Atoms few, damned but quick... Magnetic fields sources, RF antennas, optical structures, all integrated in a micro-chip with a Bose-Einstein condensate a few hundred microns from the surface: an "Atom chip". The benefits are higher trap frequencies, shorter evaporative time, better atom-field coupling plus a much (much) cheaper set-up. The goal of our experiment is to make the best use of Atom chips for quantum technological applications.

Quantum Zeno dynamics

It is generally impossible to probe a quantum system without disturbing it. However, it is possible to exploit the back-action of quantum measurements and strong couplings to tailor and protect the coherent evolution of a quantum system. This is a profound and counterintuitive phenomenon known as quantum Zeno dynamics (QZD). Here we demonstrate QZD with a rubidium Bose-Einstein condensate in a five-level Hilbert space. We harness measurements and strong couplings to dynamically disconnect different groups of quantum states and constrain the atoms to coherently evolve inside a two-level subregion. In parallel to the foundational importance due to the realization of a dynamical superselection rule and the theory of quantum measurements, this is an important step forward in protecting and controlling quantum dynamics and, broadly speaking, quantum information processing.

F. Schӓfer et al.,
Experimental realization of quantum zeno dynamics
Nat. Commun. 5, 3194 (2014)

S. Gherardini et al.,
Ergodicity in randomly perturbed quantum systems
Quantum Sci. Technol. 2, 015007 (2017)

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.