Taming, slowing and trapping atoms with light
Cold is quantum, Quantum is cool!
We shape quantum matter
Multicolored lasers for a variety of atoms
Keeping our eyes on the quantum world
Join our ultracool group!
High technology for great science

Welcome to the website of the Ultracold Quantum Gases group at the European Laboratory for Nonlinear Spectroscopy (LENS), the Department of Physics and Astronomy of the University of Florence (Italy) and the Institute of Optics of the Italian National Research Council (CNR - INO). In our labs we use lasers and magnetic fields to produce the lowest temperatures of the Universe, just a few billionths of a degree above absolute zero...

At these temperatures, atoms stop moving and we can control them for a variety of different fundamental studies and applications. We can force atoms to arrange according to a periodic structure and simulate the behavior of crystalline solids and new materials. We can use the atoms as ultra-high accurate sensors to probe forces with the power of quantum mechanics. We can study how quantum particles combine together under the action of strong interactions and how superfluidity develops. We can use these ultracold atoms to process information and develop new quantum technologies.

Dress warmly and... follow us for this ultracold journey!

LAST NEWS

Witnessing ultracold fermions correlate in real time

Strong interactions among fermionic particles in condensed matter are known to foster rich phase diagrams, where distinct microscopic mechanisms compete with one another. In this work, we reveal the emergence of two competing instabilities in a paradigmatic model system, i.e., a Fermi gas of ultracold atoms. While it has been established that a cold gas of atoms subject to strong interactions is unstable towards forming pairs of oppositely oriented spins, a long-standing issue is whether strong repulsion can trigger fermions to build up correlations and develop ferromagnetic order. Here, we probe the out-of-equilibrium dynamics of a repulsive Fermi gas with unprecedented time resolution, exploiting a pump-probe spectroscopic technique akin to the ultrafast spectroscopy used in the solid state. In this way, we witness the real-time growth of spin anti-correlations in the gas driven only by repulsive interactions. Their interplay with the tendency of fermions to pair up is found to persist over long time scales, giving rise to a novel, emulsion-like metastable state unforeseen thus far. These findings represent an important testbed for current and future theories, while they also afford exciting perspectives for accessing elusive regimes of fermionic superfluidity.

A. Amico, F. Scazza, G. Valtolina, P. E. S. Tavares, W. Ketterle, M. Inguscio, G. Roati, and M. Zaccanti
Time-Resolved Observation of Competing Attractive and Repulsive Short-Range Correlations in Strongly Interacting Fermi Gases
Phys. Rev. Lett. 121, 253602 (2018)

See also the Physics Viewpoint by L. LeBlanc:

L. LeBlanc
The Quest to Make a Ferromagnet with Cold Atoms
Physics 11, 131 (2018)

Dual-species Bose-Einstein condensate of 41K and 87Rb in a hybrid trap

We report on the production of a 41K−87Rb dual-species Bose-Einstein condensate in a hybrid trap, consisting of a magnetic quadrupole and an optical dipole potential. After loading both atomic species in the trap, we cool down 87Rb first by magnetic and then by optical evaporation, while 41K is sympathetically cooled by elastic collisions with 87Rb. We eventually produce two-component condensates with more than 105 atoms and tunable species population imbalance. We observe the immiscibility of the quantum mixture by measuring the density profile of each species after releasing them from the trap.

A. Burchianti, et al.
Dual-species Bose-Einstein condensate of 41K and 87Rb in a hybrid trap
Phys. Rev. A 98, 063616 (2018)

A scalable control apparatus for experiments with hybrid quantum systems

Modern experiments with complex quantum systems should ideally be managed by a control apparatus capable of carrying out complex tasks, such as self-optimization procedures and realization of feedback loops acting on different channels. To achieve these goals, we developed a novel control system formed by both a hardware and a software part. Specifically, the hardware is based on a net of interconnected FPGAs able to process incoming and outgoing data directly on board, whereas the software is designed to exploit the capabilities of such a general hardware platform and to be easily expanded to manage other devices or instrumentation changes.

E. Perego, et al.
A scalable hardware and software control apparatus for experiments with hybrid quantum systems
Rev. Sci. Instrum. 89, 113116 (2018)

Arbitrary high-resolution potentials on ultracold fermions

We have implemented a new high-resolution imaging system, that also makes it possible to imprint onto the atomic cloud arbitrary optical potentials created with a digital micromirror device (DMD). This will allow us to study quantum transport of fermionic gases in arbitrary geometries -- from the non-interacting limit to the strongly correlated regime, from the clean to the disordered case. An upgrade of the setup for the production of quasi-two-dimensional clouds is now under way, stay tuned!

Broad Feshbach resonances in Dysprosium atoms

We have characterized the scattering properties of ultracold 162Dy atoms for magnetic fields between 6 and 30 G. In addition to the typical chaotic distribution of narrow Feshbach resonances in Lanthanides, we have discovered two rather isolated broad features. A characterization using the complementary measurements of losses, thermalization, anisotropic expansion and molecular binding energy points towards resonances of predominant s-wave character, with dimensionless strength s=0.5(3). Such resonances will ease the investigation of quantum phenomena relying on the interplay between dipole and contact interactions.

E. Lucioni, et al.
Dysprosium dipolar Bose-Einstein condensate with broad Feshbach resonances
Phys. Rev. A 97, 06060701(R) (2018)

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.