the difference between the optical densities obtained from different imaging intensities.
In practice, we acquire several images of the atomic sample with jtot different imaging
intensities Ij , ranging from ∼ 1% of the saturation intensity to ∼ 50Isat. We then compute
the optical density using equation 3.21, using different values of Csat. We azimuthally slice
each image obtaining the radial optical density profile OD(r, Csat, Ij), where r represents
the distance from the center of the cloud4. We finally calculate the variance of each slice
for the different intensities:

V(r, Csat) =
1

jtot

jtot∑
j=0

(OD(r, Csat, Ij)− 〈OD(r, Csat)〉Ij )2, (3.22)

where the angle brackets 〈·〉Ij represent the mean over all the different imaging intensities
Ij . In the left panel of Figure 3.15 we plot the variance V(r, Csat) for five different values
of Csat. As one can notice, between the five Csat values tested, 31.2 is the one which better
minimizes the optical density variance. In order to quantitatively find the best value for
Csat, we define as an optimization metric the average of the variance over all the azimuthal
slices. By minimizing this value we finally find the optimal Csat value as showed in the
right panel of Figure 3.15.
Using this result in equation 3.21 we observe a very weak dependence of the optical density
to the imaging light intensity, which is exactly the purpose of the calibrations. As we can

4Since the cloud is cigar-shaped, in order to perform the azimuthal average, we need to squeeze the
image along the x direction to obtain spherically symmetric density distribution.
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Figure 3.15: On the left panel we show the variance of the optical density for each
azimuthal slice of the atomic cloud for 5 different values of Csat. On the right panel we
plot the average of the variance over all the slices as a function of Csat. The best value
is the one that minimizes the variance.

see in the right panel of Figure 3.14, using the optimal value for Csat, the optical densities
corresponding to different imaging intensities collapse one on top of the other.

3.3.5 Experimental imaging sequence

In the previous sections, we described the main aspects of the absorption imaging and we
have seen how to obtain the column density of the atomic cloud by taking three different
images:

1. C1 (atom image), corresponding to a resonant imaging pulse in the presence of the
atoms.

2. C2 (reference image), identical to the first pulse but without the atoms.

3. Cbg (background or dark image), the background obtained with no imaging light to
record the dark noise of the CCD.

The calculation of the optical density involves taking the ratio between C1 and C2, therefore
it is very important for the intensity profile of the imaging beam to be as flat and constant
in time as possible in order to avoid artifacts in the final image. Since the imaging light is
coherent, a common source of problems is the presence of fringes in the beam profile due
to the self-interference with some unwanted reflections by one of the optical element of the
setup. This causes the presence of stripes in the beam profile and, if mechanical vibration
of the setup moves the beam between the two images, these fringes appear also in the
optical density. The typical frequency of these mechanical vibrations is in the KHz range,
hence it is very important to take the first two images with a small time delay between
them, possibly ∆t� 1ms. On the other hand, this time has to be sufficiently long to allow
us to get rid of the atomic cloud before acquiring the reference image, which is achieved by
either waiting for the atoms to fly away or by changing the bias magnetic field and detune
the atomic transition from the imaging light. We usually employ the latter option because
it is slightly faster.
In practice, the delay time bottleneck is typically given by the frame-rate of the CCD
camera, which in our case is on the Hz timescale when we use the full CCD chip. Since
this timescale is way to slow for our purpose we employ the so-called Fast Kinetic Series
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(FSK) acquisition mode, which allows taking a sequence of a few images with a delay time
on the order of ∼ 200µs at the price of using a smaller portion of the CCD chip [79].

3.3.6 Imaging two spin states in the same run: the 5 imaging pulses
sequence

In order to perform the spectroscopy measurement described in Chapter 4 and Chapter 5
it is very useful to image two different spin states, usually state-|2〉 and state-|3〉, within
the same experimental run. In order to achieve this, we extend our images sequence to the
following 5 consecutive imaging pulses:

1. C1a imaging light pulse resonant with state-|2〉 atoms

2. C1b imaging light pulse resonant with state-|3〉 atoms

3. C2a reference pulse resonant with state-|2〉 atoms

4. C2b reference pulse resonant with state-|3〉 atoms

5. Cbg background

We then calculate the optical densities of the states |2〉 and |3〉 by using (C1a, C2a, Cbg)
and (C1b, C2b, Cbg) respectively.
In some of our experimental sequences (described in Chapter 4 and 5), we need to perform
an optical blast just before the imaging. This becomes a problem as soon as the time delay
between the blast and the first imaging pulse is shorter than the opening time of the CCD
shutter, which is of the order of 5ms. In this case, the light of the blast would be captured
by the CCD together with C1a. In order to avoid this, we acquire an additional image
before C1a to collect the light from the blast. This image will be later discarded and the
optical density calculated in the standard way.

3.3.7 Non-resonant imaging

So far we have discussed about resonant imaging techniques, which are used to selectively
probe single hyperfine states of lithium. In this section we will discuss how to exploit non
resonant imaging light to probe two spin states at the same time, which can generate a
signal with opposite sign. There are several techniques which can be used in ultra-cold
atoms experiment such as phase-contrast imaging [80], Faraday imaging [81] and speckle
imaging [62]. In the following we will describe the basics of the first one.

Basic theory for dispersive imaging techniques

To understand the principle of non-resonant imaging techniques it is useful to model the
atomic cloud as a thin lens following the reference [80]. This model consists of considering
the imaging light as an incoming electric field E0 which is attenuated and phase shifted by
the atoms producing an outgoing electric field Eout:

Eout = tE0e
iφ = E0 + ∆E, (3.23)

where t is the transmission coefficient, φ is the phase shift and ∆E is the scattered light.
As already described in the absorption imaging section, the transmission is given by the
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Lamber-Beer law:

t = e−OD(δ)/2 = exp

(
− ñσ0

2

1

1 + δ2

)
, (3.24)

where OD(δ) = ñσ0/(1 + δ2) is the off resonant optical depth of the atomic cloud, being
ñ =

∫
dz n(x, y, z) the column density. The phase shift is given by:

φ = −δOD(δ)

2
= − ñσ0

2

δ

1 + δ2
. (3.25)

Here is important to notice that, while the absorption is independent of the sign of the
detuning, the phase shift varies with it. This is exactly the property that one can exploit
to obtain an opposite response signal from two different hyperfine states: if one sets the
imaging frequency to be between the resonance of the two, one state will produce a positive
shift while the other one negative.

Phase-contrast imaging

Phase plate

Fourier plane

Object plane

CCD
E0 ΔE

Figure 3.16: Sketch of the phase-contrast imaging scheme. The imaging field interacts
with the atomic sample in the object plane. Part of the field is unaffected (E0, in yellow)
and part is scattered by the atoms (∆E in pink). The phase plate, positioned on the
Fourier plane of the imaging, introduces a phase shift between E0 and ∆E of π/2. The
CCD camera finally detects the intensity resulting from the interference between the two
fields.

The phase-contrast imaging is based on the experimental scheme sketched in Figure 3.16:
a transparent phase plate5 is positioned in the Fourier plane of the imaging system. The
phase plate has a phase dimple in the middle which shifts the phase of the light by π/2
with respect to the light passing in the outer region. Hence, the intensity profile generated
on the CCD chip is given by the interference between these two fields. We can write the
average intensity as [80]:

< ICCD >=
1

2

∣∣∣Eout + E0(ei
π
2 − 1)

∣∣∣2 = I0

[
t2 + 2− 2

√
2t cos(φ+

π

4
)
]
, (3.26)

which in the limit of small shift φ becomes:

< ICCD >' I0

(
t2 + 2− 2t+ 2tφ

)
(3.27)

5We use a BK7 phase-plate (n=1.51391 for a wavelength of 670 nm). A circular dimple with a diameter
of 200µm in the middle of the plate introduces a phase shift of π/2.
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In the limit of big detunings, δ � 1, the phase shift scales as 1/δ while the transmission
as 1/δ2. Hence, the absorption can be neglected, t → 1 and, using equation3.25, we can
solve 3.28 for the column density and find:

ñ =
1

σ0

I − I0

I0

δ2 + 1

δ
=

1

σ0

C1 − C2

C2 − Cbg
δ2 + 1

δ
. (3.28)

In Figure 3.17 we show two examples of phase contrast images obtained with an imaging
frequency between the resonance of the state-|1〉 and the state-|2〉. The plotted signal is
ñ/δ in order to clearly show the effect of the sign of the detuning. The image on the left
corresponds to a spin-polarized Fermi gas in the |2〉 state and the atomic signal is negative
because of the negative detuning. On the other hand, the image on the right corresponds
to atoms in the hyperfine state-|1〉, have a positive detuning and positive signal.

Figure 3.17: Example of phase-contrast signal. The imaging frequency is set between
the resonance of the state |1〉 and the state |2〉. The left panel shows the signal of a
spin polarized Fermi gas in the state |2〉. The right panel shows the signal of a spin
polarized gas in the state |1〉. As one can see, the sign of the signal corresponds to the
sign of the detuning.

In Figure 3.17 one can also notice that a sort of shadow is present around the atomic cloud.
This spurious signal introduced by the phase plate is called funnel. This artifact comes
from the fact that the size of the phase-plate dimple is finite and does not perfectly match
the size of the beam in the Fourier plane. Because of this, part of the scattered field ∆E is
also phase shifted by the plate and part of E0 is not shifted. The result is a low-frequency
interference shaped like a sinc function. In Figure 3.18 we plot the integration of a phase-
contrast signal along the x axis of the cloud, which shows a funnel with an amplitude of
about 1/4 of the atomic signal. In order to remove the funnel and isolate the atomic signal
we follow the procedure represented in Figure 3.19 which starts by fitting the region of the
image not containing the atomic cloud with the following function:

f(x, y) = off +A exp

(
(x− x0)2

2σ2
x

)
sin[(y − y0)sy]

(y − y0)sy
(3.29)

The best fit is now our model of the funnel and can be removed from the whole image
allowing us to obtain the atomic signal alone.



Chapter 3. Experimental setup 43

0 20 40 60 80 100 120 140
y ( m)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Si
gn

al

Figure 3.18: Phase-contrast signal of a state |1〉 spin-polarized Fermi gas integrated
along the x direction. The imaging frequency is set between the state-|1〉 and the state-
|2〉 resonances. One can see the sinc shape of the funnel, which has a non negligible
amplitude when compared with the atomic signal in the middle.

Figure 3.19: (A) phase-contrast signal. (B) mask on the region of the image occupied by
the atomic cloud. (C) best fit of the funnel (see equation 3.29) on the unmasked region.
(D) atomic signal obtained removing the best fit of the funnel from the phase-contrast
signal.
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While this procedure is very simple when the atomic signal is higher than the funnel
amplitude, it becomes very challenging in the opposite scenario, which is indeed very
common in our work. Most of the time we are interested in probing a |1〉-|2〉 or |1〉-|3〉
mixture, hence, when we set the detuning in between the two resonances, the total signal is
very close to zero (see Figure 3.20) The relative importance of the funnel increases and the
uncertainty on the final atomic distribution increases and becomes very hard to quantify.
Because of this reason, other methods like the Faraday imaging or the speckle imaging end
up to be a better choice.
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Figure 3.20: Phase contrast signal in the center of the cloud of a balanced |1〉-|2〉 mixture
as a function of the imaging detuning. The zero detuning is set to be the state-|1〉
resonance. The positive offset of the signal is due to the funnel, which has not been
removed here.

3.3.8 Measuring the atom number fluctuation of a trapped gas

Together with the atomic density, the number of atom variance is a very important observ-
able one can exploit in ultra-cold gases experiments [4, 61, 62, 35, 5]. Atoms fluctuations
can be exploited as a thermometer, provide important information about the homogeneities
of the density distributions and probe for the presence of spin domains in the system. The
measurement of the in-situ density fluctuations of a given atomic sample, i.e. the atom
number variance ∆N = Var(N), is not straightforward, even though the principle is sim-
ple: one takes K images of a given atomic sample prepared with the same experimental
condition, measure the number of atoms contained in each pixel and finally calculates the
variance of this number:

(∆N)2
i,j =

1

K

K∑
k=0

(
Nk
i,j − 〈Ni,j〉

)2
= Var(Ni,j), (3.30)

where the indexes i and j represent the row and column of a given image, k is the image
realization index and the angle brackets represents the mean over the K samples: 〈Ni,j〉 =∑K

k=0N
k
i,j/K. In practice, measuring noise is noisy and full of systematic errors that need

to be addressed. The major sources of problems are the following few points:

1. Imaging resolution: since the resolution of the imaging system is finite, a point
source (i.e. a single atom) in the object plane is spread over several pixels of the
CCD chip in the imaging plane (point spread function). This effectively reduces the
measured atom number variance.
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2. Total atom number fluctuations: even though the experimental sequence to
realize the atomic sample is kept the same, there are intrinsic fluctuations on the
atomic flux, on the laser intensity and on the stability of the magnetic fields that
can not be avoided. All these factors, in our experiment, originate a shot to shot
fluctuation of the total number of atoms in the cloud of about 15%. This effectively
increases the measured atom number variance.

3. Photon shot noise: the measurement of the imaging light intensity is ultimately
a measurement of a discrete number of photons collected by each pixel of the CCD
chip, therefore, it comes with Poissonian fluctuations. These fluctuations contribute
as a positive offset to the measured variance.

4. CCD camera readout and dark noise: every CCD has both a dark noise, given
by the presence of thermal electrons and readout noise, given mostly by electronic
noise. Both these effects effectively increase the atom number variance, but with
the use of modern CCD cameras, this effect is negligible with respect to those listed
above.

In the following, I will describe these effects one by one in more details and the approach
we adapted to subtract them from the measured variance.

Imaging resolution

PSF

Figure 3.21: Reduction of the detected variance given by the point spread function of the
imaging system. On the left, each atom (orange dots) only affects the value measured by
a single CCD pixel (darkness of the squares). The result is a signal with high variance:
some of the pixels are completely white and some are very dark. On the right, each atom
affects all the pixel within its point spread function (dashed orange circle). The result is
a low variance signal: most of the pixels are gray.

As sketched in figure 3.21, the observed variance is suppressed when the point spread
function of the imaging system is of the same order, or bigger, than the size of a CCD
pixel. This is caused by the fact that the signal of a single emitter is shared by more
than one pixel. The solution to this problem is, therefore, to increase the size of the pixel
until its size is about five times the resolution of the imaging system [82]. This can be
done by reducing the magnification of the imaging or by binning more pixel together in a
super-pixel. The first approach is beneficial whenever the CCD camera readout and dark
noise are non-negligible noise sources since it helps increase the signal to noise ratio in
every single pixel. If instead, these effects are negligible, it is much preferred to bin the
pixel counts during the data analysis since it does not require a modification of the imaging
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setup and the amount of pixel binned together can be chosen in a much more controlled
way during the data analysis. It is possible to calculate the variance of a given sample
for different binning size N ×N and chose the value of N where the variance reaches the
maximum. As shown in figure 3.22 the estimated variance increases with N until N ≥ 5,
the limit in which the point spread function can be considered small with respect to the
size of the super-bin 5×5. The chosen size of the super-pixel is, therefore, ∼ 5×5µm and,
since the resolution of our imaging system is ∼ 1.2µm, the variance reaches a saturation
when the ratio between these two values is about 4−5, consistently with reference [61]. The
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Figure 3.22: Measured variance in a central region <, corresponding to about 5 atoms
per pixel (showed in section 5.3.2), of a Fermi gas cloud obtained with different binning
size. For binning size N < 5 the resolution of the imaging system is too close to the size
of the pixel, the variance is therefore underestimated and increases as the binning size
increases. For binning size N ≥ 5, the value of the variance saturates, meaning that the
size of a bin is big with respect to the point spread function of the imaging system. The
error-bar is given by the standard deviation of the mean of the different variance values
obtained for each pixel of the region R.

reason why we stopped at a binning size of 5× 5 is that for larger bin sizes the dimension
of the super-pixel stops to be negligible with respect to the dimension of the transverse size
of the atomic cloud, that is around 30µm. Because of that, the variance is averaged over
regions of different density which implies a loss of resolution when comparing the atom
number variance with the atom number average.
The binning procedure should be done directly on the raw images acquired by the CCD
camera before the optical density is calculated. While this is not relevant for resolution
effect just described, it will help to reduce the effects of photon shot noise and electronic
noise as discussed in the next subsection.
To summarize, for each of the K experimental runs we end up with three matrices corre-
sponding to the three acquisitions of the absorption imaging: C1,k

i,j , C
2,k
i,j end Cbg,k

i,j where
i and j are the row and the column indexes of the N ×N super-pixel and k is the experi-
mental run index. The superscript indexes 1, 2 and "bg" refer to the binned images with
atoms, without atoms (i.e. reference) and background described in the section 3.3.2.

Total number fluctuations

The shot to shot fluctuations of the total number of particle of the atomic cloud contributes
as an unwanted positive offset to the calculated variance. The first step to reduce this effect
is working on the experimental setup and cooling sequence, mostly on the evaporation, in
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order to minimize the intrinsic fluctuations. Once the system is optimized we still observe
fluctuations on the total number of the order of 15% plus a small number of outliers. In
order to reject the outliers, for each experimental run k we calculate the optical density
ODk

i,j :

ODk
i,j = log

(
C2,k
i,j − C

bg,k
i,j

C1,k
i,j − C

bg,k
i,j

)
(3.31)

Using the absorption cross section σ0 and the area Asp of a super-pixel we convert to
optical density in number of atoms per super-pixel:

Nki,j =
Asp

σ0
ODk

i,j (3.32)

We then obtain the total number of atoms per shot integrating over all the super-pixels:
Nk

TOT =
∑

i,j N
k
i,j . An example of the total atom number distribution is shown in the

histogram in figure 3.23. The outliers are rejected by performing a post selection on
the images, discarding 10 experimental shots with the highest and the lowest total atom
number. To further reduce the effect of total number fluctuations we fit each optical density
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Figure 3.23: Example of total atom number distribution. The outliers (gray region) are
discarded from the variance analysis.

profile with a two-dimensional Gaussian envelope and we subtract this envelope from the
density profile. This operation corresponds to a high-pass filter to the density profiles:
long wavelength fluctuations are suppressed while the short wavelength ones, the ones we
are interested in, remain untouched.

Photon shot noise

The measurement of the imaging light intensity is ultimately a measurement of a discrete
number of photons collected by each pixel of the CCD chip. If a pixel is illuminated by
the imaging light pulse and reveals an average number of photons 〈Nph〉, in a single shot
the probability p of counting Nmeas

ph photons follows a Poisson distribution [82]:

p(Nmeas
ph ) =

〈Nph〉N
meas
ph × e〈Nph〉

Nmeas
ph !

