We aim to widen the range of quantum simulations with cold atoms, by investigating phenomena arising from the long-ranged dipolar interaction in reduced dimensionalities. We are operating a new experimental setup based on quantum gases of the highly magnetic Dysprosium atoms. This is a joint project between LENS and CNR-INO, Sezione di Pisa.

Observation of a dipolar quantum gas with metastable supersolid properties

The competition of dipole-dipole and contact interactions leads to exciting new physics in dipolar gases, well-illustrated by the recent observation of quantum droplets and rotons in dipolar condensates. We have now discovered that the combination of the roton instability and quantum stabilization leads under proper conditions to a novel regime that presents supersolid properties, due to the coexistence of periodic density modulation and phase coherence. In a combined experimental and theoretical analysis (with the University of Hannover), we have determined the parameter regime for the formation of coherent stripes, whose lifetime of a few tens of milliseconds is limited by the eventual destruction of the stripe pattern due to three-body losses. Our results open intriguing prospects for the development of long-lived dipolar supersolids.

L. Tanzi et al.
Observation of a dipolar quantum gas with metastable supersolid properties
Phys. Rev. Lett. 122, 130405 (2019)

See also the reviews on Physics Viewpoint by T. Donner:

T. Donner, Dipolar Quantum Gases go Supersolid
Physics 12, 38 (2019)
also featured in Highlights of the Year, Physics 12, 145 (2019)

and the Nature News and Views by L. Pollet:

L. Pollet, Quantum gases show flashes of a supersolid
Nature 569, 494 (2019)

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.