Fermions with tunable interactions... In the lithium lab we produce ultracold Fermi gases of 6Li to explore out-of-equilibrium dynamics and transport phenomena in strongly correlated fermionic matter. Atoms are confined into light-imprinted potential structures, simulating the motion of electrons in solid state devices. Our main goal is the study of two-dimensional strongly correlated phases, such as superfluidity across the BCS-BEC crossover and its robustness to disorder.

Connecting critical transport and vortex dynamics in a thin atomic Josephson junction between fermionic superfluids

We theoretically investigate the onset of dissipation in the Josephson dynamics between two atomic Fermi superfluids. We demonstrate that resistive currents are directly connected with nucleations of vortex rings and their propagation into the superfluid bulk. We compare the simulations with our recent experimental results, finding excellent agreement. This work has been carried out in collaboration with the theory group of the University of Newcastle, led by Prof. Proukakis and it will be valuable for advancing our comprehension of the complex superfluid transport in emerging atomtronic devices.

K. Xhani et al.
Critical Transport and Vortex Dynamics in a Thin Atomic Josephson Junction
Phys. Rev. Lett. 124, 045301 (2020)

Li people

Giulia Del Pace
PhD student
Woo Jin Kwon
Postdoctoral fellow
Francesco Scazza
Scientific staff
Matteo Zaccanti
Scientific staff
Massimo Inguscio
Scientific staff
Giacomo Roati
Scientific staff
Former members:
Andrea Amico
Alessia Burchianti
Chiara Fort
Riccardo Panza
Jorge Seman
Pedro Tavares
Giacomo Valtolina

Li contacts

For further information, request of material, job opportunities, please contact:

Giacomo Roati
(roati@lens.unifi.it)

Li funding

ERC CoG QUFERM2D
EU Quantum Flagship
Qombs (2018-2021)
PRIN 2017 CEnTraL
Progetto Ente Cassa QuSiM2D
H2020-MSCA-IF-2018 VorDIST
H2020-MSCA-IF-2015 SCOUTFermi2D