, (3.33)

The standard deviation of the Poisson distribution is ∆Nph =
√
〈Nph〉. This relation

allows us to link pixel by pixel the variance given by the photon shot noise with the mean
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number of revealed photons. Therefore we can obtain the atom number variance ∆(Nat
i,j)

2

subtracting the photonic component from the measured optical density variance ∆(ODk
i,j)

2

using the relation (see supplementary materials of reference [61]):

∆(ODk
i,j)

2 =
1

〈Nph,1
i,j 〉

+
1

〈Nph,2
i,j 〉

+
σ2

0

A2
∆(Nat

i,j)
2, (3.34)

where Nph,1
i,j and Nph,2

i,j are the number of detected photons in the pixel i, j. This relation-
ship is strictly valid in the low saturation imaging regime, when it is possible to neglect the
linear term in the optical density given by saturation effects (see section 3.3.4). In order to
obtain Nph,1

i,j and Nph,2
i,j we need to convert the CCD counts C1,k

i,j , C
2,k
i,j to photons count.

One way to do it is to use the gain factor g given by the quantum efficiency of the CCD
and its amplifier gain. Despite its simplicity, this method relies on calibrations provided
by the CCD camera constructor, therefore we prefer to use a second option instead, that
is to directly calibrate this coefficient exploiting the Poisson nature of the imaging light
itself. In practice one can acquire some images without the atomic cloud and we find the
coefficient g that satisfies the equation:

g(∆Nph)2 = Nph (3.35)

This is equivalent to directly use the images from an experimental run and consider only
the regions outside the atomic cloud, where ∆(Nat

i,j)
2 is 0 by definition, therefore we find

g by minimizing the expression:(
∆(ODk

i,jout)
2 − 1

g〈C1
i,j,out〉

− 1

g〈C2
i,j,out〉

)2

(3.36)
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Figure 3.24: Number of photon variance as a function of the mean number of photons
per pixel computed from around 60 images of the imaging beam alone. Every color set
represents a different measurement performed increasing the imaging light intensity (from
yellow to violet). The data points are binned and the error bar is the standard deviation.
The spread of the points along the x axis within the same dataset (same color) is due
to intensity inhomogeneities of the imaging beam. The Poissonian relationship between
number variance and mean (linear with slope 1) allows us to calibrate the gain factor g,
i.e. the conversion factor between CCD counts and number of photons.

The result of this optimization is shown in figure 3.25: in orange, we plot the variance of
the optical density, while in gray the estimation of the photon shot noise variance. The
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number of atom variance is easily obtained by subtracting the second quantity from the
first. We notice that, outside the atom cloud region, the two quantities coincide while,
inside the region, the photonic variance has only a small positive bump due to the decrease
of photon count in the first image C1

i,j,in because of absorption.
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Figure 3.25: In orange the optical density fluctuations profile (integrated along the axial
direction of the cloud). In black the variance associated with the photon shot noise of the
imaging light, estimated by 1/(g〈C1〉) + 1/(g〈C2〉), where 〈C1〉 and 〈C2〉 are the average
CCD counts per super-pixel and g is the conversion factor from CCD count to number
of photons. In the region outside the cloud region the number of atoms variance must
be zero and all the optical density variance is fully given by photon shot noise.

CCD camera readout and dark noise

One last element which could contaminate the measurement of the number of atom variance
is given by the CCD camera readout noise and dark noise, both contributing with a positive,
constant offset. Such noise is mostly dependent on the quality of the CCD sensor that is
being used. In our experiment, we use the Andor iXon3 X-9260 CCD camera, with the chip
cooled down to −70◦C. As we can see in the histogram plotted figure 3.26 the contribution
of these CCD technical noise sources (in black) are negligible with respect to the one given
by photon shot noise (in orange).
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Figure 3.26: Occurrence of number of CCD counts per pixel. In black a background
image, without imaging light. This signal is given by the camera readout noise and by
its dark current. In orange, an acquisition with the typical illumination used in absorption
imaging.
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Recap

In conclusion estimate the number of atoms variance of a given sample:

• We acquire around 90 images under identical experimental conditions

• We filter the outliers with unusual total number of atoms

• We remove the Gaussian envelope to decrease the effect of total number of atoms
fluctuation in the local variance

• We bin the images with super-pixels of size 5× 5

• We calculate the variance of the binned optical densities ∆(ODk
i,j

• We finally obtain the atom number variance by subtracting the photon shot noise
component:

∆(Nat
i,j)

2 = ∆(ODk
i,jout)

2 − 1

g〈C1
i,j,out〉

− 1

g〈C2
i,j,out〉

(3.37)

, where g is the conversion factor between CCD counts and number of photons.

3.3.9 Fluctuation thermometry of an ideal Fermi gas

In order to validate the procedure, we employ to extract the atom number variance from a
set of atomic density profiles we test it on a very well known system: the ideal Fermi gas.
We used a |1〉-|2〉 mixture at 575G, where the scattering length a12 is zero and the gas is
completely non-interacting. The motivations for this choice are that we theoretically know
the value of the spin density fluctuation and because we can independently measure the
temperature of the system from the in-situ density distribution.
Following the procedure described in this section, we obtain (∆N)2

ij , which is the atom
number variance corresponding to the super-pixel (i, j). In Figure 3.28 we plot, for each
pixel, the number variance as a function of the mean number of atoms. Here one can
see the effect of Pauli principle at work in the atom number variance being much lower
than the mean number. While for a classical gas one expects Poissonian fluctuations,
i.e. (∆N)2 = N , in a degenerate gas the number the number of possible configurations is
reduced and so is the number variance and the ratio between (∆N)2 and N can be directly
linked to the temperature of the system [35]:

(∆N)2
i,j

Ni,j
=

Li2(ξi,j)

Li1(ξi,j)
, (3.38)

where ξi,j = exp(βµi,j) is the local fugacity. As shown in Figure 3.27, by numerically
solving this equation one can link the atom number variance directly to the temperature. In
the center of the cloud we observe that the variance is about 30% of the mean atom number,
which correspond (see orange line in Figure 3.27) to a temperature of T = 0.14(5)TF .



Chapter 3. Experimental setup 51

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T/TF

0.0

0.2

0.4

0.6

0.8

1.0

(
N

)2 /N

Figure 3.27: Normalized atom number variance as a function of the Fermi gas degeneracy.
This result is corrected for the column integration resulting from the absorption imaging
as described in Reference [35]. At high degeneracy the fluctuation increases linearly
with the temperature. For higher temperature the normalized atom number fluctuations
saturate to the classical limit: the Poisson distribution, i.e. (∆N)2 = N . The orange
lines points to the measured fluctuations in the center of the trap showed in Figure 3.28,
from which we estimate the temperature of the cloud to be T = 0.14(5)TF .
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Figure 3.28: Each one of the gray dots correspond to the super-pixel i, j. On the y axis
it shows the corresponding atom number variance, on the x axis the mean number of
atoms. The black circles correspond to the same data binned for number of atoms. The
error-bars show the standard deviation of the mean of all the points included in each bin.
In the center of the cloud, the variance value is around 30% of the mean atom number,
corresponding to a temperature of T = 0.14(5)TF as shown in Figure 3.27. The orange
dashed line represents the Poissonian statistics of a classical gas: (∆N)2 = N
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In order to check the full procedure we followed we compare this temperature with the one
obtained by fitting the density distribution of the atomic cloud with the polylogarithmic
function:

n(n, y) = ALi2
[
−ξ exp

(
(x− x0)2

2σ2
x

− (y − y0)2

2σ2
y

)]
/Li2(−ξ), (3.39)

from which we extract the fugacity ξ that allows us to calculate the reduced temperature
as [83, 84]:

T

TF
= −

(
1

6Li3(−ξ)

)1/3

. (3.40)

The fitted temperature is T = 0.17(1)TF which is compatible, within the experimental
uncertainty, with the result obtained measuring the density fluctuation. In Figure 3.29 we
show the polylogarithmic fit on the density profile probed using our horizontal imaging.

Figure 3.29: On the left the density profile of a non-interacting Fermi gas probed with
our horizontal imaging with 6ms of time of flight. On the right the azimuthally averaged
density profile of the cloud (black circles) together with the best fit of equation 3.39
(orange line). The error-bars represent the standard deviation of the mean of the points
contained in each azimuthal bin. The fitted temperature is T = 0.17(1)TF

Since the temperature obtained with the two methods is consistent, we conclude that our
analysis procedure is adequate to extract the atom number variance from a non-interacting
sample. In Chapter 5 we will apply the same procedure to a Fermi mixture quenched to
strong repulsion in order to estimate the heating in the system and the possible formation
of spin domains.



Chapter 4

N+1: repulsive Fermi gas in the
impurity limit

A common idea to approach phases of interacting quantum many-body systems is to start
from the impurity limit: few particles immersed in a complex environment. This concept
was introduced by Landau and Pekar [14, 15] and further elaborated by Fröhlich and
Feynman [16, 17, 18, 85], in the context of condensed matter physics, to describe the
interactions between electrons and atoms in solid materials. The idea is to condense the
property of a particle interacting with a many-body system in a few key properties of a
weakly interacting quasi-particle, the polaron. The study of the impurity problem (N+1)
is often much simpler than the balanced (N+N) case but still provides qualitative and
sometimes quantitative insight on the latter. Its simplicity arises from the fact that it can
be described almost exactly by diagrammatic or variational theoretical approaches, making
it particularly suited for the comparison between theories and experiments. In the last few

Figure 4.1: Pictorial representation of the repulsive polaron. The presence of a strongly
repulsive impurity (red particle) modifies the local wavefunction of the bath (blue par-
ticles) effectively screening the interaction at large distances. The system comprising
the impurity plus the surrounding particle can be considered as a weakly interacting
quasi-particle.

years, in the context of ultra-cold atoms, the polaron problem has been experimentally
addressed both in bosonic and fermionic systems [86, 87, 88, 89, 90, 91, 92, 93]. The
work described in this chapter fits in this context by presenting the characterization of
the Fermi polaron exploiting ultra-cold 6Li atoms via pump-probe radio-frequency (RF)
spectroscopy.

53
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This chapter is organized as follows:

• I will give a short theoretical introduction to the polaron problem, showing the link
between its properties and the radio-frequency spectroscopy signal.

• I will outline the experimental procedure employed to produce and probe a control-
lable impurity fraction in the system with a tunable interaction strength.

• I will present our characterization of the repulsive (and attractive) Fermi polaron
showing, as a function of the interaction parameter, the behavior of its energy, effec-
tive mass, quasi-particle residue and lifetime.

Our measurements will confirm the existence of the upper branch of the repulsive Fermi
gas up to very strong coupling, showing how the quasi-particle lifetime greater than 10~/εF
over a wide range of interactions, exceeding recent theoretical predictions [94, 95]. More-
over, in the strong coupling regime, our data will provide a clear signature of both a
ferromagnetic and a thermodynamical instability of the Fermi impurity in the repulsive
branch. All the results reported in this chapter are published in Physical Review Letters
[19].

4.1 Theoretical introduction of the Fermi polaron

In this section I will briefly introduce the polaron problem by describing its basic properties
from a theoretical point of view. I will then link these properties with physical observ-
ables measurable through radio-frequency spectroscopy, introducing the physical coupling
between the quasi-particle and the RF field.

4.1.1 Properties of the Fermi polaron

A single spin-down atom (the ↓ “impurity") in an ideal Fermi gas of spin-up atoms forms a
quasi-particle, commonly known as the “Fermi polaron" [96, 97, 88, 10]. In Figure 4.2 we
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Figure 4.2: Energy spectrum of a zero-momentum impurity in a Fermi sea [10]. The
dashed black line is the repulsive polaron energy and the solid black line the attractive
polaron one. The orange dashed line represents the dimer energy in vacuum, the orange
shaded area the continuum of dressed dimers. The minimum energy of the dressed dimer
continuum (solid orange line) crosses the polaron around 1/kFa ' −0.9, after which the
attractive polaron becomes the most energetically favored state.
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sketch the energy landscape of the quasi-particle as a function of the interaction parame-
ter. The microscopic interaction potential between ultra-cold atoms is always attractive,
leading to negative energy for the ground-state polaron (black solid line). Beyond a crit-
ical attraction, the ground state of the mixture becomes a dressed molecule (orange solid
line). Associated with this latter quasi-particle, a broad continuum appears in the impu-
rity spectral function, since the impurity can bind to any fermion of the bath with kinetic
energy ranging between 0 and EF (orange shaded area). Moreover, all the approaches to
the problem and various experiments revealed that an additional quasi-particle excitation
termed “repulsive polaron”, appears at positive energies, well separated from the attractive
polaron even in the strongly interacting regime (dashed solid line) [56, 94, 95, 92, 93].
The Green’s function for the impurity reads1:

G↓(p, ω) =
1

ω − ξp↓ − Σ(p, ω) + i0+
, (4.1)

where ξpσ = εpσ − µσ = p2/2mσ − µσ is the kinetic energy of a σ atom measured with
respect to its chemical potential. The effects of the interactions with the Fermi sea are
contained in the retarded self-energy Σ(p, ω).
For well defined polarons one can expand the Green’s function around the real part E± of
the pole at p = 0, where + (−) refers to repulsive (attractive) polarons. The approximated
Green’s function at momenta p� kF reads

G↓(p, ω) ≈ Z±

ω − E± − p2

2m∗±
+ iΓ±/2

, (4.2)

This equation contains the full description of the polaron, which is fully characterized by
4 key quantities:

1. The effective mass m∗, which takes into account the difference in the dispersion
relation between the bare particle (non-interacting) and the polaron one. Intuitively
the higher is the effective mass the more are the particles involved in the excitation,
which corresponds to an higher energy for a given velocity. Its definition is:

m∗± =
m↓/Z±

1 + Re[∂ε↓pΣ(0, E↓±)]
(4.3)

2. The energy E±, which corresponds to the energy difference between the polaron and
the bare particle. If it is positive we name the state repulsive polaron, which is an
excited state. If it is negative we name it attractive polaron.

3. Quasi-particle residue Z±, which describes the coherence of the quasi-particle and
corresponds to the squared overlap between the bare particle and the polaron wave-
functions:

Z± =
1

1− Re[∂ωΣ(0, E↓±)]
(4.4)

1In the following section we use the natural units: ~ = kB = 1, where ~ is the reduced Plank constant
and kB the Boltzmann constant.
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4. Decay rate Γ of the quasi-particle’s probability density, which describes the relaxation
of the repulsive polaron into an attractive polaron (or into a dressed molecule / free
particle):

Γ± = −2Z±Im[Σ(p, E↓±)]. (4.5)

In the following section we will report how these properties change as a function of the
interaction strength by using two different theoretical approaches: the first based on ladder
approximation [59, 10] and the second through the minimizing the energy over the “one-
particle-hole" (1PH) variational Ansatz [96, 98].

4.1.2 Ladder approximation and one-particle-hole Ansatz

The calculation of the self-energy in presence of very strong interactions is in principle
a formidable task. However it turns out that a very good approximation is obtained by
summing only the so-called “ladder diagrams", describing forward-scattering in the medium
[98]. Under this approximation and taking the quantization volume to one, the retarded
self-energy of a single impurity in a zero-temperature Fermi sea close to a broad Feshbach
resonance reads (~ = kB = 1)

Σ(p, ω) =
∑
q

f(ξq↑)T (p+q, ω+ξq↑) =
∑
q

f(ξq↑)

mr
2πa −

∑
k

[
1−f(ξk↑)

ω−(εp+q−k↓+εk↑−εq↑)+i0+ + 2mr
k2

] ,
(4.6)

where f(x) = 1/(exp(x/T ) + 1) is the Fermi function, and T (P,Ω) is the T-matrix de-
scribing the scattering of an ↑ − ↓ pair of atoms with total momentum P and total energy
Ω. Furthermore, we have introduced the ↑ − ↓ scattering length a, and the reduced
mass mr = m↑m↓/(m↑ + m↓). The quasi-particle properties obtained for the attractive
polaron through this ladder approximation compare very favorably both with Quantum
Monte-Carlo (QMC) calculations and with experiments [97, 88, 92, 10].
As far as the ground state properties of the system are concerned, solving the problem
within the ladder (or non self-consistent T-matrix) approximation is equivalent to mini-
mizing the energy over the “one-particle-hole" (1PH) variational Ansatz [96, 98]:

|ψ〉 =
√
Z|p〉↓ |0〉↑ +

k>κF∑
q<κF

φkq|p + q− k〉↓ c†k↑ cq↑ |0〉↑ . (4.7)

Equation 4.7 describes a ↓-impurity with momentum p in an ideal Fermi sea |0〉↑ of ↑-
particles as a quasi-particle, whose dressing is composed by a superposition of particle-hole
pairs.
Since it is analytically continued, the ladder calculation has, however, the additional ad-
vantage of being able to investigate excited states of the mixture, such as the repulsive
polarons discussed in this work. For the repulsive polaron case, such an approach is found
in relatively good agreement with QMC simulations [59, 10], despite a more sizable mis-
match compared to the attractive case. Nonetheless, the ladder approximation accurately
reproduced the experimental results obtained in a 6Li-40K mixture at a relatively narrow
Feshbach resonance [92]. The basic properties of the attractive and repulsive polarons,
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Figure 4.3: Polaron properties calculated in the ladder approximation for the mass-
balanced case: energy E↓, residue Z, inverse effective mass m/m∗ and Landau parameter
F . Blue and orange lines depict, respectively, the attractive and the repulsive polaron.
The dotted red line is the energy of a dressed molecule, and the thin vertical line at
kFa ' 1.15 indicates the polaron/molecule transition in the attractive branch [97, 99].
The dashed lines are the perturbative results to O(kFa)2, as given in Refs. [100, 101, 102].

such as their energies, quasi-particle residues, effective masses, and Landau parameters F
obtained by means of the ladder approximation, are summarized in Figure 4.3 and will be
used as a cross-validation tool by comparing them with our experimental results described
in the following section.

