Taming, slowing and trapping atoms with light
Cold is quantum, Quantum is cool!
Multicolored lasers for a variety of different atoms
Keeping our eyes on the quantum
High technology for great science
Join our ultracool group!

Welcome to the website of the Ultracold Quantum Gases group at the European Laboratory for Nonlinear Spectroscopy (LENS) and Department of Physics and Astronomy of the University of Florence (Italy). In our labs we use lasers and magnetic fields to produce the lowest temperatures of the Universe, just a few billionths of a degree above absolute zero...

At these temperatures, atoms stop moving and we can control them for a variety of different fundamental studies and applications. We can force atoms to arrange according to a periodic structure and simulate the behavior of crystalline solids and new materials. We can use the atoms as ultra-high accurate sensors to probe forces with the power of quantum mechanics. We can study how quantum particles combine together under the action of strong interactions and how superfluidity develops. We can use these ultracold atoms to process information and develop new quantum technologies.

Dress warmly and... follow us for this ultracold journey!


Shining a blue detuned thin (2 μm) barrier we produce a double-well potential, which creates a Josephson-like junction for fermionic superfluids. By varying the interactions we investigate the population and phase dynamics between the two wells, observing the Josephson effect across the BEC-BCS crossover.

G. Valtolina et al.,
Josephson effect in fermionic superfluids across the BEC-BCS crossover
Science 350, 1505 (2015)

Light at 421nm will be employed for transverse cooling and for the Zeeman slower. Up to 1.2W of blue light is produced in a homemade frequency doubling cavity and is locked to the atomic line using saturated absorption spectroscopy in a hollow cathode lamp.

Light at 626nm will be employed for the magneto-optical trap (MOT). The red light is obtained from a commercial laser system and is locked to the atomic line using saturated absorption spectroscopy in a iodine cell.

Carlo Sias has been awarded with a SIR ("Scientific Independence of young Researchers") grant from MIUR ("Italian Ministry for Education and Research") for the development of the Ba+/Li experiment!

Last Tweets

Seminars & Events

Seminar by Prof. Arno Rauschenbeutel:
Chiral Quantum Optics,
h. 11.00 Querzoli room, LENS.
Seminar by Prof. Maarten Hoogerland:
Atomtronics and cavity QED experiments in Auckland,
h. 11.30 Querzoli room, LENS.
The LENS QuantumGases group is glad to welcome in Florence Prof. Randall Hulet from Rice University. Prof. Hulet will be our guest for one month until mid July.
20 & 21.04.2017
QUIC Project Meeting
See detailed program
Querzoli room, LENS.
Seminar by Prof. Nick Proukakis:
Non-Equilibrium Dynamics in Quantum Gases,
h. 11.00 Querzoli room, LENS.
Seminar by Prof. David Clément:
Momentum-resolved investigation of the condensate depletion in interacting Bose gases,
h. 15.00 Querzoli room, LENS.
Seminar by Dr. Carmine Ortix:
Symmetry-protected topological insulators in one-dimension,
h. 12.00 Querzoli room, LENS.
Trento-Florence Joint Meeting on Cold Matter
Polo Scientifico di Povo, Trento.
Seminar by Dr. Franck Pereira Dos Santos:
Cold Atom Interferometry Gravity Sensors,
h.15.15 Querzoli room, LENS.
Seminar by Prof. Jean-Philippe Brantut:
Mesoscopic transport experiments with cold atoms,
h. 11.00 Querzoli room, LENS.
Seminar by Dr. Francesco Piazza:
Spontaneous Crystallisation of Light and Ultracold Atoms,
h. 15.00 Querzoli room, LENS.
Fermi Colloquim by Prof. Jun Ye:
Optical atomic clock and many-body quantum physics,
h. 11.30 Querzoli room, LENS.