Connecting critical transport and vortex dynamics in a thin atomic Josephson junction between fermionic superfluids


We theoretically investigate the onset of dissipation in the Josephson dynamics between two atomic Fermi superfluids. We demonstrate that resistive currents are directly connected with nucleations of vortex rings and their propagation into the superfluid bulk. We compare the simulations with our recent experimental results, finding excellent agreement. This work has been carried out in collaboration with the theory group of the University of Newcastle, led by Prof. Proukakis and it will be valuable for advancing our comprehension of the complex superfluid transport in emerging atomtronic devices.

K. Xhani et al.
Critical Transport and Vortex Dynamics in a Thin Atomic Josephson Junction
Phys. Rev. Lett. 124, 045301 (2020)