4.1.3 Coupling with the radio-frequency field

In order to extract the energy and the effective mass of the polaron we rely on the so-
called reverse radio-frequency (RF) spectroscopy. The minority gas is prepared in state
|2〉, weakly interacting with the majority component. We then apply a RF pulse to transfer
the atoms to the empty state |3〉, which is resonantly interacting with the atoms of the
bath. For a homogeneous system and within linear response theory, the RF signal is given
by (see e.g. Reference [103])

I(ω) ∝
∫

dk

(2π)3
f(ξk,2)A3(k, ξk,3 + ω), (4.8)

where A3(k, ω) = −2 ImG3(k, ω) is the spectral function for the minority gas in state
|3〉. Since the RF pulse has a finite duration, the previous result has to be convoluted in
frequency as

Iexp(ω) =

∫
dε

2π
g(ω − ε) I(ε), (4.9)

where g(ω) can be well approximated by a Gaussian whose width is inversely proportional
to the duration of the RF pulse.
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When the spectrum contains a well-defined quasi-particle with zero-momentum energy
E±, the main contribution to the spectral function comes from the quasi-particle pole, i.e.,
A3(k, ε) = 2πZ δ(ε− E± − k2/2m∗), and the RF signal reads

Iexp(ω) ∝
∫

dk

(2π)3
f(ξk,2) g(∆k − ω), (4.10)

with

∆k = E± +
k2

2m

(
m

m∗±
− 1

)
. (4.11)

Therefore the first moment ω̄ of the RF signal is given by the average over the Fermi
distribution of ∆k, i.e.

ω̄ =

∫
dω ω Iexp(ω)∫
dω Iexp(ω)

∝
∫

dk ∆kf(ξk,2)∫
dk f(ξk,2)

= E± + 〈 k
2

2m
〉
(
m

m∗±
− 1

)
. (4.12)

In our experiment, the signal Iexp(ω) is essentially Gaussian, so that its peak value coincides
with ω̄.
Our system is however not homogeneous, since the atoms feel a harmonic trapping potential
U(r) = m(ωxx

2 + ωyy
2 + ωzz

2)/2. If µi is the chemical potential of the impurity atoms in
state |i〉 the RF peak is located at µ3 − µ2. Within LDA at T = 0 we can write

µ2 =
(6π2 n2(r))2/3

2m
+ U(r) , (4.13)

µ3 =
(6π2 n3(r))2/3

2m∗±(r)
+ E±(r) + U(r) . (4.14)

To estimate the polaron parameter we average the difference µ3−µ2 on the non-interacting
density n2 on a finite region V . Since the variance of the majority Fermi momentum over
the integration region V is only around 1% of its mean value κF , we may safely approximate
the average values of the polaron parameters by their values computed at κF . Assuming
furthermore that in such a region n3 does not differ too much from n2, we obtain

∆± = 〈µ3 − µ2〉 =
1
N2

∫
V dr

(
(6π2n3(r))2/3

2m∗±(r) − (6π2n2(r))2/3

2m + E±(r)
)
n2(r) ' E±(κFa) + ε̄

(
m

m∗±(κF a) − 1
)
,

(4.15)

with N2 =
∫
V dr n2(r). With similar arguments, one can write the contribution due to the

Landau polaron-polaron interaction by adding to Equation 4.15 the following term:

∆int =
6

5
α εF F (κFa) x̄ (4.16)

where α = (n̄2/n̄1)/x̄ is a factor smaller than 1. Here, x̄ and n̄i are the concentration and
the density of state-|i〉 atoms averaged over the integration region. In our temperature and
concentration regime (x̄ < 0.5), we find α to significantly reduce the effect of the polaron
interaction with respect to the naive expectation εF F (κFa) x̄. Although we refrain from
providing a quantitative estimate, such an effect could motivate the absence of polaron-
polaron interaction effects in our measurements.
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4.2 Experimental procedure

In order to explore strong impurity-bath interactions, we exploit the magnetic field differ-
ence between the Fano-Feshbach resonances of |1〉-|2〉 states and |1〉-|3〉 states. As shown
in Figure 4.4 if the bias magnetic field ranges between 600-700G the scattering length
a13 � a12. We can, therefore, regard the initial |1〉-|2〉 mixture as a weakly interacting
gas while we can finely tune the interactions between states |1〉 and |3〉 from the weakly
repulsive regime up to the unitary limit.
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Figure 4.4: |1〉-|2〉 (black line) and |1〉-|3〉 (orange line) Fano-Feshbach resonances in 6Li.
The data points are taken from the supplementary material of reference [44]. The right
plot shows the zoom of the data from 600 to 700 G (gray region in the left plot). In
this region the scattering length a12 is very small compared to the scattering length a13,
therefore, one can treat the 1-2 mixture as almost non interacting while controlling the
1-3 mixture interaction strength up to the unitary regime by changing the bias magnetic
field.

4.2.1 Preparation

The starting point of the experiments is a weakly interacting balanced mixture of about
2× 105 6Li atoms occupying the lowest and the third-to-lowest hyperfine atomic states |1〉
and |3〉, characterized at low magnetic field by quantum numbers |F = 1/2, mF = +1/2〉
and |F = 3/2, mF = −3/2〉. The gas is confined in a cylindrically-shaped optical dipole
trap with corresponding harmonic axial and radial frequencies ωax = 2π × 19.7(2) Hz and
ω⊥ = 2π× 233(5) Hz. The temperature is set to T = TF × 0.10(2), where TF is the Fermi
temperature defined by the Fermi energy EF = kBTF .
In order to create an unbalanced mixture of the two lowest hyperfine atomic states |1〉 and
|2〉 and control the initial impurity concentration, i.e. the ratio x = N2/N1 between the
populations of these two states, we first adiabatically ramp the Feshbach field to 585G,
where the scattering length a12 crosses the scattering length 1-3: a13 ' a12 ' +300a0. We
then apply a radio-frequency (RF) pulse resonant to the |3〉 → |2〉 transition, transferring
part of the atoms into the |2〉 state. Immediately after, we remove all remaining state-|3〉
atoms via a resonant optical blast. The duration and the power of the blast are chosen
such that it can completely clean the state-|3〉 atoms without at the same time causing
appreciable heating on the remaining |1〉-|2〉 sample. The impurity concentration x is
controlled by changing the duration of the radio-frequency pulse. We then adiabatically
ramp the bias magnetic field to a target value to set the interaction parameter κFa of the
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1
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RF

Figure 4.5: Initialization scheme for the |1〉 - |2〉 atomic mixture with controlled impurity
concentration x. (a) Start with balanced |1〉 - |3〉 mixture. (b) Sweep to 858 G (where
the scattering length a13 ' a12). (c) Transfer a controlled amount of atoms from state-
|3〉 to state-|2〉 adjusting the duration of a resonant RF pulse. (d) Blast the remaining
state-|3〉 atoms with resonant light.

experimental run. The Fermi wave-vector κF , averaged over the central region of the cloud
as described in the next section, is calculated from the measurement of the total number
of atoms in the state-|1〉 N1, and the trap frequencies ωx, ωy and ωz:

κF = ηk ×
√

2m(ωxωyωz)1/3

~
(6N1)1/6, (4.17)

where ηk is a correction introduced to keep into account the density inhomogeneities given
by the harmonic trapping potential.

4.2.2 Effective Fermi energy and Fermi wave-vector

The interaction strength between the state-|1〉 and state-|3〉 is parametrized using the
dimensionless parameter, kFa, that is the product of the Fermi wave-vector and the scat-
tering length, which depends on the atomic density and on the bias magnetic field. Since
our sample is harmonically trapped the density is not homogeneous, hence the inter-atomic
interactions are not constant across the cloud. In order to reduce this effect we extract
the spectroscopy signal only from the central part of the column density, contained in a
rectangular region R of size 30µm × 70µm along the transverse and axial directions of the
cloud, respectively, as shown in Figure 4.6.
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Figure 4.6: Example of the Fermi gas profile. The white rectangle corresponds to the
region R from which the spectroscopy signal is extracted in order to reduce the effect of
density inhomogeneities due to the trapping potential. The center of the rectangle is set
to be the center of the atomic cloud. The size of the rectangle is fixed to 30µm × 70µm.

Within this region we define the effective Fermi wave-vector κF and the effective Fermi
energy εF are the average value of the local Fermi wave-vector kF (r) = (6π2n(r))1/3 and
of the local Fermi energy EF (r) = ~2/(2m)kF (r)2. We obtain these two quantities by
considering the finite-temperature density distribution n(r) of an ideal Fermi gas, using
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the experimental T/TF , trap frequencies and total atom number N :

n(r) = −
(
mkBT

2π~2

)3/2

Li 3
2

(− exp(β(µ− U(r)))) , (4.18)

where µ ≡ µ(T/TF , N) is chemical potential in the center of the trap, U(r) is the trapping
potential, β ≡ 1/(kBT ) is the coldness, and Li3/2 is the polylogarithm function of order
3/2. The effective Fermi energy and effective wave vector are obtained by averaging inside
the density region R:

εF =
~2

2m

∫
R
dr(6π2n(r))2/3n(r)

/∫
R
dr n(r) (4.19)

and

κF =

∫
R
dr(6π2n(r))1/3n(r)

/∫
R
dr n(r) , (4.20)

Numerically solving these equations we find the numerical factors ηE and ηk that link
the averaged quantities with the corresponding peak values, i.e. EF ≡ EF (r = 0) =
~ωh.o.(6N)1/3 and kF ≡ kF (r = 0) = (2mEF )1/2/~, where ωh.o. = (ωxωyωz)

1/3 is the
geometrical mean of the harmonic oscillator trap frequencies:

εF = ηEEF and κF = η
1/2
k kF (4.21)

For typical experimental parameters we find correction factors ηk = 0.72(1) and ηE =
0.51(1). From here on when we mention the Fermi energy or the Fermi wave-vector, we
will implicitly refer to the rescaled quantities κF and εF .

4.2.3 Reverse spectroscopy

Let us now discuss the radio-frequency spectroscopy scheme employed to probe the energy
spectrum on the many body system. As described in section 4.2.1 we start from a |1〉 - |2〉
weakly repulsive gas with impurity concentration x. The final-state interaction strength
state-|1〉 and state-|3〉 atoms is set by the Feshbach magnetic field. We spectroscopically
probe the |2〉 → |3〉 transition applying a near resonant RF rectangular pulse and measuring
the spectroscopy signal defined as:

N3

N2 +N3
, (4.22)

where N2 and N3 are the number of atoms measured in the rectangular region of size
70× 30µm in the center of the atomic cloud, as shown in Figure 4.6). This normalization
requires to measure two different spin state in the same experimental run (see 3.3.5), but
drastically improves the signal to noise ratio of the spectroscopy signal by decreasing the
effect of the shot-to-shot total number of atoms fluctuations. By scanning the frequency of
the RF pulse we measure N3/(N2 +N3) as a function of the detuning ∆, which is defined
as:

∆ = ν − ν0, (4.23)

where ν is the RF frequency and ν0 the resonance frequency corresponding to the |2〉 → |3〉
bare transition, which is obtained by measured on a spin-polarized Fermi gas as described
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in section 3.2. The spectroscopy pulse has a rectangular shape and its duration ranges
from 0.5ms to 1ms, which is the best compromise we found to balance our time and
spectral resolution: the longer is the duration, the higher is the frequency resolution but
undesired dynamical effects taking place during the pulse become more relevant, e.g. |2〉-
|3〉 interactions which arise when the superpositions between these two states are driven
by impurity-bath collisions into statistical mixtures after a sufficient decoherence time.
In the following section, this procedure will allow us to study the properties of the repulsive
polaron by varying both the initial impurities concentration and the interaction parameter.

4.2.4 Repulsive polaron spectra
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Figure 4.7: Repulsive polaron spectra for different interaction parameters kFa. The fre-
quency shift ∆ is the energy difference between the polaron peak and the bare Breit-Rabi
transition. The shifts and the spectral widths grow with kFa because of the increasing
repulsive energy between the impurities and the particles in the bath and because of the
collisional broadening respectively.

In Figure 4.7 we plot several repulsive polaron spectra for different interaction parameters.
The solid line is a Gaussian fit employed to extract the position and the width of the
spectroscopy peaks. For increasing interaction strength kFa we observe that:

• The radio-frequency shift ∆ increases monotonically, due to the interaction energy
given by the repulsion between the impurities and the surrounding Fermi sea and to
the impurity momentum k.

• The spectral width gets wider mainly because of collisional broadening.

In order to compare the polaron energy plotted in Figure 4.2 with the measured frequency
shift ∆ we need to take into account the momentum and the concentration of the impu-
rities. While theoretical value is calculated considering a zero-momentum single impurity,
experimentally their number is finite, which introduces two different effects: first, the
average momentum is modified by the Pauli pressure, second, when the density of the
impurities is non-negligible, one can expect the presence of polaron-polaron effective in-
teractions. In order to understand the effect of the finite impurities momentum on the
spectroscopy signal we can consider that, due to the difference in the effective mass, the
dispersion relation of the initial state differs from the final one. As shown in figure 4.8
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Figure 4.8: Sketch of the dispersion relations of non interacting particle (bottom black
solid line) compared to a quasi-particle with effective mass m∗ > m given by the inter-
action with the bath (top orange solid line). Since the spectroscopy protocol transfers
the impurities from the non-interacting state to a resonantly interacting one without
changing their momentum, the resonant frequency will be momentum dependent.

the dispersion curvature relative to the quasi-particle (with effective mass m∗) is smaller
than the one associated with the bare particle. Since the RF spectroscopy pulse does not
exchange momentum with the particles2, the measured energy shift depends of the initial
momentum of the impurity: the higher the momentum, the smaller is the shift. As we have
previously calculated (equation 4.11), the difference between the zero-momentum shift and
the finite-momentum one can be expressed as :

∆k(p) = − p2

2m

(
1− m

m∗

)
(4.24)

At a fixed temperature T ' 0.1TF , the mean kinetic energy per impurity ε grows with the
impurity concentration x given the increase of the Fermi pressure. In order to estimate
the zero-momentum polaron energy, we perform several spectroscopy runs by varying the
impurity concentration. We then plot the RF shift against ε and finally, we extrapolate
the zero-energy shift. The dependence between impurity concentration and energy in the
region of interest R (see Figure 4.6) can be computed by averaging the energy of the
non-interacting impurities using the local density approximation (LDA) and assuming the
thermal equilibrium with the bath:

ε̄(x) ≡ ε̄2(x) =
4π

(2π~)3N2(x)

∫
R
dr
∫ ∞

0
dp p2 εp,r

eβ(εp,r−µ(x)) + 1
, (4.25)

where N2 is the number of impurity in the region R, µ(x) is the chemical potential of the
impurity and εp,r is the single particle energy given by:

εp,r =
p2

2m
+ U(r), (4.26)

and U(r) is the harmonic trapping potential. Analytically integrating over the momentum
one obtains:

ε̄(x) = − 1

N2(x)

(
mkBT

2π~2

)3/2 ∫
R
dr
(

3

2
kBT Li 5

2

(
−eβ(µ(x)−U(r))

)
+ U(r)Li 3

2

(
−eβ(µ(x)−U(r))

))
.

(4.27)
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Figure 4.9: Mean energy per particle in the experimental spectroscopy integration region
V . The solid blue line is the result of Equation 4.27 for T/TF = 0.1. For comparison,
the result of Equation 4.27 when V is set to the full trap volume is plotted as a dashed
green line.

The mean energy as a function of the impurity concentration is shown in Figure 4.10 as
the blue solid curve. For comparison, we also show the result obtained by extending the
integration region to the whole atomic cloud as the dashed green curve. Using this result
we can express the mean impurity energy as a function of the concentration and plot it
as a function of the measured radio-frequency shift in Figure 4.10. We observe a linear
dependence between ε̄ and ∆ which strongly indicates that polaron-polaron interactions
are negligible even for impurities concentration of the order of 0.4. Their presence would,
in fact, lead to a non-linear dependence between the shift and the mean impurity energy:
x ∼ ε3/2 [104, 105, 106]. Moreover, they would introduce an additional spectral broadening
which we do not detect in the spectroscopy signal.
By linear fitting the shift and the mean impurity energy we obtain both the effective mass
m∗ and the zero-momentum energy E+. In order to take into account for the small but finite
interaction of the |2〉-state impurities in the fit, we introduce a small mass renormalization
of the initial state as an offset:

∆+ = E+(kFa13)− E+(kFa12) +

(
m

m∗(kFa13)
− m

m∗(kFa12)

)
ε (4.28)

where E+(kFa12) and m∗(kFa12) are estimated by means of a second-order perturbation
theory. In Figure 4.11 we plot the repulsive polaron energy and its effective mass for
different interaction parameters. The results show a reasonable agreement with recent the-
oretical predictions based on different methods: variational wave function approach[56], on
diagrammatic calculations within the ladder approximation[94], on the functional renor-
malization group [95] and on quantum Monte Carlo simulations [59].
The data shown in Figure 4.11 provides a strong hint on the existence of a ferromagnetic
instability of the repulsive Fermi liquid encouraging us to study the balanced repulsive
Fermi gas described in the next chapter. The repulsive polaron energy becomes larger
than the Fermi energy εF for 1/(kFa) < 0.6, which indicates that a phase separated

2The momentum transfer is finite but completely negligible: a 80MHz radio-frequency photon carries
a momentum given by k = 2πν/c ' 5× 10−7kF , where kF is the Fermi momentum, which is the relevant
momentum scale in the system.



Chapter 4. N+1: repulsive Fermi gas in the impurity limit 65

0 0.2 0.4 0.6 0.8
0

0.4

0.8

1.2

Mean energy (εF)

Pe
ak

po
sit

io
n

(ε
F)

0.37
0.50
1.26
2.63

1/(κFa)

Figure 4.10: Repulsive energy shift as a function of the mean impurity energy for different
interaction parameter. The lines are the best linear fits on the data. The dashed part
of the lines represents the extrapolation to zero impurity concentration, which is used
to extract the zero momentum polaron energy. The error-bars denote the standard
errors of the repulsive polaron peak position estimated with a Gaussian fit. The linearity
between energy shift and mean impurity energy rules out the presence of polaron-polaron
interactions and fits with the renormalization of the polaron mass alone.
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Figure 4.11: On the left the repulsive polaron energy E+ as a function of the in-
teraction parameter. The experimental points are compared with different theoretical
prediction: (dot-dashed yellow line) variational wave function approach [56], (dotted
green line) diagrammatic calculations within the ladder approximation [94] and (dashed
red line) functional renormalization group [95]. Gray symbols denote points obtained
by averaging measurements at different impurity concentration instead of zero impurity
energy extrapolation, since at these very low interaction strengths the renormalized mass
is compatible with the bare particle mass within the error bars, making the extrapolation
meaningless. On the right the ratio between the bare particle mass and the polaron
effective mass as a function of the interaction parameter. The dotted green line shows
the theoretical prediction of reference [94]. In both panels the error bars combine the
linear fit parameter errors with the standard error of the mean (s.e.m.) of binned data.

state becomes energetically favored with respect to the Fermi liquid of repulsive polarons
[56, 59, 94, 10]. Also the behavior of the effective mass points to a thermodynamical
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instability of the Fermi liquid: for the highest measured interaction strengths, the ratio
between the bare and the effective polaron mass drops to zero and even turns negative [10].

