Taming, slowing and trapping atoms with light
Cold is quantum, Quantum is cool!
Multicolored lasers for a variety of different atoms
Keeping our eyes on the quantum
High technology for great science
Join our ultracool group!

Welcome to the website of the Ultracold Quantum Gases group at the European Laboratory for Nonlinear Spectroscopy (LENS) and Department of Physics and Astronomy of the University of Florence (Italy). In our labs we use lasers and magnetic fields to produce the lowest temperatures of the Universe, just a few billionths of a degree above absolute zero...

At these temperatures, atoms stop moving and we can control them for a variety of different fundamental studies and applications. We can force atoms to arrange according to a periodic structure and simulate the behavior of crystalline solids and new materials. We can use the atoms as ultra-high accurate sensors to probe forces with the power of quantum mechanics. We can study how quantum particles combine together under the action of strong interactions and how superfluidity develops. We can use these ultracold atoms to process information and develop new quantum technologies.

Dress warmly and... follow us for this ultracold journey!

LAST NEWS

We have realized a double-species Bose-Einstein Condensate of 87Rb-41K both in the F=2, mF=2 hyperfine states. The preparation of the superfluid mixtures involves different cooling stages. After a double-MOT phase we transfer the mixture in a magnetic quadrupole field where Rb is evaporated by a microwave radiation resonant on the (F=2, mF=2) - (F=1, mF=1) transition while K is sympathetically cooled by thermal contact with Rb. When the temperature is low enough, we transfer the mixture in a crossed optical trap through an intermediate stage of a hybrid magneto-optical trapping potential. The last stage of cooling is performed by pure optical evaporation in the crossed optical potential. At the end of our typical experimental runs we produce pure condensates of 6×104 atoms for both atomic species.

Laser cooling based on dark states, i.e. states decoupled from light, has proven to be effective to increase the phasespace density of cold trapped atoms. Dark-states cooling requires open atomic transitions, in contrast to the ordinary laser cooling used for example in magneto-optical traps (MOTs), which operate on closed atomic transitions. For alkali atoms, dark-states cooling is therefore commonly operated on the D1 transition nS1/2 → nP1/2. We show that, for 87Rb, thanks to the large hyperfine structure separations the use of this transition is not strictly necessary and that “quasi-dark state” cooling is efficient also on the D2 line, 5S1/2 → 5P1/2. We report temperatures as low as (4.0 ± 0.3) μK and an increase of almost an order of magnitude in the phase space density with respect to ordinary laser sub-Doppler cooling.

S. Rosi, et al.
Λ -enhanced grey molasses on the D2 transition of Rubidium-87 atoms
Sci. Rep. 8, 1301 (2018)

We study the emergence of dissipation in an atomic Josephson junction between weakly coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the BEC–BCS crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of the conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equilibrium quantum systems.

A. Burchianti, et al.,
Connecting Dissipation and Phase Slips in a Josephson Junction between Fermionic Superfluids
Phys. Rev. Lett. 120, 025302 (2018)

Last Tweets

Seminars & Events

24.11.2017
Fermi Colloqium by Prof. Wolfgang Ketterle:
New forms of matter with ultracold atoms: superfluids, supersolids and more,
h. 11.30 Querzoli room, LENS.
23.11.2017
Prof. Wolfgang Ketterle will give a lecture for students and everyone else interested on the topic:
Superfluid Bose and Fermi gases,
h. 15.00 Room 25, Blocco Aule.
27.09.2017
Seminar by Prof. Arno Rauschenbeutel:
Chiral Quantum Optics,
h. 11.00 Querzoli room, LENS.
19.07.2017
Seminar by Prof. Maarten Hoogerland:
Atomtronics and cavity QED experiments in Auckland,
h. 11.30 Querzoli room, LENS.
13.06.2017
The LENS QuantumGases group is glad to welcome in Florence Prof. Randall Hulet from Rice University. Prof. Hulet will be our guest for one month until mid July.
20 & 21.04.2017
QUIC Project Meeting
See detailed program
Querzoli room, LENS.
10.04.2017
Seminar by Prof. Nick Proukakis:
Non-Equilibrium Dynamics in Quantum Gases,
h. 11.00 Querzoli room, LENS.
23.02.2017
Seminar by Prof. David Clément:
Momentum-resolved investigation of the condensate depletion in interacting Bose gases,
h. 15.00 Querzoli room, LENS.
22.02.2017
Seminar by Dr. Carmine Ortix:
Symmetry-protected topological insulators in one-dimension,
h. 12.00 Querzoli room, LENS.