Taming, slowing and trapping atoms with light
Cold is quantum, Quantum is cool!
Multicolored lasers for a variety of different atoms
Keeping our eyes on the quantum
High technology for great science
Join our ultracool group!

Welcome to the website of the Ultracold Quantum Gases group at the European Laboratory for Nonlinear Spectroscopy (LENS) and Department of Physics and Astronomy of the University of Florence (Italy). In our labs we use lasers and magnetic fields to produce the lowest temperatures of the Universe, just a few billionths of a degree above absolute zero...

At these temperatures, atoms stop moving and we can control them for a variety of different fundamental studies and applications. We can force atoms to arrange according to a periodic structure and simulate the behavior of crystalline solids and new materials. We can use the atoms as ultra-high accurate sensors to probe forces with the power of quantum mechanics. We can study how quantum particles combine together under the action of strong interactions and how superfluidity develops. We can use these ultracold atoms to process information and develop new quantum technologies.

Dress warmly and... follow us for this ultracold journey!


We are pleased to announce the workshop of the EU project QUIC (Quantum Simulations of Insulators and Conductors) which will take place at LENS on April, 20th and 21st. The talks will be open and there will be time for lab visits and scientific discussions for everyone interested, not only for the QUIC team members.

A detailed program of event can be found here

Landau was first to suggest that collective excitations of particle ensembles could be treated as if they were particles themselves, with properties like momentum and mass. As such, these excitations are known as quasiparticles, and in contrast to free particles they possess a finite lifetime. In this study, we report on the investigation of a particular type of quasiparticle known as a Fermi polaron. This is a quantum impurity that is immersed in a Fermi sea and strongly interacts with it. In particular, Fermi polarons emerging from impurities repelling the surrounding particles are known as repulsive polarons. We could observe well-defined repulsive polarons even at very strong interactions, with impurities possessing the same mass as the surrounding particles. In such a system the existence of long-lived repulsive polarons was thus far debated. For this, we have spectroscopically probed an ultracold Fermi gas of lithium, where atoms in a specific internal spin state acted the role of the impurities interacting with a bath of atoms in another spin state. Our findings offer exciting prospects for studying many-body states that rely on repulsive interactions.

F. Scazza, et al.,
Repulsive Fermi Polarons in a Resonant Mixture of Ultracold 6Li Atoms
Phys. Rev. Lett. 118, 083602 (2017)

We demonstrate a novel way of synthesizing spin-orbit interactions in ultracold quantum gases, based on a single-photon optical clock transition coupling two long-lived electronic states of two-electron 173Yb atoms. By mapping the electronic states onto effective sites along a synthetic “electronic” dimension, we have engineered fermionic ladders with synthetic magnetic flux in an experimental configuration that has allowed us to achieve uniform fluxes on a lattice with minimal requirements and unprecedented tunability. We have detected the spin-orbit coupling with fiber-link-enhanced clock spectroscopy and directly measured the emergence of chiral edge currents, probing them as a function of the flux. These results open new directions for the investigation of topological states of matter with ultracold atomic gases.

L. F. Livi et al.,
Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition
Phys. Rev. Lett. 117, 220401 (2016)

We realize a magneto-optical trap for 162Dy atoms on the intermediate linewidth transition at 626 nm. We trap over 2✕108 atoms at temperatures as low as 20 μK in 5 seconds. We observe the best loading at large detuning, -35Γ. Under these operating conditions, MOT forms below the quadrupole centre and the MOT light acts as optical pumping as well.

E. Lucioni et al.
A new setup for experiments with ultracold Dysprosium atoms
Eur. Phys. J. Spec. Top. 226, 2775 (2017)

Last Tweets

Seminars & Events

The LENS QuantumGases group is glad to welcome in Florence Prof. Randall Hulet from Rice University. Prof. Hulet will be our guest for one month until mid July.
20 & 21.04.2017
QUIC Project Meeting
See detailed program
Querzoli room, LENS.
Seminar by Prof. Nick Proukakis:
Non-Equilibrium Dynamics in Quantum Gases,
h. 11.00 Querzoli room, LENS.
Seminar by Prof. David Clément:
Momentum-resolved investigation of the condensate depletion in interacting Bose gases,
h. 15.00 Querzoli room, LENS.
Seminar by Dr. Carmine Ortix:
Symmetry-protected topological insulators in one-dimension,
h. 12.00 Querzoli room, LENS.
Trento-Florence Joint Meeting on Cold Matter
Polo Scientifico di Povo, Trento.
Seminar by Dr. Franck Pereira Dos Santos:
Cold Atom Interferometry Gravity Sensors,
h.15.15 Querzoli room, LENS.
Seminar by Andrea Morales:
Supersolid formation in a quantum gas breaking a continuous translational symmetry,
h.15.15 Querzoli room, LENS.
Seminar by Prof. Jean-Philippe Brantut:
Mesoscopic transport experiments with cold atoms,
h. 11.00 Querzoli room, LENS.
Seminar by Dr. Guido Pagano:
Observation of a Discrete Time Crystal in a Trapped-Ion Quantum Simulator,
h. 16.30 Querzoli room, LENS.
Seminar by Dr. Francesco Piazza:
Spontaneous Crystallisation of Light and Ultracold Atoms,
h. 15.00 Querzoli room, LENS.
Fermi Colloquim by Prof. Jun Ye:
Optical atomic clock and many-body quantum physics,
h. 11.30 Querzoli room, LENS.