4.2.5 Polaron lifetime

Another very important parameter characterizing the repulsive polaron is its lifetime. This
is a key quantity both to define the stability of the particle and to test the applicability
of the Landau’s quasi-particle theory. If the lifetime is short with respect to the coherence
time, the quasi-particle itself is ill defined and the Landau’s description inappropriate.
Experimentally the lifetime is measured with a pump-probe spectroscopy scheme which
consists in two radio-frequency spectroscopy pulses separated by a variable holding time
∆t. The first pulse is resonant with the repulsive polaron peak, its power is set to the
maximum allowed by our experimental setup and its duration is set by optimizing the
transfer from the state-|2〉 impurities to the state |3〉, into the upper branch. The second
pulse is identical to the first one and selectively brings the repulsive quasi-particle back to
the weakly interacting state. The number of |2〉 atoms after this second RF pulse quantifies
the number of repulsive quasi-particles in the system surviving after the holding time ∆t.
The decay rate Γ of the repulsive polaron is extracted for different interaction strengths
via a simple exponential fit:

N2

N2 +N3
(∆t) = off +Ae−Γ ∆t, (4.29)

In Figure 4.12 we show the decay of the population of repulsive polarons for three different
interaction parameters.
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Figure 4.12: Examples of the decay of the repulsive polaron population for three different
interaction parameters: kFa ' 1 (red), kFa ' 1.3 (yellow) and kFa ' 3 (green). The
solid line shows the best fit of the decay using equation 4.29.

The decay rate for different interaction parameters is shown in Figure 4.13
One can observe that the decay rate Γ strongly depends on the interaction parameter
and spans almost four orders of magnitude in the range 0.3 < 1/(kFa) < 2.7. For weak
coupling, 1/(kFa > 1), the repulsive polaron lifetime is well described by the three-body
recombination process triggered by the collision with two fermions from the state-|1〉 bath
as described in Reference [63] by the equation:

Γ3 =
148 ~ a4

m

ε̄

εB
n2
|1〉 . (4.30)
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Figure 4.13: Decay rate Γ of the repulsive branch population as a function of the in-
teraction parameter 1/(kFa). Together with the experimental data (purple circles) we
show the theoretical predictions for 3-body recombination [63] (orange line), repulsive to
attractive polaron decay [94] (green line) and polaron to bare atom (gray line).

Here, n|1〉 is the density of the bath, εB is the molecule binding energy, and ε̄ is the mean
collision energy, which in turn corresponds to the mean kinetic energy of a fermion of the
bath. We neglect the collision energy contribution from the impurity, which is small when
x� 1. We set εB ≈ ~2/(ma2)+εF , which accounts for the removal of one fermion from the
bath once a molecule is formed, while it neglects atom-dimer interactions and non-trivial
medium effects. From this we obtain:

~Γ3

εF
= 0.298

148

(6π2)2

(κFa)6

1 + 1
2(κFa)2

, (4.31)

where the numerical factor 0.298 results from averaging the kinetic energy and the squared
density of the bath over the integration region. The decay rate Γ3 is plotted as an orange
solid line in Figure 4.13.
For higher interaction parameter two other decay channels become available: the two-body
inelastic decay onto attractive polaron and the one onto the bare particle. The former case
is described in References [94, 10] using the ladder approximation and corresponds to the
transition between the repulsive polaron to the ground state of the system for kFa ≥ 1.15
which is an attractive polaron. The theoretical prediction ΓPP , plotted in green in Figure
4.13, matches the experimental data only for very high interaction strength close to the
unitary regime, while for weaker interactions it underestimate the lifetime by more than
one order of magnitude. The latter decay mechanism, shown in gray, corresponds to the
annihilation of the repulsive polaron into a bare particle and quantitatively agrees with
experimental data for a much wider range of interaction down to almost kFa = 1. We can
calculate ΓPF by assuming that the repulsive polaron decays into a bare impurity with a
weight 1 − Z+ and with an effective mass well approximated by the bare mass. Within
this limit the self-energy (see section 4.1.1) reads:

Σ̃(p, ω) =
∑
q

f(ξq↑)

m
4πa − (1− Z+)

∑
k

[
1−f(ξk↑)

ω−(εp+q−k↓+εk↑−εq↑)+i0+ + m
k2

] , (4.32)

and the polaron-to-bare particle population decay ΓPF rate is finally given by

ΓPF ≡ −2Z+Im[Σ̃(0, E+)] . (4.33)
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4.2.6 Polaron coherence

The last property we need to fully characterize the repulsive polaron is its coherence,
which is quantified by the quasi-particle residue Z [10] i.e. the squared overlap between
the wavefunction of the polaron and the one of a non-interacting bare particle. In order
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Figure 4.14: Examples of Rabi oscillation of the repulsive polaron for four different
interaction parameters: kFa ' 0 (gray circles), kFa ' 1.1 (yellow squares), kFa ' 1.3
(red circles) and kFa ' 3 (purple diamonds). The solid lines shows the fit of the data
using equation 4.38.

to experimentally probe this quantity we drive Rabi oscillations between the atomic state
|2〉 and |3〉 with a resonant RF field. As shown in Figure 4.14, the populations of the two
states will coherently oscillate at the frequency Ω, which is connected to the bare Rabi
frequency Ω0 and the quasi-particle residue by the equation [10]:

Ω2 ' Ω2
0 |〈Ψ2|Ψ3〉|2 ' Ω2Z (4.34)

The ' symbol is not a strict equality because of the finite interaction between the atoms
in state-|1〉 and state-|2〉. For kFa12 � 1 we can estimate the contribution of the finite
repulsion in the quasi-particle residue by means of the single particle-hole Ansatz (see
Equation (4.7)). Using the explicit expression for the particle-hole terms

φqk =
√
Z
T (p + q, E↓ + ξq↑)

E↓ − Epkq
, (4.35)

we can write the overlap 〈Ψ2|Ψ3〉 = Ω2/Ω2
0 as

Z2Z3

(
1−

∑
|q|<kF T ∗(p + q, E↓3 + ξq↑)T (p + q, E↓2 + ξq↑)

Π∗(p+q,E↓3+ξq)−Π(p+q,E↓2+ξq)
E∗↓3−E↓2

)
,

(4.36)

with the retarded pair propagator

Π(p + q, E↓ + ξq) =
∑
k

(
θ(k − kF )

E↓3 − Epkq + i0+
+

2mr

k2

)
(4.37)
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The symbols Π∗ and T ∗ denote instead the advanced pair propagator and T-matrix, re-
spectively, while Z2 and Z3 denote the residues of state-|2〉 and |3〉 quasi-particles. This
expression reduces correctly to two known limits. In particular when a12 → 0 one gets
the simple result |Ω/Ω0| =

√
Z3 [92]. For a12 → a13, instead, using the definition of the

residue Z one obtains that |Ω/Ω0| = 1.
Experimentally we can measure Ω by fitting the Rabi dynamics showed in Figure 4.14 with
a damped sinusoidal function defined as:

N2

N2 +N3
(t) = off +A cos(Ωt)e−γRt +Be−Γt, (4.38)

where γR is the damping rate and Γ the quasi-particle decay. We finally obtain |Ω/Ω0|
by normalizing the result by the base Rabi frequency measured by driving the 2 → 3
transition in absence of the state-|1〉 bath. The result is shown in Figure 4.15 as a function
of the interaction parameter, together with the theoretical prediction given by (solid blue
line). We can notice that the theory can qualitatively describe the reduction of the Rabi
frequency up to relatively strong coupling.
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Figure 4.15: Ω2/Ω2
0 for the repulsive polaron as a function of the interaction parameter

1/(kFa). The solid curve shows the prediction obtained within the ladder approximation
(see equation ). The dashed line shows the lowest order result
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4.3 Conclusions

In this chapter we presented our experimental study of the repulsive Fermi polaron, a
fermionic impurity interacting with a fermionic bath through a broad Feshbach resonance.
We characterized the quasi-particle for a wide range of interaction parameter, from the
unitary limit to the weakly interacting case. We measured its energy and effective mass,
highlighting two instabilities of the many-body system for strong repulsion (kFa ∼ 1):

• The energy of the repulsive polaron exceeds the Fermi energy for 1/kFa < 0.6,
which means that a spatial phase separation between the impurity and the bath is
energetically favored with respect to the creation of the repulsive Fermi polaron, a
clue of the presence of a ferromagnetic instability in the repulsive Fermi gas for strong
interactions.
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• The effective mass diverges and even changes sign when the interactions approach the
unitary limit meaning that the Fermi liquid becomes thermodynamically unstable.

Finally, with lifetime and coherence measurements, we showed that the repulsive polaron
it’s well defined and remains coherent even at very large coupling strength. This motivated
us to study the repulsive branch in a balanced mixture, which is the topic of the next
chapter.



Chapter 5

N+N: many-body dynamics of the
Repulsive Fermi gas

This is the main chapter of this thesis. Here we will describe a set of measurements
we performed to understand the repulsive Fermi gas in a balanced mixture. Thanks to
the spectroscopic technique described in the previous chapter we are able to quench strong
repulsion on an initially weakly interacting Fermi gas, pushing the system out of equilibrium
and populating the so-called repulsive branch of the many-body system. A soon as the
interaction strength gets sufficiently high, kFa ∼ 1, the repulsive gas becomes extremely
unstable and in a timescale of few Fermi times1 it evolves to find a more energetically
favored state. We observed that two different instabilities compete at the same time: on
the one hand pairing processes bring the system in a molecular state, the ground state of
many body-system also known as attractive branch. On the other hand, strong repulsion
between different fermion pushes them away from each other driving the system into an
anti-correlated state, possibly favoring the development of ferromagnetic spin domains.
We probed this competition via pump-probe RF spectroscopy and density fluctuations
measurement for a wide range of timescales finding out that both the two instabilities
are participating together to the evolution of the system, the one affecting the other.
Moreover, we found out that even after an evolution time of thousands of Fermi time the
anti-correlated state formed in the initial stage of the dynamics still survives, preventing the
system to completely reach the paired ground-state. The anti-correlation between the two
fermionic populations corresponds in fact to a minimal overlap of the two wavefunctions
respectively which drastically slows down the molecular formation.
The structure of this chapter can be described in these six points:

• Characterization of the upper branch of the many-body system in the balanced case:
we spectroscopically measure the energy of the repulsive branch using RF spec-
troscopy. We found out that this branch is well defined up to very strong interaction,
kFa ∼ 2, and for relatively low degeneracy, T ∼ 0.8TF .

• In analogy with ultrafast pump-probe experiments in solid state [12, 13] we use two
RF pulses to first quench the system out-of-equilibrium into the repulsive branch
and then to probe its evolution in time. This technique allowed us to probe the

1The Fermi time is namely the minimum collective response time in interacting fermionic systems [64]
and it is defined as τF = ~/εF . In the context of this thesis the typical Fermi energy of the system is
around 8 kHz in h units, which correspond to a Fermi time of ∼ 20µs.

71
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very fast dynamics of the system (few Fermi times) and measure the pairing and
ferromagnetic rate for different repulsion strengths. Contrary to previous theoretical
and experimental studies [5] we observed an interaction window, for kFa > 0.8, in
which the ferromagnetic instability is faster than the molecular formation.

• We probed the many-body system after tens of milliseconds of evolution time (thou-
sands of Fermi time). Anti-correlations are found to survive, compatibly with the
development of ferromagnetic micro-domains in the system. We exclude the role of
the temperature to be dominant in the dynamics by studying the coherence property
of the gas, probing the frequency of the Rabi oscillation and the spectral broadening
in the probe spectroscopy.

• We monitored the density overlap between the unpaired atoms and dimers in the
system, excluding the presence of macroscopic phase separation. Moreover, using
the thermal gas of dimer as a thermometer, we are able to provide an upper-bound
for the temperature increase of about a factor of four.

• We exploit atom number fluctuations and density-density correlations to set an
upper-bound both on the domain size and on the temperature increase of the system.
We observed a two-fold temperature increase and we exclude ferromagnetic domains
with a size larger than few inter-particle spacings.

• We present the result of some extra measurements we performed to exclude trivial
scenarios and to strengthen our understanding of the repulsive gas. We probed
the effect of the presence of a third spin in the spectroscopy signal, the spatial
dependence of the radio-frequency signal, and finally, we show a non-trivial behavior
of the unpaired atomic population with respect to modifications of the bias magnetic.

5.1 Probing the upper branch in a balanced mixture

The starting point of this measurement is a |1〉-|2〉 Fermi mixing of about 2×105 atoms at a
temperature of T = 0.12(2)TF . The gas is confined by the cylindrical shaped optical dipole
trap, described by harmonic frequencies of ωx = 2π × 19.7(2) Hz and ω⊥ = 2π × 233(5)
corresponding to the axial and radial directions respectively. Analogously to the polaron
case described in the previous chapter, we probe the many-body energy spectrum of the
system via radio-frequency spectroscopy, by transferring the atom from the hyperfine state-
|2〉 to the state-|3〉.
The measurement sequence can be recapped in the following key points:

1. Set the bias Feshbach field, which define the interaction parameter of the |1〉-|3〉
mixture, kFa13 ≡ kFa. Scanning the magnetic field in a region between 600 and
700G, we can control the repulsion strength from the non-interacting case to the
unitary resonant one.

2. Calibrate the zero energy of a non-interacting Fermi gas, which corresponds to the
Breit-Rabi splitting at the given field. The calibration consists in preparing a spin-
polarized gas in the state-|2〉 by optically blasting away the state-|1〉 and performing a
radio-frequency spectroscopy scan to find the resonance frequency between the states
|2〉 and |3〉. As described in section 3.2.2 the duration of the RF pulse is 500µs and
its power is set to be a 0.8π-pulse. An example of this measurement is pictured as
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Figure 5.1: Sketch of the radio-frequency measurement scheme. Panel A: we first cal-
ibrate the Breit-Rabi splitting by performing an RF spectroscopy on a spin-polarized
Fermi gas finding the non-interacting resonance frequency ν0 (red data in panel C).
Panel B: we then probe the energy spectrum of the many-body system by transferring
the weakly interacting |1〉-|2〉 mixture to the resonantly interacting |1〉-|3〉. The spec-
troscopy signal (blue data in panel C) features two different peaks: the first, at negative
detuning, correspond to the incoherent molecular association peak, while the second, at
positive detuning, correspond to the repulsive atomic peak. The two peaks are a probe
of the lower and the upper branch respectively.

the red curve in panel C of Figure 5.1. The resonance frequency, ν0, is obtained by
fitting the data via a Gaussian function2.

3. Probe the repulsive branch of the |1〉-|3〉 many-body system via RF spectroscopy,
starting from the weakly interacting |1〉-|2〉 mixture and scanning the frequency
around ν0. Any deviation from the non-interacting case is caused by interactions
and represents the energy spectrum of the system. An example of a spectroscopy
run is shown in blue in panel C of Figure 5.1 for an interaction parameter kFa ' 2.3.
In the signal one can identify the first two energy levels of the many-body system:
at negative frequency, ν < ν0, the attractive branch, at positive one, ν > ν0, the
repulsive one.

In order to extract the energy of the upper branch ∆+ = ν+−ν0, we fit the repulsive peak
position ν+ through a Gaussian function. For very high interaction parameter, like the
case shown in Figure 5.1, the molecular peak (lower branch) partially overlaps with the
repulsive peak, therefore, we use a Gumbel function[107] to serve as a background. The
full fitting function becomes:

S(δ) = Aa exp

[
(δ − δ0a)

2

2σ2
a

]
+Ad exp

[
−δ − δ0d

b
− a× e−

(δ−δ0d)
ab

]
, (5.1)

where Aa and Ad are the amplitudes of the atomic and molecular peak respectively, δ0a

and δ0d their center frequency, σ2
a is the atomic peak spectral width, finally a and b are

phenomenological parameters of the Gumbel function which set its width and skewness.
2In order to fit the spectroscopy peak position, a Gaussian function is chosen over a the sinc function

described in Section 3.2 because it is found to be more robust to noise and to give the same results within
the fit uncertainty.
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The Gumbel function is a well suited to phenomenological fit the incoherent molecular
peak since it can catch its asymmetry with only one additional parameter with respect to
a simple Gaussian.
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Figure 5.2: Upper branch energy as a function of the interaction parameter for two
different initial temperature: T = 0.12(2)TF (black) and T = 0.8(1)TF (orange).

By repeating the measurement for different target bias magnetic field, we probe the upper
branch energy as a function of the interaction parameter kFa, normalized by the Fermi
energy εF /h ∼ 8KHz. In Figure 5.2 we show the results obtained for two different ini-
tial temperatures: T = 0.1TF (in black) and T = 0.8TF (in orange). Very similarly to
the impurity limit case, the repulsive energy increases monotonically with the interaction
parameter and its slope decreases for kFa > 1. In conclusion, we probed the existence of
the upper branch for a balanced Fermi gas mixture up to very high interaction strength
kF s ∼ 2.6 and we found that it exists even for a relatively low degree of degeneracy, at a
temperature of 0.8TF .

5.2 Pump-probe spectroscopy

In this section I will describe how we study the evolution of the upper branch through
pump-probe spectroscopy scheme. The technique consists in two different radio-frequency
pulses: the first one quenches the system out of equilibrium into the upper branch, the
second one, performed after a variable evolution time ∆T , studies the evolution of the
system, monitoring both the decay into the lower branch and the interaction energy over
time. By fitting the amplitude A(t) and the shift ∆+(t) of the atomic peak in the probe
spectroscopy signal one can estimate the molecular fraction of the system and the presence
of spin anti-correlations. For contact interactions, the RF shift is directly linked to the
local pair correlator at zero distance 〈ψ†1(r)ψ†3(r)ψ3(r)ψ1(r)〉, where ψσ is the fermionic
annihilation operator related to the state-σ [108]. Moreover, ∆+(t) is proportional to the
contact C [108], that quantifies the number of fermion pairs at short distance also in out-of-
equilibrium systems [109, 110]. Therefore the RF shift is sensitive both to the development
of short range anti-correlations and to the presence of magnetic domains in the system.

The pump pulse

The purpose of the pump pulse is to drive the system from the weakly interacting |1〉-|2〉
mixture to the repulsively interacting |1〉-|3〉 one. The RF frequency is set to match the
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resonance between the |2〉 → |3〉 transition for each interaction strength, as described in
the previous section. The RF power is set to the maximum experimentally available in
order to minimize its duration and maximize the fraction of atom transferred from the
state-|2〉 to the state-|3〉.
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Figure 5.3: Rabi dynamics between the state-|2〉 and state-|3〉 population as a function
of the pump RF pulse duration for kFa ∼ 1.4. The optimum pump duration is set to
match the first minimum, in order to maximize the transfer efficiency.

In Figure 5.3 we show the population dynamics taking place when changing the duration
of the RF pulse. The duration of the pump pulse is set to match the first minimum. The
transfer efficiency is greater than 99% for low interaction parameter, but drops to around
70% for the highest probed kFa because of a higher collisional rate between state-|1〉 and
state-|3〉 which causes appreciable damping of the Rabi oscillation. Moreover, similarly
to the polaron scenario discussed in the previous chapter, the increased dressing of the
repulsive quasi-particles reduces the Franck-Condon overlap between the initial and the
final state reducing the associated Rabi coupling. The choice of reducing as much as
possible the pump pulse length is motivated by the fact that part of the Rabi oscillation
damping is independent on the RF power, hence, short high power pulses correspond to
larger transfer efficiency. Moreover, if the pulse is too long, part of the evolution might
take place already during the pulse itself and it would introduce an error in the definition
of the zero time of the dynamics. In order verify that such an effect does not take place for
the pulse settings we performed several spectroscopy measurements of the upper branch by
keeping the interaction parameter fixed and varying the duration of the probe pulse from a
minimum of 100µs to a maximum of 2ms. While the spectral width of the peak decreases
increasing the probe time, given the smaller Fourier broadening, the position of its center
does not change within the error of the Gaussian fit. In other words, we can not detect any
evolution of the system happening during the pump pulse if its length is set under 2ms,
which is always a fulfilled condition for the measurements presented in this work. As soon
as the pump pulse is over we remove the remaining atoms in the state-|2〉 via a resonant
optical blast. The blast does not change the short time evolution of the system3 (within
the first few ms), but avoid the three-body losses which deplete the atomic population at
longer evolution time.

3This is confirmed by checking that the evolution of the repulsive peak (described in Section 5.4.1) is
analogous both with or without the optical blast.
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The probe pulse

Once we pumped the state-|2〉 atoms into the |3〉 state, the system populates the upper
branch of the many-body energy spectrum. The |1〉-|3〉 mixture is interacting repulsively
and the system evolves to minimize the repulsive energy. As already discussed in the
introduction there are two possibilities: the first one is to create pairing correlations,
forming molecules and reaching the lower branch, i.e. the ground state of the system. The
second possibility is to build up anti-correlation between the |1〉 and the |3〉 atoms instead,
lowering the spatial overlap between the two fermions, hence decreasing the interaction
energy. We study the competition between these two phenomena by spectroscopically
probing the |3〉 → |2〉 transition after waiting a delay time ∆t from the end of the pump
pulse. As shown in Figures 5.4 and 5.5 two things happen at the same time:
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Figure 5.4: Probe signal at different evolution time ∆t. The x-axis represents the detun-
ing ν−ν0, where ν0 is the resonance frequency for a non-interacting Fermi gas. We show
here spectra with high interaction parameter, kFa ' 2.3, in order to have a good signal
from the molecular dissociation. At lower values of kFa, the binding energy of the dimers
is much larger, shifting the peak to lower frequency and reducing drastically the transfer
efficiency. In blue, we plot the spectra taken at the shortest evolution time, ∆t = 150µs.
The right peak corresponds to the |3〉 unpaired fermions, repulsively interacting with
the state-|1〉 bath, which are transferred in the |2〉 weakly interacting state. The broad
continuum on the left side corresponds to the incoherent dissociation of |1 − 3〉 dimers
in |1〉 + |2〉 free atoms. At longer evolution times, orange and green curves, the atomic
peak decreases while the molecular one increases: the repulsive |1〉 + |3〉 gas populating
the upper branch is decaying in the lower branch forming |1 − 3〉 molecules. The solid
darker lines connect the experimental points. The lighter lines show the fit of the data
to the phenomenological model given by the sum of a Gaussian and a Gumbel function.

• The atomic peak at positive detuning decreases in time and a broad molecular con-
tinuum appears and grows at negative detuning. As one can see in the right panel
of Figure 5.4, the spectra, similarly the one related to the pump pulse described in
the previous section, presents two distinct features: thew incoherent broad molecular
dissociation peak at negative detunings (ν < ν0) and the repulsive atomic peak at
positive ones (ν > ν0). The three lines show different evolution times. For increas-
ingly longer times the amplitude of the atomic peak decreases while the molecular
one increases, signaling the decay of the population occupying the upper branch of
the many-body system into the lower branch of |1− 3〉 dimers.
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• The atomic peak detuning ∆+ > 0 decreases in time, signaling the drop of the
repulsive interaction energy felt by the state-|3〉 atoms. This drop might come from
different physical mechanism: on the one hand, it could be explained in a mean-field
framework, in which the atomic density of state-|1〉 and state-|3〉 atoms are locally
constant and homogeneous, by the drop of the interaction parameter kFa. While
the scattering length a is fixed by the Feshbach magnetic field, the Fermi wave-
vector depends on the atomic density (kF ∝ n1/3), which is decaying because of the
molecular formation. This hypothesis is completely ruled out in section 5.2.3, where
we will show that the drop of atomic density is not nearly enough to justify the
observed energy shift. A second possibility to explain the observed drop of energy is
to release the mean-field hypothesis of constant and homogeneous density and allows
the presence of spatial correlations between state-|1〉 and state-|3〉 atoms. In this new
framework, even if the atomic density remains constant in time, the energy shift can
be originated by a local spatial separation between the two states, which effectively
gradually separates the system into two non-interacting Fermi gases, either via the
development of spin anti-correlations or by the formation of magnetic domains.
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Figure 5.5: Evolution of the probe signal at kFa ' 0.9. The repulsive atomic peak shows
two kind of dynamics at the same time: its amplitude decreases, because of molecular for-
mation (see Figure 5.4), and its center shift towards smaller frequency, which corresponds
to a decrease of the interaction energy. The solid darker lines connect the experimental
points. The lighter ones show the Gaussian fits to the data.

Extracting energy shift and relative atomic population from spectra

In order to quantify the timescales related to these two dynamics, we measure the evolution
of the energy shift and of the unpaired atomic population. As for the pump, the atomic
energy shift is quantified by performing a Gaussian fit of the repulsive peak to extract the
frequency detuning ∆(t) = ν − ν0, with respect to the bare |3〉 → |2〉 transition, and the
amplitude A(t). For the highest interaction parameters probed, kFa > 1.6, we again used a
Gumbel function to remove the background given by the molecular peak while performing
the Gaussian fit.
In order to connect the amplitude A(t) of the atomic peak with the unpaired fermionic
relative population, we need to consider that the probe spectroscopy pulse can not fully
transfer all the atomic population from state-|3〉 to state-|2〉. This finite efficiency comes
mainly from two reasons:

• The RF pulse time is set to match ∼ 0.8π-pulse for a spin-polarized gas4. Hence,
4The choice of a pulse length of about 0.8π-pulse is made to avoid the risk of probing the system for
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even without any molecule in the system, the amplitude of the atomic peak would
be below one.

• The Rabi oscillation between the atomic population |3〉 and |2〉 is partially damped,
which again would produce a signal < 1.

Because of this, in order to extract the actual fraction of unpaired atom, we need to
calibrate the efficiency of the probe RF pulse for any given field. We introduce the efficiency
calibration factor η(kFa), which is obtained by measuring the efficiency of a pump pulse
(|1〉 − |2〉 → |1〉 − |3〉) where the RF pulse power and duration are chosen to match the
0.8π-pulse of the probe spectroscopy. The relative unpaired population n(t)/n(0) at any
given time is then calculated as the ratio between the peak amplitude of the repulsive
atomic peak in the spectroscopy signal and the efficiency factor η(kFa):

n(t)

n(0)
=

A(t)

η(kFa)
, (5.2)

In Figure 5.6 we plot the comparison between the decay of the RF shift (normalized by
the Fermi energy) ∆+(t)/εF and the one of the unpaired population n(t)/n(0) for three
different interaction parameters.
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Figure 5.6: Evolution of the energy shift (left panel) and of the atomic unpaired pop-
ulation (right panel) for three increasing interaction parameters: kFa ' 0.35 (gray
diamonds), kFa ' 0.78 (red squares) and kFa ' 1.53 (green circles). The shift is nor-
malized to the Fermi energy εF , while the fermionic population by the population trans-
ferred by the pump pulse in the |3〉 state. For low interaction strength, gray dataset,
neither ∆+(t)/εF nor n(t)/n(0) evolve in time: the weakly repulsive |1〉-|3〉 mixture is
practically stable. For higher interaction strength, red and green datasets, the popula-
tion of uncoupled atoms drops and reaches an almost steady state of about 15− 20% of
its initial value. The energy shift decreases even faster, dropping below 0.1εF within the
first millisecond of evolution time.

For low interaction strength, the evolution is really slow, and the system is basically stable
in the weakly |1〉-|3〉 mixture. For increasingly larger kFas the upper branch becomes
instead very unstable: the unpaired fermionic population drops because of pairing and the
energy shift decreases with an even faster rate. In order to better compare the very initial
dynamics taking place at different interaction strengths, we will now focus on the first few
Fermi times of evolution and extract both a pairing and a ferromagnetic rate.

a time longer than a π-pulse, which causes a distortion in the spectroscopy signal shape, degrading the
quality of the fit.
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5.2.1 Short time pairing vs anti-correlations

For interaction parameters kFa > 1, the evolution of the atomic peak is really fast: the
energy shift and the atomic density changes drastically already within the first few Fermi
times. Our standard spectroscopy pulse has a duration of 500µs, which has a limited time
resolution if compared to the evolution timescales of the system after the quench, which
are of the order of the Fermi time τF (∼ 20µs in our system). Employing a relatively long
RF pulse we can not be sure that the dynamics of the system is completely frozen as soon
as the probe pulse begins or if it continues to evolve during a fraction of it. Since our goal
is to extract the evolution rate Γ of the generic quantity S5, which is estimated as the first
derivative of S with respect to the evolution time ∆t,

Γ =
∆S

∆t
, (5.3)

to minimize the experimental error on Γ, we need to balance the relative error on ∆S and
on ∆t. In order to improve the time resolution, we adjusted our spectroscopy protocol
by reducing the probe RF pulse duration. This comes with a price both on the spectral
resolution and on the signal to noise ratio, increasing the experimental error on the estima-
tion of S. The reason is that a shorter pulse, on the one hand, introduces a larger Fourier
broadening and on the other, even using the maximum RF power available in our setup,
causes a substantial reduction of the transfer efficiency from the state-|3〉 to the state-|2〉.
The best compromise we found is to adopt RF pulses durations between 50µs and 100µs.
Within this range we achieve transfer efficiency for the probe spectroscopy as large as 15%
and a spectral width of 10KHz as shown in Figure 5.7. The combination of these two
effects corresponds to a fitting error in the determination of the peak frequency of about
350Hz, which is 5 times bigger if compared with our standard scheme corresponding to
probe pulses ranging from 250 and 500µs.
Using this probe procedure, we study the very short time evolution of the system as a
function of the interaction parameter. In this set of measurement we limit the interaction
strengths from kFa ' 0.4 to kFa ' 1.6 because, for higher interaction strengths, the
poor signal and the low spectral resolution do not allow us to clearly resolve the atomic
spectral contribution from the molecular one, making unfeasible a precise determination of
the position of the peaks. In order to quantify the relative speed of the pairing processes
compared to the formation of anti-correlations, we perform a linear fit both on the evolution
of the relative unpaired population, n(t)/n(0) and on the evolution of the energy shift
∆+(t)/εF . The slope obtained by the fit, Γpairing and ΓFM, estimate the first derivative
of n(t) and ∆+(t) within the first Fermi time of evolution and allows to quantitatively
compare the speed of the two processes6.
In Figure 5.8 we plot the obtained pairing and ferromagnetic rates expressed in the unit of
the inverse of the Fermi time τ−1

F = εF /~. For low interaction parameters, they both are

5S can can be any observable in the system, e.g. the frequency shift or the amplitude of the spectroscopy
signal relative to the repulsive peak

6The choice of linear fitting over other possible decay models, such as e.g. exponential, is motivated
by the fact that it provides model-independent rates. An exponential fit to data at all times would
greatly underestimate the initial rates, characterizing the extremely fast initial dynamics at strong coupling.
Moreover it would imply the existence of only one relevant timescale in the evolution, which is not the
case because of the interplay between the growth of anti-correlations and the pairing: on the one hand the
anti-correlations slow down the pairing process reducing the spatial overlap between |1〉 and |3〉 particles
wave-function, hence reducing the coupling probability.
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∆t

Figure 5.7: Sketch of the trade-off between time and spectral resolution for different
durations of the probe pulse. On the top panel the intuitive illustration of the reason
why a shorter RF probe pulse reduces the uncertainty on the waiting time. The dynamics
of the many-body system is not necessary frozen already at the beginning of the probe
but might continue for a fraction of it. On the bottom panel the comparison between
the spectroscopy signal obtained with a 50µs and a 500µs long probe RF pulse. The
red curves show the Gaussian fit on the experimental data, together with the fit 95%
confidence interval (shaded region). Because of the short duration of the probe, the
width of the peak is greater than 8KHz (Gaussian σ2) due to Fourier broadening. The
fitting error of the peak center is of the order of 350Hz, more then 5 times less accurate
if compared with the 50Hz uncertainty given by the standard spectroscopy procedure.

very small, describing a system that is almost stable. As soon as kFa approaches one, both
Γpairing and ΓFM increase and, in a window between kFa = 0.8 and kFa = 1.3 the latter
becomes twice as big as the first one. In this interaction window, the short-time dynamics
is dominated by the formation of anti-correlation, corresponding to a very fast drop of the
interaction energy ∆+(t)/εF already in the first 50µs of evolution time.

It is important to notice that with a probe RF pulse length of 50µs and a minimum
waiting time of 10µs, the highest measurable rate with a linear fit is Γmax ∼ 0.4τ−1

F ,
which corresponds to the hypothetical slope which would be measured if the energy shift
or the atomic unpaired population were already zero after 60µs. When the fitted rates
approach this value, they should be regarded as the lower bound to the actual one. The
extracted rate for the pairing process is found to be in really good agreement with the
three-body recombination theory introduced in Reference [63], which, adapted for the case
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Figure 5.8: The pairing (black diamonds) and ferromagnetic (orange circles) rates as a
function to the interaction parameter kFa. The vertical error bars combine the standard
error of the linear fit with the uncertainty in determining the Fermi time τF .

of a balanced mixture, predicts a pairing rate given by7:

τFΓ3 = 2× 0.806× 148

(6π2)2

(kFa)6

1 + (kFa)2
. (5.8)

As shown in Figure 5.9 this theory and our experimental data match for almost 4 decades
without the need of any adjustable parameter. Moreover, the ferromagnetic rate qualita-
tively agrees with the results obtained for a zero-temperature homogeneous Fermi gas via

7The three-body recombination process is a scattering event involving three particles, two of which
in a different spin state with respect to the third. In the initial state all the particles are free, the final
state consists in a dimer plus a free particle which carries out the excess of kinetic energy to ensure total
energy and momentum conservation. In the limit of weak interactions, KF a � 1, in which the mean
collision energy of the particles remains lower than the binding energy of the molecule, the three-body
recombination process can be described by the theoretical approach developed by Petrov in Reference [63].
In the limit of equal masses and broad Feshbach resonance of our system, one can write the number of
recombination events (↑ + ↑ + ↓ → ↑↓ + ↑ or ↑ + ↓ + ↓ → ↑↓ + ↓) per unit of time and volume as:

α↑↓↓n
2
↑ = α↑↑↓n

2
↑ = αn2

↑ = 148
~a4

m

ε

εr
n2
↑, (5.4)

where n↑ is the density of ↑ (or ↓) fermions, ε their kinetic energy and εr the energy gained by the
recombination into a dimer, which for a balanced gas can be expressed as εr = 2/(ma2) + 2εF . If that
all the atoms remain trapped after the collision we can write a rate equation for the unpaired fermionic
density n(t) = n↑(t) = n↓(t):

(̇n(t)) =
dn(t)

dt
= −2× 148

~a4

m

ε

εr
n3, (5.5)

which at short times reads (̇n(t)) ' −Γ3n(t), where we introduced the three-body recombination rate Γ3:

Γ3 ' 2× 148
~a4

m

ε

εr
n2
0, (5.6)

where n0 ' n(t) at short time. By finally expressing the fermionic density in terms of the Fermi wave-vector
and normalizing the recombination rate by the Fermi time we can rewrite Γ3 as:

τFΓ3 = 2× 0.806× 148

(6π2)2
(kF a)6

1 + (kF a)2
, (5.7)

where the numerical factor 0.806 results from averaging the kinetic energy and the squared fermion density
over the integration region as described in Section 4.2.2.
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a T-matrix approach developed in Reference . The same agreement is not found in the
pairing rate predicted using the same method, which is much faster than the measured one.
A possible reason for the mismatch between the theoretical and experimental results is the
difference in the quench protocol used to introduce the interaction in the system. While
the experimental quench is spectrally selective, i.e. the system is initially pumped only in
the upper branch, the quench used in Reference is an instantaneous projection of a non-
interacting Fermi gas onto all available (both atomic and molecular) many-body states.
Therefore, even at zero evolution time, the molecular population is already different from
zero. This contrasts with the experimental procedure and does not take into account the
possibility that the anti-correlations can effectively slow down the molecular formation by
reducing the contact, i.e. the wave-function overlap between the state-|1〉 and the state-|3〉
fermions.
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Figure 5.9: Comparison between the measured pairing rate (black dots) and the three-
body recombination theory developed in reference [63] (gray line).

5.2.2 Long time evolution

The short time analysis described in the previous section showed us that the pairing and the
ferromagnetic instabilities of the upper branch participate to the evolution of the system
with similar timescales. We will now focus on how the interplay between them affects the
properties of the many-body system at longer evolution time. As one can see in Figure
5.6, for t � τF the dynamics of the unpaired atomic population and of the energy shift
slows down and almost halts, leaving the system in a metastable state.
In order to compare the evolution corresponding to different interaction parameters, we
introduce two new quantities, ∆+LT and n+LT , the average in the time window between
10 and 30ms (∼ 500 − 1500τF ) of ∆+ and n+ respectively. In Figure 5.10 we plot them,
normalized by their correspondent value at zero evolution time, ∆+0 and n+0.
For interaction strengths kFa > 1 the energy shift is found to drop by more than 90% of
its initial value, while more than 15 − 20% of the uncoupled atomic population survives.
In order to understand this behavior we will consider four different scenarios which can
possibly explain why the energy shift remains very low in the long evolution time limit:

• Due to the initial repulsion the system develops anti-correlations (or spin-polarized
micro-domains) which survive in time in a sort of emulsion metastable state of atoms
and dimers.
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Figure 5.10: Relative fermionic population n+LT /n+0 (black triangle) and interaction
shift ∆+LT/∆+0 as a function of the interaction shift (orange circles). The long-time
(LT) subscript corresponds to the averaging of the two quantities within the evolution
time window 10 < ∆t < 30ms. For kFa > 1 the energy shift drops to less than 10% of its
initial value, while the uncoupled fermion population does not decrease below 15− 20%,
reaching a sort of equilibrium. The error-bars include the contribution of the all the
fitting error together with the statistical error given by the standard deviation of the
mean of the experimental points comprised in the LT time window.

• Because of the molecular formation, the density of the unpaired fermions drops,
leading to a reduction of the interaction energy. In a mean-field picture, considering
instantaneous thermalization, the interaction energy kFa would decrease as n1/3,
where n is the unpaired atomic density.

• The release of the binding energy during the molecular formation process causes the
heating of the system increasing the average collision energy. As discussed in Section
3.2.4 of Chapter 3 this would reduce the scattering amplitude, hence, the effective
interaction strength.

• A macroscopic phase separation of atoms and dimer would push the uncoupled
fermions in the wings of the density distribution, leaving the molecules in the center
of the trapping potential. The probed fermions, therefore, occupy a spatial region
of both lower density and lower degeneracy, potentially explaining the drop of the
observed energy shift.

In the following, we will describe all the additional analysis and experiments we performed
to understand what is the relative importance of these four physical phenomena in the
dynamics of the energy shift we observe in our system. We will see that the first scenario
is more relevant, while the others only give negligible contributions to the evolution of the
system.

5.2.3 Incompatibility of the long-time spectral response with simple
density reduction of the Fermi liquid

In this section we will show that the drop of the atomic density caused by the molecular
formation can not explain the energy shift drop. In order to understand the role of the
density in the interaction shift we introduce two new quantities, the instantaneous Fermi
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energy εF (t) and the instantaneous interaction strength kF (t)a defined as:

kF (t) = kF

(
n(t)

n0

)1/3

, (5.9)

εF (t) = εF

(
n(t)

n0

)2/3

, (5.10)

where n0 is the unpaired atomic density at zero evolution time, n0 = n(0). Using this
renormalization we can present the evolution dynamics of the shift and the interaction
strength in a parametric plot in which the unpaired density is the variable parameter,
instead of the time.
First of all we plot the measured energy of the upper branch ∆+0 measured in section
5.1 (cross symbols in Figure 5.11). For a fixed temperature, within the normalization
introduced by the equations 5.9 and 5.10, it provides a universal relation between the kFa
and the interaction energy. In other words, starting from any given point of the ∆+-kFa
phase space which lies on the pump data (purple circle marked as A), if the evolution of the
interaction shift was described by the drop of the density n, we would expect the evolution
to coincide with the measured shift at lower interaction strength (marked as B).

Figure 5.11: Upper branch energy as a function of the interaction parameter for two
different initial temperature of the system: T = 0.12(2)TF (cross symbol) and T =
0.80(5)TF (plus symbol). The orange and gray solid lines are guides to the eye for the two
temperature respectively (obtained with a polynomial fit of third degree). An example
of energy shift evolution given by the drop of unpaired fermions density is sketched for
an initial kFa ' 1.3. The starting point is represented by the purple circle (marked as
A). The evolution driven by the loss of the atomic density n at constant temperature is
sketched by the violet arrow, which leads to points (e.g the one marked as B) belonging to
the upper branch spectra (orange line). If the temperature increase caused by molecular
formation is taken into account, one can expect evolution like the one described by the
red arrow and leading to the point marked as C. If the temperature of the system during
the dynamics remains below 0.80(5)TF , all the possible points describing the evolution
of the system, solely driven by the drop of atomic density and increase of temperature,
have to be contained between the orange and the gray lines.

This would be strictly true in a mean-field picture in which the temperature of the system
remains constant. If we want to take into the account for the heating due to the three-body
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recombination, we need to consider that, as discussed in Section 3.2.4, the increase of the
average collision energy effectively reduces the interaction parameter. We experimentally
calibrate this effect by repeating the measurement of ∆0+(kFa) for a much higher initial
temperature of the system corresponding to a degeneracy of T/TF = 0.80(5) instead of
T/TF = 0.12(2) (plus symbols in Figure 5.11). As one can see, because of the higher kinetic
energy, the shift drops by about a factor two. Considering that the chosen temperature
T = 0.80(5)TF is an over-estimation of the actual increase of temperature we expect
in our system, which is about a factor two as estimated in Section 5.2.8, the observed
unpaired atomic density drop could only explain a drop in the energy shift following a
similar path to the one described by the arrow going from point A to point C, as sketched
with the red arrow. In the scenario in which the atomic density remains homogeneous,
all the points describing the evolution of the system are expected to be strictly above the
threshold given by the very high-temperature limit. Our observation completely rules out
this hypothesis: as shown in Figure 5.12, for initial kFa > 0.8, the drop of the energy
shift is completely inconsistent with the lower-bound given by spectral response measured
at high temperature. As we can see already the first point (empty symbols) after the
pump (solid symbols) is completely out of the lower boundary given by the upper branch
energy corresponding to a temperature T = 0.80(5)TF (lower edge of the shaded region).
We, therefore, conclude that the drop of the unpaired fermionic density, together with the
increase of the temperature due to three-body recombinations, is not nearly enough to
explain the measured drop of the interaction shift, therefore, we exclude this mechanism
to be extremely relevant to the evolution of the many-body system.



86 5.2. Pump-probe spectroscopy

0.5 1.0 1.5 2.0

κF(t)a

0.0

0.1

0.2

0.3

0.4

0.5

Δ(
t)/

ε F
(t)

Figure 5.12: ∆+(t)/ε(t) versus kF (t)a for different initial interaction parameter. The
shaded region is the area between the energy of the upper branch measured with an
initial temperature of the gas between T = 0.12(2)TF (upper limit) and T = 0.80(5)TF
(lower limit). Full symbols show the upper branch energy shift while empty symbols the
evolution of the system at an increasingly waiting time (i.e. decreasing unpaired atomic
density) going from the top right to the bottom left region. Different colors represent
different initial interaction strengths (the darker the color the higher the interaction
strength). For kFa > 0.8 the experimental points drops down below the bottom thresh-
old, meaning that the drop of density cannot explain the drop of the interaction shift
even with a 6-fold increase of the temperature.

5.2.4 Melting of the anti-correlated state

In order to further confirm that the temperature increase does not play a relevant role in
the dynamics of the energy shift, we investigate the response of the system to slow changes
of interaction strength. The idea is to quench the system to strong repulsive interactions,
wait for the shift to drop and then externally lower the interaction strength by changing
the scattering length a, and then monitor again the interaction energy. If the initial shift
was caused by mean-field effects, such as the drop of the fermionic density of the increased
collision energy, a reduction of the scattering length would necessary further reduce the
measured energy shift ∆+.
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Figure 5.13: Sketch of the measurement scheme. The system is initially quenched to
strong repulsion (kFa ' 0.9). After waiting for 1ms for the energy shift to drop, the
Feshbach magnetic field is ramped down in 10ms to reduce the scattering length. Finally
the energy shift is spectroscopically probed.

The measurement sequence, sketched in Figure 5.13, can be summarized in four main
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points:

1. We quench the system to an initial interaction strength kFa ' 0.9. Here, the mea-
sured energy shift correspond to the upper branch energy (point A in Figure 5.14).

2. We let the system evolve for 1ms in order for the energy shift to drop by 90% of its
initial value (point B).

3. We lower the bias Feshbach field with a 10ms ramp in the current, from 139A to
136(134)A, which corresponds to a drop of the interaction strength from kFa ' 0.9
to kFa ' 0.6 and 0.4.

4. We wait 10 additional milliseconds in order for the magnetic field to stabilize and
measure again the energy shift. The results correspond to the points C and D.
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Figure 5.14: Anti-correlation melting experiment sequence: we start by quenching the
system to kFa ' 0.9 (point A), then we wait for the energy shift to drop below 10% of
its initial value (point B). At this point, we ramp down the Feshbach magnetic field, de-
creasing the scattering length, hence the interaction parameter, in 20 ms. The measured
interaction shift (points C and D) increases, suggesting that the anti-correlated state
formed after the quench is not supported anymore by the lower repulsive interactions
and melts. The spatial overlap between the two fermionic species increases and so does
the interaction shift, reaching the asymptotic value (red triangles) which is recorded after
a long evolution time ∆LT quenching the system directly to the target field. The error
bars show the fitting error.

One can notice how ∆+ (pointsC andD) increases back from its smaller value at kFa ' 0.9
(point B). This observation is not compatible with a trivial mean-field explanation of the
RF shift behavior. The reversibility of the interactions shift, despite partial (irreversible)
atom-molecule conversion, points to believe that the state corresponding to point B is an
interaction-driven anti-correlated state. The idea here is that, after the initial quench, the
system develops anti-correlations which cause the drop of the interaction shift after just
1ms. Then, as soon as we slowly ramp down the scattering length, the repulsion between
state-|1〉 and state-|3〉 atoms becomes weaker and stops to support the anti-correlated state
which melts. The two different fermionic states start to overlap again and the measured
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interaction energy increases reaching the asymptotic value ∆LT (red triangle in Figure
5.14).
This experiment helps to rule out the hypothesis that the drop of the interaction shift
could be explained by an increase of the temperature in the system or by the drop of the
atomic density. If that was the case, ramping down the interaction parameter would have
only caused a further decrement of the interaction shift, which is the opposite scenario of
the observed behavior.

5.2.5 Atom-dimer interaction effects on the spectroscopy signal

In the previous sections we did not consider that also the interactions between the re-
maining unpaired atoms and the formed dimers can also play a role in the measured
radio-frequency shift. As shown in Figure 5.15 the contribution to the interaction energy
can be also negative because, unlike the atom-atom interaction, the atom-dimer one admit
an attractive p-wave scattering channel which dominates at large collision energy [75]. Af-
ter a sufficiently long evolution time, as soon as there is a non negligible fraction of dimers
in the system, the observed energy shift starts to depend on both the two contributions. If
the average collision energy becomes sufficiently high because of the heating caused by the
three-body recombinations, these two contributions, having an opposite sign, might cancel
out with each other explaining the observed drop of the RF spectroscopy shift.
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Figure 5.15: On the left panel the real part of the atom-dimer (black line) and atom-
atom (red line) forward scattering amplitudes, normalized to the atom-atom scattering
length a, as a function of the collision energy Ecoll normalized to the dimer binding
energy in the vacuum Eb (see Section 3.2.4). On the right panel the imaginary part
of the atom-dimer (black line) and atom-atom (red line) forward scattering amplitudes,
normalized to the atom-atom scattering length a, as a function of the collision energy
Ecoll normalized to the dimer binding energy in the vacuum Eb. The atom-dimer behavior
is adapted from Reference [75]

.

We will now show that this is not a good interpretation of our data and that the scenario
of a hot mixture of weakly interacting atoms and molecules is ruled out by the observed
evolution of the atomic peak width. The idea is that the spectral broadening, unlike
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the shift, monotonically increases with the collision energy both for atom-atom and atom-
dimer interactions and therefore can be exploited to estimate the contribution of the higher
collision energy in the system.
In Figure 5.16 we show the evolution of the spectral width of the atomic peak after the
system is quenched to kFa ' 0.9. The signal is normalized using the width measured width
the same spectroscopy RF pulse on a non-interacting spin-polarized gas, which provides an
estimation of all the technical broadening related to the measurement, mainly the Fourier
broadening given by the final duration of the pulse. One can notice that the spectral
width of the repulsive peak decreases in time and reaches, in the long-time limit, a value
compatible with a non-interacting gas. This completely rules out the hypothesis of a hot
mixture of atoms and dimer since it would have caused a broadening of the measured
spectral width instead of a narrowing. Again, the simplest possible explanation is that
anti-correlations between atoms in different spin states and molecules survive and the
surviving unpaired fermions behave like nearly non-interacting isolated particles.
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Figure 5.16: On the left panel the evolution of the spectral broadening of the atomic
peak after the quench to kFa ' 0.9. The spectral width is obtained via a Gaussian fit
and it is normalized by the width measured with the same experimental sequence on a
spin-polarized Fermi gas. Since the spectral broadening of the bare |2〉 → |3〉 transition
is completely negligible at this level, this measurement quantifies all the technical broad-
ening in our measurement, i.e. almost completely by the Fourier broadening related to
the finite RF probe time. One can see that in about 5ms of holding time the spectral
width of the quenched system drops and reaches the one of an ideal Fermi gas. This
is in agreement with the development of anti-correlation in the system and rules out
the hypothesis of relevant heating of the gas. On the right panel the spin-polarized
spectra (green solid line), the pump spectra (orange solid line) and the repulsive atomic
peak after 10ms of evolution time (black circles). The spectral properties of the anti-
correlated system are almost indistinguishable from the one of an ideal Fermi gas. All
the spectra shown in this panel are centered with each other to facilitate the comparison
of the spectral broadening.

In Figure 5.17 we summarize the long-time behavior of the atomic spectral width for
different interaction parameters, showing that quenching the system to higher interac-
tions produces atomic states which resemble more and more to an ideal Fermi gas further
confirming that higher repulsion builds up stronger anti-correlation in the system which
effectively isolates the two spin components from each other.
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Figure 5.17: Ratio between the spectral width of the pump and the one of the system in
the long time regime (average between 10 and 30ms of evolution time). The error-bars
represent the fitting uncertainty.

5.2.6 Rabi oscillation measurement on the anti-correlated state

Together with the observation of the decrease of the atomic peak spectral broadening
discussed in the previous section, we present here an analogous observation in the time
domain, which again points to the presence of anti-correlations surviving at long evolution
time. The idea is the following: we quench the system to strong repulsion and we let the
system evolve for 1ms. Then we set the RF frequency to be resonant with the repulsive
peak ∆+(1ms) and its power to the maximum allowed by out experimental setup. Finally,
similarly to what we have done when studying the lifetime of the repulsive polaron, as
described in Section 4.2.5 of the previous chapter, we measure the Rabi oscillations between
the state-|3〉 and the state-|2〉 and we fit the signal with the function:

f(t) = Ae−ΓRt +Be−γRt cos

(
Ωt

2π

)
, (5.11)

where Ω/(2π)is the Rabi frequency, γR is the damping rate and ΓR is the excited population
decay rate. In order to normalize the Rabi frequency, we repeat the experiment on a spin-
polarized Fermi gas obtaining the non-interacting Rabi frequency Ω0. In Figure 5.18 we
plot the normalized Rabi frequency as a function of a detuning we apply to the RF pulse,
immediately after the quench and with an evolution time of 1ms, as soon as the energy
shift has dropped almost completely.
With no holding time the ratio Ω/Ω0 ≤ 1, showing the expected behavior or the repulsive
Fermi liquid regime, in which the renormalization of the quasi-particle coherence is encoded
in a quasi-particle weight smaller than one [111]. Instead, after one millisecond of evolution
time, the Rabi frequency matches the one of the ideal Fermi gas, confirming that the gas has
developed anti-correlations and has started to behave more like an ideal Fermi gas. This
observation is fundamentally related to the measured spectral broadening drop described
in the previous section: they basically describe the same phenomena in the time and in
the frequency domain.
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Figure 5.18: Normalized Rabi frequency as a function of the detuning from the bare Breit-
Rabi energy. The gas is quenched to strong repulsion (kFa ' 2) and Rabi oscillations
are measured for different detuning immediately after the pump pulse (gray circles) and
after 1ms of evolution time (red squares). The Rabi frequency is extracted via a fit
of equation 5.11 and it is normalized by the corresponding frequency measured on a
spin-polarized Fermi gas Ω0. The error bars represent the fit uncertainty. After 1ms
of evolution time the measured Rabi frequency matches the one of an ideal Fermi gas,
suggesting the development of anti-correlations.

5.2.7 Macroscopic overlap between unpaired fermions and dimers

Up to now we implicitly assumed that the overall density distribution of the atomic and
molecular parts share the same volume in the trapping potential. Here we will justify this
assumption showing that they macroscopically overlap and no phase separation can be
detected in the system. Since atoms and dimers can not be discriminated by our imaging,
we use a radio-frequency pulse to selectively probe one of the two states in the following
way:

• As usual, we prepare the system by waiting a time ∆t after a quench to kFa ' 2.3.

• We acquire a full spectrum comprising both the repulsive atomic peak and the molec-
ular one, and we locate the corresponding resonance frequency ∆+(t) and ∆D(t)
respectively.

• We probe the in-situ position of the atoms by transferring part of them from the
state |2〉 to the state |3〉 with an RF pulse at ∆+(t) and by imaging the state |2〉
immediately after.

• We probe the in-situ position of the molecules by dissociating part of them with an
RF pulse at ∆D(t) and imaging the state |2〉 immediately after.

In Figure 5.19 we plot on the left the probe spectra together with the fit used to extract
the best resonant frequency for transferring atoms and dimers from the state-|3〉 to the
state-|2〉 and, on the right, the density profile integrated along the axial direction both of
the unpaired atoms (in blue) and of the dimers (in orange). Since the amplitude of the
molecular spectra grows in time, while the atomic one decreases, we plot (in orange) a
rescaled version of the atomic integrated density to match the amplitude of the molecular
one in order to compare the two profiles more easily. One can notice that the two density
profiles overlap quite perfectly, ruling out the possibility of macroscopic phase separation
between atom and molecules.
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Figure 5.19: On the left the spectra of the many-body system with an increasing
evolution time after the quench: 50µs, 150µs, 1.15ms and 30ms from top to bottom.
The zero frequency ∆+ = 0 corresponds to the bare atomic transition, measured by
probing the state-|2〉 to state-|3〉 transition on a spin-polarized Fermi gas. The molecular
and atomic peaks are fitted with a sum of a Gumbel (shown in blue) and a Gaussian
function (in purple). The overall best fit is plotted in green. On the right we plot the
density profile integrated along the longitudinal axis of the cloud. The blue solid line
corresponds to the unpaired atomic density, obtained by transferring state-|3〉 atoms to
the state-|2〉 by applying an RF pulse with a frequency corresponding to the center of
the Gaussian fit. The orange line is the density profile of the molecules, acquired in the
same way but setting the RF frequency to the maximum of the Gumbel function. The
green solid line shows the atomic signal with its amplitude rescaled to match the one
of the molecules for easier comparison. Within the experimental accuracy, the in-situ
profiles show an almost perfect overlap between the atomic and the molecular density
profile, ruling out the possibility of macroscopic phase separation between the two. The
profiles are obtained by averaging about 5 in-situ images in order to improve the signal
to noise.
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5.2.8 Temperature estimation from molecular density profiles

The molecular density profile extracted in the previous section can also be used to estimate
the temperature of the system. In order to do this, we first assume that the molecules are
in thermal equilibrium with the atoms, which is very likely after 50ms of evolution time
in the strong interaction regime. Moreover we assume that the molecular gas is thermal
as confirmed by the lack of a Bose Einstein condensation signature in the system, e.g. the
typical bimodal density profile. The thermal density distribution is therefore described by
a Gaussian profile and can be fitted using the function:

n(x, y) = A× e
(x−x0)

2

2σ2x e
(y−y0)

2

2σ2y , (5.12)

where A is the amplitude, x0 and y0 the position of the center of mass, and σx and σy the
widths from which the temperature can be extracted as:

Tx,y = 2ω2
x,yσ

2
x,y

2m

kB
, (5.13)

where 2πωx,y are the axial and longitudinal trap frequencies respectively, 2m is the mass
of a lithium dimer and kB is the Boltzmann constant. By averaging the axial and the
longitudinal temperature we obtain, independently from the evolution time (if longer than
10ms), a temperature of about 160 nK. If we compare it with the initial temperature of
about 45 nK corresponding to T/TF = 0.12, we find a relative temperature increase between
3 and 4. This estimation has to be considered as an upper bound, in fact, because of the
presence of anti-correlations in the system, the gas of dimers might occupy a larger volume
due to unpaired fermions repulsion, which would result in a higher σx,y and therefore a
higher estimation of the temperature. Nevertheless this result is extremely valuable to
validate the choice of a temperature T = 0.8TF as the lower bound for the shifts shown in
Figure 5.11 of section 5.2.3.

5.3 Spin density fluctuations

In the previous sections we showed how the interplay between the pairing and the fer-
romagnetic instabilities give origin to an atom-dimers mixture in which the inter-particle
interaction energy is minimized by the development of spin anti-correlations. In this sec-
tion we will present our measurements aimed to understand if anti-correlations promote
the formations of ferromagnetic domains. Through the analysis of the density fluctuations
we will be able to exclude the presence of macroscopic domains bigger than few hundreds
of particles, moreover we will be able to provide us an upper-bound to the increase of the
temperature in the system after the quench, confirming the results of the previous section.

5.3.1 Atom number variance

The direct observation of spin domains is very challenging in a 3D geometry. Small domains
with a size of few inter-particle spacing are undetectable with in-situ absorption imaging
because of the density integration along the line of sight of the imaging system. Still, as
described in Section 3.3.8 it is possible to probe their presence by studying the spin density
fluctuations. Spin domains in the system increase the shot to shot local fluctuations, which
can be measured with a good time resolution during the evolution of the system after
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the quench and with a decent spatial selectivity. This allows us to study separately the
dynamics that happens in the center of the cloud from the one taking place on the low-
density wings. Since the estimation of the absolute values of the atom number variance
is very difficult and requires a non trivial calibration performed on a spin-polarized Fermi
gas, in this section we will never draw conclusions based on this number alone, but we
will always compare the results obtained in two very different regimes: the very weakly
interacting mixture at kFa ' 0.3 and the strongly repulsive one at kFa ' 1.3.

Effect of spin domains on the variance

A visual way to understand how the presence of spin domains in the system affects the atom
number fluctuations is to consider a simple model in 2D. Let us consider a density slice
of the atomic cloud and name it Nx,y. The integration related to the absorption imaging
technique corresponds to the integration along the y-axis of the density slice, which results
in the 1D vector Nx:

Nx =
∑
y

Nx,y, (5.14)

where the summation is performed over all the vertical pixels.

Figure 5.20: Visualization of how the presence of spin domains affects the number of atom
variance. From left to right slices of density profiles containing atomic and molecular
domains with increasingly larger size. The color yellow corresponds to state-|1〉 atoms,
the blue-green to |1−3〉 dimers and the dark blue to state-|3〉 atoms. On the bottom, the
integration of the profiles along the vertical direction, setting to 0 the value of the pixels
containing state-|1〉 atoms and to 1 the one containing state-|3〉 atoms and molecules.
The vertical scale is unchanged between the four plots. One can see that the presence of
domains drastically increases the density noise, hence the atom number fluctuation. The
bigger are the domains, the higher are the fluctuations.

In Figure 5.20 we show four different examples of density slices in the presence of domains
of growing size (from left to right). Yellow regions represent atoms in state-|1〉, dark blue
regions atoms in state-|3〉 and blue-green regions |1 − 3〉 dimers. Our imaging is set to
be resonant with state-|3〉 atoms, which includes also the molecular state, therefore, our
probed quantity is the gas density with some holes created by the state-|1〉 atoms. The
integrated signal is shown in the second row of the figure. Since the domain position
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varies in different experimental realizations, the measured number variance of each pixel
increases with their presence and grows with their size. In order to quantify this behavior,
we generate K = 100 different density slices varying the domain size from 1 to 30 pixels.
We name them Nk,s

x,y , where k is the realization index and s the domain size8. We integrate
along the y direction each set, we compute the variance over the k index and finally we
average over the x direction to obtain the number variance associated with the domain
size s:

(∆N)2

N
(s) =

∑
x

(
1

N s
x

K∑
k

(Nk,s
x −N

s
x)2

K

)
, (5.15)

where Nx is the mean of the integrated profile N b
x over the K realizations. From the

results plotted in Figure 5.21 one can see that the number variance grows almost linearly
with the s except for a saturating behavior for the largest domain size, which appear as
soon as s approaches the finite size of the system. In conclusion, although the model
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Figure 5.21: Number of atom variance as a function of domain size. Each point corre-
sponds to the variance calculated using 100 randomly generated density profiles. The
domain size corresponds to the characteristic size of the domains in the central position
of the cloud (see Figure 5.20).

we used is very simplistic, the relationship between the presence of cluster in the system
8The density profiles are generated with the following procedure, which by no mean has a physical

background, but it is capable of easily produce domains with a controlled size:

1. We create a 200 × 200 grid of random number uniformly distributed between 0 and 1, Nx,y. This
produces a density distribution with high-frequency components in the noise which emulate the
intrinsic noise of the system in absence of any spin domain.

2. We apply a Gaussian filter to the density decreasing progressively its low-pass frequency while going
towards the center of the grid. This lowers the maximum spatial frequency of the noise in the central
region in order to take into account that the domain formation is favored in the high-density region
of the cloud, where the repulsive interactions are stronger.

3. Finally we set two numbers, a and b, to define the position of the atoms and molecules: the regions
with Nx,y < a will contain state-|1〉 atoms, the ones with a < Nx,y < b will contain |1 − 3〉dimers
and Nx,y > b state-|3〉 atoms. a and b are chosen to fix the relative population between the three
possible states.

4. The integrated signal is obtained but setting a value of 0 to state-|1〉 atoms, a value of 1 for state-|3〉
atoms and dimers, and finally sum along the y-axis.
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and the increase of the atom number variance is very clear. In a real system, the shape
and the spatial distribution of the domains could change the details of this behavior but
not the overall trend. In the following, we will use the atom number fluctuation as our
main observable to study the nature of the anti-correlation developing in our system after
applying the interaction quench to strong repulsion. It is important to notice that, while
the presence of domains implies the growth of density fluctuations, the opposite argument
is not true: other effects like temperature can increase the fluctuation in the system up to
the Poissonian limit (∆N)2 = N as already described in Section 3.3.8.

5.3.2 Atom number fluctuation after the quench

We have seen how the presence of atom number fluctuations can help us to probe the
presence of spin domains in the system. We will now report the results obtained by
measuring the evolution of the number variance after the quench to strong repulsion. The
experimental preparation is exactly the same as the one of the pump-probe spectroscopy,
except for the last part, in which the probe spectroscopy is replaced by the in-situ imaging
of the state-|3〉. To recap, the procedure is the following:

1. Start with a weakly interacting |1〉-|2〉 mixture at the target magnetic field, which
set the strength of the repulsive interactions after the quench, kFa.

2. Quench the system into the upper branch via an RF pulse resonant with ∆+(0). The
RF power is set to the maximum allowed by the experimental apparatus in order to
reduce the pulse time and increase the pump efficiency and the time resolution.

3. We acquire around 90 images of the state-|3〉 unpaired atoms and |1− 3〉 dimers.

4. From the density profiles we extract the atom number variance as a function of the
local mean number of atoms, (∆N)2/N , as described in section 3.3.8.

As we discussed in Section 3.3.8, the determination of the absolute value of the atom
number variance is very challenging because of the finite resolution of the imaging system.
Given this difficulty we will avoid drawing conclusions based on the atom number variance
alone but, instead, we will always compare results corresponding to a quench to strong
repulsion kFa ' 1.4 with the ones obtained without quench on the weakly interacting
|1〉-|2〉 mixture9. In Figure 5.22 we report the evolution of the normalized atom number
variance of the system after a quench. The holding time is represented along the y-axis of
the plot, the mean atom number on the x-axis and the atom number variance normalized
by the weakly interacting one by the color scale. First of all, we notice that the evolution
mostly happens on the high atom number region, corresponding to the center of the trap,
which is expected since the higher is the density the stronger are the local interactions.
We can clearly see that, the closer we look to the center of the cloud, the faster is the
dynamics of the variance: on the density wings (N ∼ 60) ∆N/N is basically constant in
time, while for N ∼ 120 the variance quickly increase to more than twice its initial value.

9As shown in Figure 5.23, if we measure the variance of the weakly interacting |1〉-|2〉 mixture, the
result is independent of the time of the imaging pulse. Hence, in the following, we will average the variance
obtained at different times and we will use this result as a normalization for the strongly interacting cases.
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Figure 5.22: Time evolution of normalized the atom number variance as a function of
the mean number of particle per bin. The vertical axis represents the holding time t,
the horizontal the mean number of atoms per 5 × 5 bin, N (see section 3.3.8 for the
details about the estimation of the variance). The left side of the plot corresponds to the
central high-density region of the cloud, the right side to its low-density wings. The colors
represent the evolution of the atom number variance relative to the weakly interacting
case. The brighter the color, the bigger is the relative change.
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Figure 5.23: Atom number variance versus the mean atom number of a weakly interacting
|1〉-|2〉 mixture. The interaction strength is so weak that we are able to detect any
evolution of the system. All the measurement at different holding time, represented with
different colors, are overlapped within the uncertainty of the measure. The error-bars
denote the standard deviation of the mean (see section 3.3.8 for details).
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High density region cut

In order to focus on the higher density region of the cloud we can select the data along
the vertical direction, in the region of about 120 atoms per bin. The corresponding spatial
region of the cloud is shown in Figure 5.24 and the results are plotted in Figure 5.25.
In the first millisecond of evolution time the atom number variance increases to twice
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Figure 5.24: The top image shows a typical experimental density profile of the gas after
the quench with a 5×5 binning, which allows us to reduce the effect of the finite resolution
of the imaging system on the estimated atom number variance (see section 3.3.8 for
details). The red region, <, is the one containing about 120 atoms per bin and will be
the one on which we focus on this section. For comparison, the white dashed rectangle
represents the region we use to extract the spectroscopy signal. The two bottom panels
show the integrated density (in blue) and integrated atom number variance (in orange)
along the transverse and the axial axes respectively. The red band indicates again the
high-density region analyzed in this section.

its initial value, then it slowly drops. We can think of two possible ways to explain this
behavior:

1. The temperature of the system increases by a factor of two due to the binding energy
released during the three-body recombination. In the regime of high degeneracy the
temperature is, in fact, proportional to the atom number fluctuations (see Section
3.3.8).

2. Due to strong repulsion the system develops micro-domains of atoms and molecules,
whose size increases with time.

The measurement is not able to distinguish between the two scenarios but it provides at the
same time an upper bound for the temperature in the system and for the maximum size of
the ferromagnetic domains. Let us consider the two extreme cases in which only one of the
two explanations is correct. Considering the first to be correct we find the upper bound for
the temperature to be T ' 0.3TF , which is twice its initial value. This estimation of the
maximum temperature limit is in agreement with the estimation of section 5.2.8, based on
the fit of the molecular density profiles.
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Figure 5.25: Evolution of the normalized atom number variance in the high density
region of the cloud (mean number of atoms per bin between 100 and 120) for a quench
to kFa ' 1.2 (orange dots) and to kFa ' 0.35 (black dots). The error-bars denote the
standard deviation of the mean.

Concerning the ferromagnetic domain size, the interpretation of the result is less straight-
forward. While on the one hand, the factor of two would limit the domain size to a couple
of inter-particle spacings, we know that after one millisecond of evolution time the number
of molecules in the system overcomes the number of unpaired atoms. Hence, as illustrated
in Figure 5.26, by normalizing the number variance with the mean number of atoms in the
state-|3〉 we could easily underestimate its increase for the domain driven enhancement of
fluctuation. It is very hard to estimate more reliable value without modeling the interplay
between temperature increase, domain formation and atom-dimer interactions which, at
the moment is beyond our capability. It is important to remark that this last argument
does not apply to temperature since the presence of molecules, in this case, would add a
contribution to the variance even bigger than the atomic one.
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Figure 5.26: On the first row the sketch of the system in presence of domains of fixed size.
The color code is the following: yellow → state-|1〉 atoms, green-blue → |1− 3〉 dimers,
and dark blue → state-|3〉 atoms. From left to right the relative population of dimer
increases. In the second row, we plot in dark blue the atoms and molecules detected by
the imaging light (resonant with state-|3〉). On the last row we plot the integration along
the vertical direction of the correspondent image on the second row, counting 1 the dark
blue pixels and 0 the yellow one, normalized by the mean counts. The vertical scale is the
same for all the plots. One can intuitively see how the presence of molecules drastically
reduces the measured variance due to ferromagnetic domains. The fluctuations are in
fact given by the “holes” that the state-|1〉 domains produce in the density.

Evolution time slices

A second possible way to look at the data presented in Figure 5.22 is to compare two
key evolution times: 100µs and 700µs. These two time slices are presented is Figure
5.27 together with the measurement of a weakly interacting gas. One can notice that
the evolution after 100µs is almost absent except for a very weak deviation in the high
density region. At first glance this observation seems apparently in contrast with the energy
shift measured trough pump-probe spectroscopy, which features a drop of more than 50%
already at 100µs. On the other hand, the probed quantity is not the same: while the
presence of domains implies a drop in the interaction shift, the opposite is not true, since
the development of anti-correlations is sufficient. The formation of spin domains could be
a slower process which is the natural evolution of the initial anti-correlated state. If now
we look at the atom number variance after 700µs of evolution time we observe a two-fold
increase in the center of the cloud. As already discussed it could be originated both by
an increase of temperature and by the formation of magnetic domains. In both cases, the
maximum increase of the variance is in fact expected in the center of the cloud, where both
the repulsive interaction strength and the molecular formation rate are higher.
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Figure 5.27: Atom number variance as a function of mean atom number. The black
dataset is measured on a weakly interacting gas at the same temperature and serves as a
reference. The purple data correspond to an evolution of 100µs after the quench to kFa '
1.2. The red data points represent a 700µs evolution. The relatively slow increase of the
variance (as compared to the drop of energy shift measured via pump-probe spectroscopy)
takes place mostly in the high-density region of the cloud and suggests the development
of micro-domains in the system.

5.3.3 Density-density correlations

In the previous section we studied the development of the density fluctuations in the
system after the quench to strong repulsive interactions. In order to further investigate
spatial properties of these fluctuations we also calculate the density-density correlation
function, a non local observable, which quantifies the probability of finding two particles
in the same hyperfine spin state at a given distance R. We will see that, although this
observable is extremely limited by the resolution of our imaging system, it will provide
valuable information about the maximum size of the spin domains eventually present in
the system.
The spatial correlation function of the density fluctuations is given by:

C(r, r + R) = 〈(Nr − 〈Nr〉)(Nr+R − 〈Nr+R〉)〉 = 〈NrNr+R〉 − 〈Nr〉〈Nr+R〉 , (5.16)

where Nr is the number of atoms contained in the column (super-) pixel with coordinates
r = (i, j), R is the distance vector expressed in (super-) pixel units, and the angular brack-
ets represent averaging over a set of images consisting of N ≈ 80 experimental realizations.
Notice that the zero-distance correlation function C(r, r) corresponds to the atom number
fluctuations (∆N)2

r of the content of a column (super-) pixel, whose determination was
discussed in the previous Section. In order to obtain C(R), we first perform an azimuthal
averaging of C(r, r + R):

C(r, R) =
1

NR

∑
|R|=R

C(r, r + R) , (5.17)

where NR is the number of (super-) pixels at distance R. By averaging over all (super-)
pixels within the central region < of the atomic cloud (defined in figure 5.24), we obtain
C(R), i.e. the auto-correlation function and the azimuthally averaged auto-correlation
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function of density fluctuations. An example of the C(R) for a weakly interacting gas
is shown in Figure 5.28. As for the determination of the atom number variance, the
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Figure 5.28: Spatial noise correlations C(R) for a non-interacting degenerate Fermi gas,
with a binning size of 2 px. The finite optical resolution results in the blurring of the
variance, i.e. the zero-range noise correlator, to finite distance R, yielding non-zero
spatial correlations over a distance associated with the width the imaging point-spread
function.

choice of the bin size, i.e. the super-pixel area, plays an important role. While for too
small binning size the atomic variance is completely washed out by the resolution blurring
as described in section 3.3.8, having bigger bins implies an intrinsic drop of the spatial
resolution, consequently in the detection of spatial feature in the correlation. The best
compromise we found is a binning of 2 pixels, which provides a small but sufficient signal
from the atomic fluctuations and, at the same time, allows to probe the presence of spin
domains with a size of the order of 2µm. Following this analysis procedure, we calculate
the density-density correlation function of the system after the quench, using the same
dataset presented in Figure 5.22. Since the finite resolution of the imaging system has a
positive contribution to the correlation function, we normalize our data subtracting from
the correlator measured after the quench to strong repulsion, C1.2(R) (corresponding to
kFa ' 1.2), the one obtained by probing a very weakly repulsive gas C0.3(R) (corresponding
to kFa ' 0.3). The result is plotted in Figure 5.29. First of all, one can notice that
C(R = 0, t) corresponds to the evolution of the variance presented in Figure 5.25, but
this time, since the super-pixel are is smaller, the amplitude of the signal is drastically
reduced. Nevertheless, one can notice the growth of spatial correlations within a range of
about 2µm, which is compatible with the increase of the atom number variance measured
in the previous section. Moreover, at 1ms of evolution time we find a slightly negative
signal, which is again compatible with the presence of spin micro-domains with a size of
2µm. However, it is really important to keep in mind that these two observations are at the
very edge of our experimental resolution and comes with an extremely low signal. They are
therefore too weak to claim the presence of ferromagnetic domains in the system but, on the
other hand, they can be valuable to define an upper limit of about 2µm for their possible
size. In conclusion, with the current experimental setup, we do not have enough spatial
resolution to resolve the presence of spin micro-domains but, in the future, upgrading of
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Figure 5.29: Density-density correlation function averaged in the central region of the
atomic cloud < as a function of the evolution time after the quench. The correlation
function is calculated using a bin size of 2× 2.

our imaging system with a sub-micrometer resolution microscope, the methods described
in this section can be used to finally reveal or completely reject their presence.

5.4 More spectroscopic observables

In the previous section we showed how the two-component Fermi gas evolves after a quench
to strong repulsion by quickly developing anti-correlations and, at the same time decay
into the lower branch of the many-body system by molecular formation. Furthermore we
studied the long time behavior of the system, during which, anti-correlations are preserved
producing a meta-stable glassy state, in which magnetic atomic and molecular micro-
domains survive for more then 30ms. Hereafter, we will discuss about a set of additional
measurements we performed to further understand the state of the system after the quench
and the interplay between the pairing and the ferromagnetic instabilities.

5.4.1 Time evolution of the |1〉-|2〉-|3〉 mixture

Among the various characterization of the emulsion state, we have also investigated the
spectral response of the system if the optical blast that follows the RF pump pulse is
not applied. In this case, the quenched gas comprises three different atomic states. In
general, the presence of three distinguishable fermionic states has detrimental effects on
the stability of the trapped gas, limiting the lifetime of the overall population in the
trap through three-body inelastic decay processes towards deeply-bound molecular states
[112, 113]. On the other hand, we checked that a small state-|2〉 population not exceeding
30% of that of state-|3〉, does not cause substantially enhanced losses within the first 2ms of
evolution. As such, state-|2〉 fermions can be considered as weakly-interacting spectators of
the correlated many-body dynamics in the |1〉-|3〉 mixture and the emergent anti-correlated
phase.
In Figure 5.30 we show the probe spectroscopy signal, N2/(N2+N3), up to 1ms of evolution
time. On the left panel, we plot the signal obtained probing the central region of the cloud,
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Figure 5.30: Spectral response of a quenched three-component |1〉-|2〉-|3〉 gas at various
evolution times for κF (0) a ∼ 1.7 (see text), for the central region (A) and the outer-
most region of the trapped sample (B). In both panels, the pump spectra are shown
as a reference (gray dashed lines, right y-axis), and the different colors correspond to
the different evolution times indicated in the legend. While state-|3〉 atoms evolve into
the emulsion phase within the central region, leading to ∆+(t) → 0, state-|2〉 atoms
remain mixed at all times with all other particles (state-|1〉 and |3〉 fermions, and 1-3
molecules, respectively). As such, the spectral response of state-|2〉 atoms starkly differs
from that of state-|3〉 surviving fermions, simultaneously probed with the near-resonant
2-3 RF frequency pulse. This leads, within the denser part of the sample, to a double-
peak structure at positive detuning: the negative peak refers to state-|2〉 atoms being
transferred in the |3〉-state. The positive peak near zero detuning corresponds instead to
state-|3〉 atoms transferred back from the emulsion phase. The double feature is absent
in the paramagnetic wings of the distribution where both state-|3〉 and |2〉 atoms are
always mixed with the surrounding medium.

on the right panel the one extracted from the wings. One can immediately realize that a
new peak, with negative amplitude, appears for positive detunings. In a |1〉-|2〉-|3〉 mixture
the probe spectroscopy pulse does not only flip atoms from state-|3〉 to state-|2〉, but also
the opposite. In order to understand the peak structure one needs to consider all the
possible transitions between the two-state as sketched in Figure 5.31. Since the |2〉 atoms
are weakly interacting with the other two states, they will uniformly occupy all the atomic
cloud and act as a background. We can therefore recognize three different configurations
of atoms and molecules which will produce a different spectroscopy signal (corresponding
to the three panel of Figure 5.31):

1. The configuration with a majority of state-|3〉 atoms in the anti-correlated or micro-
domain phase together with a lower density of state-|2〉 atoms. The regions of the
cloud corresponding to this configuration will resonate with an RF frequency close
to the |2〉-|3〉 bare transition and produce a positive spectroscopy signal.

2. The configuration comprising |1 − 3〉 dimers and residual state-|2〉 atoms. In this
case, the RF pulse can drive two possible transitions. The first one corresponds to
the dissociation of the molecule and producing state-|1〉 and state-|2〉 free atoms. The
peak is at negative detuning, corresponding to the binding energy of the molecule,
and with a positive sign. The second possibility is the transfer of the free state-|2〉
atoms into state-|3〉. Since the final state is repulsively interacting, the spectroscopy
peak will have a positive detuning. The spectroscopy this time signal will be negative
since the number of state-|2〉 particle decreases.
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Figure 5.31: Sketch of the three possible local configurations of the |1〉-|2〉-|3〉 mixture
after the |1〉−|3〉 anti-correlations are formed and the corresponding spectroscopy signals
when the RF pulse frequency is scanned near the |2〉-|3〉 transition. The left(right)
panel corresponds the region containing state-|3〉(|1〉) atoms in the anti-correlated of
micro-domain phase. The middle panel corresponds to regions containing |1 − 3〉
dimers. Since the state-|2〉 atoms are weakly interacting with the rest of the system,
they are homogeneously distributed in all the regions of the cloud.

3. The configuration consisting in state-|1〉 in the anti-correlated or microdomain phase,
and residual state-|2〉 atoms. In this case, the RF pulse will drive the weakly inter-
acting |1〉-|2〉 mixture to the strongly interacting |1〉-|3〉. This is the exact analogy
of the pump pulse, the detuning is positive and the sign of the spectroscopy peak
negative.

In Figure 5.30 one can observe how the evolution in time of the system affects these
three different signals. The positive peak corresponding to the first configuration shifts
towards zero detuning because of the growth of anti-correlations and decreases in time due
to the molecular formation. On the other hand, the negative peak due to the combined
contributions of the second and third configuration increases its amplitude because of the
increase of |1〉-|3〉 dimers. Moreover, its detuning converges in time to the value measured
through pump spectroscopy (gray dashed line). On the right panel of Figure 5.30 one can
see that the signal extracted from the low-density wings of the cloud is completely different.
There the interaction strength is not sufficient to build the anti-correlated state and the
density low for efficient three-body recombination. Hence, we expect a |1〉-|2〉-|3〉 mixture
with a relatively smaller number of state-|2〉 atoms. The spectroscopy signal is almost
constant in time with a small detuning corresponding to the weak interaction strength.
This observation confirms the hypothesis that the quenched gas evolves in time to produce
an anti-correlated state, in which the wave-function overlap between state-|1〉 and state-|3〉
atoms drops because of the strong repulsion. The presence of three distinguishable features
in the spectroscopy signal is in fact hard to explain if the density of the three component
gas was homogeneous.

5.4.2 Spatial dependence of ∆+(t)

In order to better understand the spatial distribution of the anti-correlated phase within
our inhomogeneous trapped sample, it is instructive to analyze the behavior of the spectral
response of a |1〉− |3〉 gas mixture as a function of evolution time and distance R̃ from the
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trap center for kFa ' 1.2. The result plotted in Figure 5.32, shows an RF shift ∆+ initially
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Figure 5.32: Evolution of the energy shift as a function of the distance from the center
of the cloud. The shorter is this distance, the higher is the gradient of the energy shift,
i.e. the rate of anti-correlations development. In the outer, low-density region of the
cloud, the relative drop is almost negligible and we ascribe is to the decreasing of the
unpaired atom density and heating in the system. Since the cloud is cigar-shaped, in
order to azimuthally average the shift we perform a rescale of the long axis to match the
shortest one. Hence, R̃ refers to the distance measured along the transverse direction of
the cloud.

much bigger in the center than in the external regions of the cloud, owing to the higher
density and therefore the higher interaction strength. However, as the system evolves ∆+(t)
within high-density central region quickly drops to values as low as 200Hz, signaling the
development of anti-correlations. In contrast, the outer wings of the sample present a much
slower and less pronounced evolution of the interaction shift, consistent with a pure drop of
the atom density and raise of the temperature. The intermediate regions, 10 ≤ R̃ ≤ 20µm,
present a trend smoothly crossing-over between these two limiting behaviors.
This observation confirms the findings of the previous sections, offering a new possibility
to measure the evolution of the system at different interaction parameters within the same
experimental run. In the framework of the local density approximation (LDA), one can
consider independently different density region of the atomic cloud. The center of the trap,
where the density is higher, corresponds to the highest kFa and the wings of the density
distribution to a weakly interacting gas.
In order to improve this analysis one could use the inverse Abel transformation to map
the integrated signal presented in Figure 5.32 to three dimension and find the local energy
shift ∆+(x, y, z) as a function of the local density n(x, y, z), which correspond to the local
interaction parameter kF (x, y, z)a. In practice, we could not carry out this procedure
because of the insufficient signal to noise ratio to extract convincing results from the Abel
deconvolution.

5.4.3 Spectroscopic probing with long RF pulses

To better understand the spectral features of the repulsive atomic peak in the anti-
correlated regime, we sacrificed our time resolution using 2ms long probe pulses in order
to significantly reduce its Fourier width. As shown in Figure 5.33, with the increased
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Figure 5.33: Spectral response of a gas evolving at kFa ' 1.3 into the anti-correlated
phase, recorded with a 2ms-long probe pulse after different evolution times (see legend).
The increased duration of the spectroscopy pulse significantly enhances our spectral sen-
sitivity and it allows to trace the asymmetric decay of the spectral weight associated with
different frequency detunings. In particular, the blue-detuned parts of the spectrum de-
cay much more rapidly than the one around zero (or slightly positive). The solid lines
are obtained by fitting the data with a Gumbel function.

spectral resolution, the line profiles result strongly asymmetric, being dominated by the
inhomogeneity of the trapped system. In particular, one can notice the different timescales
associated to the decay of the different contribution to the overall spectral response: while
the signal at large and positive detuning is strongly reduced already after few millisec-
onds of evolution, the drop of the signal around zero detuning is much slower. Such a
strong asymmetry, revealed within the central trap region, becomes much less pronounced
by considering the outer low-density region of the cloud, as well as by considering lower
interaction strengths for which the system remains paramagnetic.

5.4.4 Metastability of the anti-correlated state

Let me discuss about the last measurement described in this thesis. Its main purpose
is to test the stability of the anti-correlated state by increasing the repulsive interaction
strength once the anti-correlated state is already formed. The idea comes from the following
observation: if we let the system evolve for a very long time after the quench to strong
repulsion, up to 100ms, and we measure the surviving unpaired population, we notice
that it is bigger for higher interaction strengths. As shown in Figure 5.34 if we compare
the evolution of the unpaired fermionic population when we quench the interactions to
kFa ' 2.3 with respect to kFa ' 0.9 we notice that, even if the time zero population is
smaller because of the lower efficiency of the pump RF pulse, its value around 100ms is
higher.
Why does the unpaired atomic population relative to different interaction parameter cross
at a given evolution time even though the molecular formation rate should be higher, higher
is the interaction strength? One simple explanation could be that after such a long time
the system becomes a thermal mixture of hot molecules and atoms, with a population ratio
set by the chemical equilibrium [114, 5]: since at higher interaction strength the binding
energy of the molecules is lower, the energy difference between the upper and lower branch



108 5.4. More spectroscopic observables

0 50 100 150

Time (ms)

10
−2

10
−1

10
0

Pe
ak

 a
m

pl
itu

de

κFa = 2.3
κFa = 0.9
κFa = 0.9 ⇒ 2.3

Figure 5.34: Time evolution of the repulsive atomic peak. The orange and blue data
set correspond to the standard pump-probe spectroscopy described at the beginning of
this section, with a quench to kFa ' 0.9 and kFa ' 2.3 respectively. While at short
time the unpaired population is higher for the lower interaction strength, due to higher
pump efficiency and slower pairing rate (see Figure 5.8), after 50ms of evolution we
find an opposite trend. The idea is that once the anti-correlations in the system are
developed, the stronger is the repulsion, the slower is their melting, increasing their
lifetime. Furthermore, this is confirmed by a second experimental sequence, of which
the results are plotted in green: the system is quenched at kFa ' 0.9, then, after a
waiting time of 1ms during which the anti-correlations are established, the interaction
strength is adiabatically rumped up to kFa ' 2.3. Therefore, the already developed
anti-correlations are reinforced preventing further formation of dimers and, as one can
see, the unpaired atomic population remains almost frozen. The error-bars correspond
to the fitting uncertainty on the amplitude of the atomic peak fit.

is also reduced. Therefore, the ratio between atomic and molecular population, set by
the Boltzmann distribution, would be higher. A second possibility is that, when the anti-
correlated state is formed, the wavefunction overlap between the atoms in the state |1〉 and
in the state |3〉 is drastically reduced, effectively suppressing the three-body recombination
mechanism.
In order to discriminate between these two hypotheses we perform the following experiment,
which consists of four main steps:

1. We quench the system to kFa ' 0.9

2. We wait for the energy shift to drop (1ms).

3. We ramp up the Feshbach magnetic field to increase the interaction parameter up to
kFa ' 2.3 in about 20ms.

4. We probe the unpaired fermionic population up to 100ms of evolution time in the
strong repulsive regime.

The result is reported in green in Figure 5.34. As we can see, this procedure leads to the
highest ratio between unpaired atoms and molecules at a long evolution time. In order to
give an interpretation of the result, it is useful to first look again at the evolution of the peak
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amplitude after the quench without any magnetic field ramp. For lower interaction strength
(orange data) the initial amplitude is higher than the higher interacting one (blue data)
because of the greater pump efficiency and the lower pairing rate, as already presented in
Figure 5.8. After about 30ms we observe the opposite trend: the peak amplitude becomes
bigger for higher interaction strength. As already observed in our previous work [115],
the stability of the anti-correlated state is higher when supported by stronger repulsive
interactions, which prevent its melting. Our interpretation of the physics taking place
during the four steps is the following:

1. Quench to kFa ' 0.9 → the system is pumped into the upper branch at a moderate
interaction parameter, allowing for good transfer efficiency.

2. Wait for 1ms→ during the waiting time the anti-correlated state has formed. Being
at kFa ' 0.9 the pairing rate relatively low, not many molecules are formed in the
process.

3. Ramp up the interactions to kFa ' 2.3 → by increasing the interaction parameter
one can naively think to increase the pairing rate. While this is clearly true for a
homogeneous gas, it does not apply in the same way to a system which contains
anti-correlations. The observed effect is the opposite: strengthening up the repulsive
interactions, the anti-correlations become stronger, lasting for a longer time and
effectively preventing further molecular formation.

4. Probe the unpaired fermionic population → probing the system after the quench
followed by the increase of the interaction parameter correspond to measure a signif-
icantly high number of unpaired atoms even after 100ms of evolution time.

In the end, this experimental sequence is a good strategy to increase the atomic population
at long evolution time. It takes advantages both from the lower pairing rate at kFa ' 0.9
and from the strong repulsion at kFa ' 2.3.
In conclusion, this measurement rules out the hypothesis that the state of the system after
a long evolution time is a hot mixture of atoms and molecules in thermal equilibrium.
Instead, it seems that the atom-atom and the atom-dimer anti-correlations survive in a
metastable glassy state [116, 117] or quantum emulsion [118], in which the overlap of the
atomic and the molecular wave-functions at short distances, even down to a single particle
spacing, is reduced.
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Chapter 6

Conclusions

In this thesis, I present the study of the many-body dynamics of ultracold repulsive Fermi
gases of 6Li atoms. I performed two paradigmatic experiments which study the upper
branch of the repulsive Fermi gas up to very strong coupling, both in a very unbalanced
mixture and in the balanced case.
In the first experiment, I characterized this branch in the impurity limit, within the quasi-
particle framework, through radio-frequency spectroscopy. This study is extremely valuable
as a meeting point between theories and experiments and stands as an ideal cross-validation
tool. I experimentally measured the property of the repulsive Fermi polaron such as its
energy, effective mass, quasi-particle residue and lifetime, and compared the results with
different theoretical methods highlighting their weaknesses and strengths in different in-
teractions regimes. The main result of this first investigation is that for strong enough
repulsive interactions, the energy of the repulsive polaron exceeds the Fermi energy of the
system, which is a clear signature of the presence of a ferromagnetic instability in the
repulsive branch.
In the second experiment, I have explored the out-of-equilibrium dynamics of a Fermi gas
quenched to strong repulsion exploiting a pump-probe RF spectroscopy scheme. I found
that within the first few Fermi times, contrary to previous studies, the pairing processes
does not dominate the evolution of the system but instead competes with the growth of
anti-correlations, which results even faster at strong coupling regime. Moreover, I showed
how the interplay between these two mechanisms gives rise to a long-lived emulsion state
of atoms and dimers in which the inter-atomic anti-correlations survive for thousands of
Fermi times and prevent the system to completely decay into the molecular ground-state.
In the future I plan to exploit the experimental techniques learned and developed within
the framework of this thesis to further study the out-of-equilibrium physics of Fermi gases
such as the effect of repulsive impurities in a superfluid bath of pairs [119, 120]. Moreover,
I aim to study the effect of different trapping geometries achieved by using a Digital Mirror
Device, capable of generating almost arbitrary light potential. Finally, I want to explore
the physics of the repulsive gas in lower dimensionality by confining the fermionic cloud in
a quasi-2D regime [121, 122, 123]. Together with the implementation of a high-resolution
microscope with a sub-micrometer resolution I plan to study again the development of spin
anti-correlations in the system directly by probing the density distribution and confirming
or excluding once for all the growth of ferromagnetic domains in the repulsive gas.
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